
SEIF Project: ResourceContracts.NET

Jonathan Tapicer, Diego Garbervetsky and Martin Rouaux
Departamento de Computación, FCEyN, UBA

Buenos Aires, Argentina
{jtapicer, diegog, mrouaux}@dc.uba.ar

March 4, 2011

Abstract
We present an extension of the specification language of Code Con-

tracts to support resource usage specifications in .NET programs. In
particular, we focus on dynamic memory consumption, a resource that
can be occupied and released during program execution by a memory
manager. We propose a new set of annotations enabling specification
of both memory consumption and lifetime properties in a modular fash-
ion. To verify the correctness of these annotations we rely on the Code
Contracts static verifier and a points-to analysis. In order to overcome
some arithmetic limitations of the engine we incorporate a symbolic cal-
culator capable of dealing with polynomial consumption. This approach
was implemented in a tool which fully integrated with the Visual Studio
tool-suite, available as an extension, providing facilities such us autocom-
pletion and verification at build time.

1 Problem Statement
Design by contract [14] is a programming discipline that prescribes that software
designers should define formal, precise and verifiable interface specifications for
software components, extending the ordinary definition of abstract data types
with preconditions, postconditions and invariants.

While there has been some success in the adoption of contracts for enforcing
functional requirements and design decisions [13, 15], there have not been many
signs of their usage to express non-functional requirements such as performance
or resource utilization requirements. Possible causes are the inherent difficulty
of writing quantitative requirements, the lack of a convenient language to ex-
press them and tool support to verify them. However, in many settings it is
crucial to enforce the fulfillment of this kind of requirements. Certifying mem-
ory consumption is vital to ensure safety in embedded systems; understanding
the number of messages sent through a network is useful to detect performance
bottlenecks or reduce communication costs, etc. It is well known that inferring,
and even checking, quantitative bounds (e.g., resource usage) is difficult [5].

1

Nevertheless, there has been noticeable progress in techniques that compute
symbolic resource usage [5, 2] and complexity [10] upper-bounds.

Code Contracts [8] is a tool that brings the advantages of design-by-
contract programming to all .NET based programming languages enabling the
use of contracts without requiring a specific compiler. The long term goal of
the work presented here is enabling the specification of quantitative constraints
such as resource usage and performance requirements in .NET applications using
Code Contracts.

In this paper we focus in enforcing dynamic memory consumption contracts.
This is a particularly challenging problem because memory footprint does not
monotonically increase during program execution. For programming languages
with automatic memory reclaiming mechanism (such as .NET based languages),
this problem gets even more complex since memory consumption depends on
the behavior of both the application and the garbage collector (GC). We believe
other quantitative requirements may be computed by using a similar approach.

We present an extension of the Code Contracts annotation language
designed to specify the amount of memory consumed by a method. These
specifications have two possible interpretations: while they state the program
ensures that a method consumes less than a particular bound, once verified,
they can be interpreted as well as a precondition stating the system requires at
least the amount of memory specified in order to run safely.

The proposed extension also provides means for specifying object lifetimes
needed to model object allocation and reclaiming. Roughly speaking, we dis-
tinguish temporary objects, created by a method (or its callees) for auxiliary
calculus, from residual objects that may be used by its callers and should live
longer. For the latter we provide constructs to enable client methods to reclaim
some of these objects.

In order to verify the annotations we rely on Clousot, the Code Con-
tracts static verification engine. We do so by instrumenting the original
program with special counters and transforming the memory assertions into
equivalent standard Code Contracts assertions in terms of those counters.
Some complex quantitative annotations require an arithmetic analysis that is
beyond Clousot capabilities. To verify such annotations we integrate the tool
with the symbolic calculator Barvinok [7], allowing us to verify specifications
featuring polynomials.

All this work has been implemented as a Visual Studio plugin enabling static
verification and run-time checks.

The paper is organized as follows: in §2 we introduce a set of annotations
to describe memory consumption contracts, objects lifetime information and
iteration spaces for loops. In §3 we show how to transform those annotations into
code and annotations supported by Clousot, and how we check object lifetime
annotations. In §4 we extend the checker to support polynomial constraints
using Barvinok. Then, in §5 we present some implementation details. We
conclude in §6 and §7 discussing some related and future work.

2

2 Memory usage annotations
The design of the annotations language was driven by the following considera-
tions:

(i) The annotations should follow the style of Code Contracts to give users
the advantage of having a natural and easy integration with the IDE such
as autocompletion and inline documentation.

(ii) They need to provide means to specify that objects are allocated but also
potentially reclaimed by the GC in a simple and modular fashion (lifetime
information).

(iii) They should be rich enough to allow client methods to check its own
annotations using the callees’ resource specifications without losing much
precision.

(iv) Both quantitative and lifetime constraints have to be in terms of methods
parameters and instance variables.

(v) The mechanism to specify consumption information should maintain cer-
tain basic encapsulation properties of such us information hiding.

To represent memory recycling due to GC we based our annotation language
on a very simple memory model1 where annotations are used to only quantify
objects created by the method being specified (or its callees). In this setting,
those objects can be temporary, used for auxiliary computation and no longer
needed at the end of method execution; or residual, meaning objects that may
be used by a client method and, therefore, should live longer. Using escape
analysis terminology, temporary objects are captured by the method whereas
residual objects escape its scope.

Figure 1 shows an example exhibiting some of the annotations used to specify
memory consumption. They are located under the Contract.Memory class as
an extension of the available class Contract used by Code Contracts.

Tmp and Rsd are used to specify the amount of temporal and residual objects
consumed by a method respectively. These annotations must be placed at the
beginning of a method. They expect a class name and an integer expression
which declares the number of objects of that class consumed by the method.
Notice that these annotations should be interpreted within the method as an
ensures clause stating that the method consumes at most the declared number of
objects, but from the client point of view its role is a requires clause demanding
that the system needs at least that space for the specified quantity of objects in
order to safely run.

In addition to the quantitative expression Rsd expects an identifier for tag-
ging this set of objects. The tag is used to specify that those objects belong to
a group having similar characteristics in terms of lifetime (e.g., they are part of
the same data structure). For instance, the identifier Contract.Memory.Return
indicates that this set of objects is returned and Contract.Memory.This that

1This model is inspired in the scoped-memory management proposed for Real-Time
Java [9], but in this case we just used it as an over-approximation of GC behavior.

3

public Person [] CreateFamily(List <string > names ,
string address) {

Contract.Requires(names.Count > 0);

Contract.Memory.Rsd <Person []>(Contract.Memory.Return ,1);
Contract.Memory.Rsd <Person >(Contract.Memory.Return ,

names.Count);
Contract.Memory.Rsd <Address >(Contract.Memory.Return ,

names.Count);
Contract.Memory.Tmp <AddressValidator >(1);

Contract.Memory.DestRsd(Contract.Memory.Return);
Person [] family = new Person[names.Count];

for (int i = 0; i < names.Count; i++) {
Contract.Memory.DestRsd(Contract.Memory.Return);
Person p = new Person ();

Contract.Memory.AddRsd(Contract.Memory.Return ,
Contract.Memory.This);

p.SetInfo(names[i], address);
family[i] = p;

}
return family;

}

Figure 1: Annotated method
objects may be reachable by the receiver. A developer can define an arbitrary
set of identifiers according to hers needs of distinguishing sets of residual objects.

To verify the aforementioned contracts we need to inform the lifetime of every
object allocated by the method. To do so, we introduce two new annotations:
DestTmp and DestRsd which should be located before every new statement.
DestTmp declares that an object is temporary and DestRsd(t) declares it as
residual (living longer that the method itself) and associates the object with
one of the tags already mentioned in the contract.

In the case of method invocations we need to figure out the destination
of residual objects originated in callees. The annotation AddTmp(src) states
that callees’ residual objects tagged with src become temporary in the caller.
AddRsd(dst, src) states that residual objects tagged with src become residual
objects identified with dst.

So far, we have been using tags to declare sets of residual objects. This mech-
anism encompasses information hiding and is sufficient to specify and enforce
the quantitative aspects of method consumption. However, to check the valid-
ity of annotations concerning objects lifetime, namely DestTmp and DestRsd,
we need to provide the checker with the means to link tags to actual objects.
To do that, we introduce the annotation BindRsd(t, expr) which connects a
tag t with a set of objects referred by the path-expression expr. For instance.
BindRsd(List, l) specifies the tag List represents all objects reachable from
the variable l.

It is worth noticing that AddTmp, AddRsd, DstTmp, DstRsd and BindRsd
are internal method annotations, not visible outside the method boundary. In
contrast, Tmp, Rsd and their tags can used by clients.

4

3 Verifying memory consumption
To automatically check the annotations introduced in the previous section we
transform the annotated program into a functionally equivalent program but
instrumented into one using only Code Contracts annotations in such way
that a successful verification of the transformed program implies the correctness
of the original resource usage annotations.

3.1 Introducing counters and ensure clauses
For every method m featuring memory consumption we apply the following pro-
cedure: let T be the set of memory lifetime tags appearing in the contract
(including one for temporary consumption) and C the set of classes. For each
tag t ∈ T and C ∈ C we introduce a counter C_m_t which tracks the number of
objects of type C from m that are associated with tag t. To keep the counters
updated, for each new C() statement annotated with DestTmp or DestRsd(t),
we introduce a statement to increment C_m_t. Finally, the memory consump-
tion annotations are transformed into corresponding ensure clauses stating that
the associated counters are less than or equal to the specified bounds.

Concretely: Contract<C>.Rsd(t, e) is transformed into Contract.Ensures(C_m_t
<= e). The same approach applies for temporary consumption contracts.

For the annotations AddTmp(d) and AddRsd(d, s) the instrumentation con-
sists in adding to the respective local counters the value of the callee counter.

The instrumentation is performed at the IL level and is never read or ma-
nipulated by developers. Only for demonstration purposes, in Figure 2 we show
a fragment of the instrumented version of the method presented in Figure 1.

3.2 Verifying object lifetime annotations
The instrumentation and verification process assume that object lifetime an-
notations DestTmp and DestRsd are correct. To ensure they actually are, we
include a lifetime-annotations checker. Figure 3 shows an example where an
escaping object is incorrectly declared as temporary. The squiggly highlights
the position of that error.

public static int Person_CP_rsd_return;
public Person CreatePerson(string name) {
...
Contract.Ensures(Person_rsd_return <= names.Count);
Person_CP_rsd_return = 0;
...
for (int i = 0; i < names.Count; i++) {

Person_CP_rsd_return ++;
Person p = new Person ();
Person_CP_rsd_return += Person_SI_this;
p.SetInfo(names[i], address);
...

Figure 2: Fragment of an instrumented version

5

Figure 3: Lifetime annotations verification result

To perform this verification we rely on a points-to and escape analysis ca-
pable of analyzing .NET programs [3]. For every annotated method we run the
analysis and build a points-to graph (PTG) which is basically an abstraction
of the program heap visible from each method at the end of its execution. To
verify the correctness of DestTmp annotation, we check whether the node in
the PTG, representing objects created at that program point, is not reachable
from the global scope, method parameters or the returned object. For DestRsd
we check if the object escapes and it is reachable through the path expression
associated with the tag (i.e., by using BindRsd). The correctness of the lifetime
information associated to the annotations AddTmp and AddRsd, where the ob-
jects are transferred to the objects designated by the corresponding tags, is also
verified in a similar fashion.

4 Verifying complex contracts
Clousot does a very good job in performing automatic verification of contracts,
being able to check method featuring loops without demanding loop invariants.
However, it has some limitations when dealing with the complex arithmetic
required for a quantitative analysis. According to our experiments the current
version of Clousot is restrained to contracts having linear integer expressions.

Barvinok [7] is a tool2 capable of manipulating parametric integer sets
and relations. It provides functionality to count the number of elements of
these sets and for performing maximization and sum on polynomials over these
sets. Given a method featuring a loop (with possible several nested loops)

2Available at: http://freshmeat.net/projects/barvinok.

6

http://freshmeat.net/projects/barvinok

including a new statement and a predicate describing its iteration space (i.e. a
linear restriction describing the relation between the loop inductive variables and
parameters), we can obtain a parametric upper-bound of the number of times
the new statement is executed. This upper bound is obtained by counting the
number of solutions of that iteration space [5]. In a similar fashion, we can deal
with polynomial temporary and residual consumptions by applying respectively
a symbolic maximization and sum operations over the iteration space.

For those methods whose consumption is beyond the capabilities of Clousot
we can use this approach. The price to pay to obtain more precision is the need
of a new annotation to specify iteration spaces inside loops: IterationSpace.
Although this increases the annotation burden, the gain is considerable since it
makes possible the verification (and inference) of polynomial consumption. No-
tice that iteration spaces are a set of linear constraints, amenable to be checked
with Code Contracts as well. We think it will be possible to automatically
generate these annotations leveraging on Clousot abilities on inferring loop
invariants.

1 public List <Person > CreateBigFamily(int n) {
2 Contract.Requires(n > 0);
3 Contract.Memory.Rsd <Person >(Contract.Memory.Return ,
4 n*(n+1)/2);
5
6 List <Person > family = new List <Person >(n*(n+1)/2);
7 for (int i = 1; i <= n; i++) {
8 Contract.Memory.IterationSpace (1 <= i && i <= n);
9 for (int j = 1; j <= i; j++) {

10 Contract.Memory.IterationSpace (1 <= j && j <= i);
11 Contract.Memory.DestRsd(Contract.Memory.Return);
12 Person p = new Person ();
13 family.Add(p);
14 }
15 }
16 return family;
17 }

Figure 4: Using IterationSpace to assist the prover
Figure 4 shows a method with a loop and a nested loop inside it. In this case

Clousot would not be able to verify the contract. However, using Barvinok
and the aid of IterationSpace annotations in the loops we can determine the
exact number of times that the new statement on line 12 is executed and instruct
the engine with new knowledge.

5 Implementation details
We developed a Visual Studio extension3 that lets developers write memory
consumption contracts as they do with Code Contracts and verify them
using its static verifier or run-time checker. The only prerequisite for the plug-
in is having Code Contracts installed, all the other tools used by the memory

3Available at: http://lafhis.dc.uba.ar/resourcecontracts.

7

http://lafhis.dc.uba.ar/resourcecontracts

contracts checker are packaged in the plugin. We use the Common Compiler
Infrastructure (CCI) [1] for code analysis and instrumentation.

The Code Contracts static checker is invoked by Visual Studio after each
compilation. In order to transform the code before checking it, we use a wrapper
that performs the required instrumentation and then invokes the actual checker.
When the plug-in is installed it modifies the Code Contracts configuration
in order to setup this wrapper. So far, we have not found a better way to ensure
that our tool is invoked before the Code Contracts checker.

6 Related work
Recently, there were relevant advances in resource analysis for imperative and
functional programs [6, 4, 5, 2, 11, 10, 12]. For lack of space we will briefly refer
to some of them which are focused in verification of annotated programs.

The work in [6] proposes a type system to statically check linear size anno-
tations (Presburger’s formulas) in a functional fragment of a Java-like language.
This approach allows specifications of the number of preexistent objects released
by a method but it requires complex aliasing annotations. We prefer a coarse
grained approach demanding less and easier to infer annotations.

Closer to our approach, [4] defines an annotation language based on JML
that can be used to annotate Java bytecode. This language is limited and does
not contemplate the specification of lifetime information. In [11] the authors
present a verification system for C-like programs using recursion as the only
iteration mechanism. Similar to ours they use contracts and program instru-
mentation techniques using a non-specialized verifier. Their system supports
free statements which in principle enables a more precise reasoning. However,
according to our experience, verifying non-linear consumption in those systems
is extremely hard because of the need of machinery capable of dealing with lower
and upper bounds.

7 Conclusions and Future Work
In this work we presented an extension of Code Contracts language to specify
and verify the memory consumption of .NET programs. The tool integrates with
Visual Studio enabling autocompletion, inline documentation, static verification
and run-time checking as Code Contracts does.

As a future work, we would like to enhance the usability of the tool by
automatically inferring quantitative and lifetime annotations. In this setting
developers would only need to specify complex or hard-to-infer annotations, not
worrying about annotations that can be easily inferred. In this matter we plan
to port our previous work on inference of memory consumption for Java [5] to
.NET and extend other tools capable of inferring resource usage (e.g., [10]) in
order to make them capable of dealing with dynamic memory usage.

8

References
[1] Common Compiler Iinfrastructure. http://cciast.codeplex.com/.

[2] E. Albert, S. Genaim, and M.Gómez-Zamalloa. Live heap space analysis for
languages with garbage collection. In ISMM, pages 129–138. ACM, 2009.

[3] M. Barnett, M. Fändrich, D. Garbervetsky, and F. Logozzo. Annotations
for (more) precise points-to analysis. In IWACO’07, Berlin, Germany, jul
2007.

[4] G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory
consumption using program logics. In SEFM, pages 86–95, 2005.

[5] V. Braberman, F Fernández, D. Garbervetsky, and S Yovine. Parametric
prediction of heap memory requirements. In ISMM’08. ACM, jun 2008.

[6] W. Chin, H. H. Nguyen, S. Qin, and M. Rinard. Memory usage verification
for oo programs. In SAS 05, 2005.

[7] P. Clauss, F.J. Fernandez, D. Garbervetsky, and S. Verdoolaege. Symbolic
polynomial maximization over convex sets and its application to memory
requirement estimation. TVLSI, 17(8):983–996, 2009.

[8] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages.
In SAC 2010, pages 2103–2110. ACM, 2010.

[9] James Gosling and Greg Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[10] S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI’10,
pages 292–304. ACM, 2010.

[11] G. He, S. Qin, C. Luo, and W.N. Chin. Memory Usage Verification Using
Hip/Sleek. ATVA’09, pages 166–181.

[12] J. Hoffmann and M. Hofmann. Amortized resource analysis with poly-
nomial potential. Programming Languages and Systems, pages 287–306,
2010.

[13] G.T. Leavens, K. Rustan M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA’00,
pages 105–106, 2000.

[14] Bertrand Meyer. Object-oriented Software Construction. Series in Com-
puter Science. Prentice-Hall International, New York, 1988.

[15] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead,
1992.

9

	Problem Statement
	Memory usage annotations
	Verifying memory consumption
	Introducing counters and ensure clauses
	Verifying object lifetime annotations

	Verifying complex contracts
	Implementation details
	Related work
	Conclusions and Future Work

