
Visual Timed Event Scenarios∗

A. Alfonso, V. Braberman, N. Kicillof
Departamento de Computación – FCEN
Universidad de Buenos Aires, Argentina
{aalfonso, nicok, vbraber}@dc.uba.ar

A. Olivero†

Centro de Estudios Avanzados – CEAV
Universidad Argentina de la Empresa, Argentina

aolivero@uade.edu.ar

Abstract

Formal description of real-time requirements is a diffi-
cult and error prone task. Conceptual and tool support for
this activity plays a central role in the agenda of technol-
ogy transference from the formal verification engineering
community to the Real Time Systems development practice.
In this article we presentV TS, a visual language to de-
fine complex event-based requirements such as freshness,
bounded response, event correlation, etc. The underlying
formalism is based on partial orders and supports real-time
constraints. The problem of checking whether a timed au-
tomaton model of a system satisfies these sort of scenarios
is shown to be decidable. Moreover, we have also developed
a tool that translates visually specified scenarios into ob-
server timed automata. The resulting automata can be com-
posed with a model under analysis in order to check satis-
faction of the stated scenarios. We show the benefits of ap-
plying these ideas to some case studies.

1. Introduction

Critical systems are found in an increasing variety of ap-
plication fields and industries like electronics, control, aero-
nautics, health equipment, etc. Most of them are embedded
systems, controlling devices that may risk lives or damage
assets, hence termed safety-critical systems. These appli-
cations generally involve concurrency and control aspects,
as well as real-time requirements that challenge the devel-
opment process. Their construction benefits from advanced
tools and techniques in order to support reliable and eco-
nomically feasible development and verification processes.

Computer Aided Verification techniques, and particu-
larly Modelchecking, constitute a promising approach that
deals with these kinds of systems. These techniques have

∗ Research partially supported by ANPCyT project BID-PICT 11738
and Microsoft Research Embedded Systems Innovation Excellence
Award

† Partially supported by UADE projects ISI03B and TSI04B

originally and mainly been applied to the automatic veri-
fication of circuits and protocols but their use is being ex-
tended to software intensive systems (e.g. [9, 5]). Moreover,
formal models are being explored as a means to perform
testing [21] and monitoring [19] of applications.

Providing user-friendly means for the description of for-
mal requirements plays an important role in this technology
transfer agenda (e.g. [15, 18]). A remarkable example is the
pattern-based approach and catalogue of verification prop-
erties defined in [15], which bridges the gap between natu-
ral language and verification logics, and also suggests that a
large number of formal properties stated in practice fall into
a small set of categories.

When developingV TS, our scenario-based notation, we
focused on expressing real-time requirements in a visual
and friendly fashion, avoiding the use of formal logics such
as TCTL [2], and the explicit use of observers, which may
become in practice an overwhelming and error-prone task,
even for practitioners trained in the use of formal methods.

The need for visual and simple formalisms (instead of
powerful but often cumbersome logics) when dealing with
event-based requirements has been pointed out in several
works (e.g. [26, 18]). Specifying the whole expected be-
havior of a system, even in an abstract form, is usually a
difficult task. We believe that the use of (partial) scenarios
is a key strategy in dealing with the problem of express-
ing event-based properties. In particular, our approach con-
sists in graphically describing those generic scenarios of the
analyzed model which violate the requirements. AV TS
scenario is basically an annotated partial order of relevant
events which can be regarded as a pattern, in the sense that
it denotes a (possibly infinite) set of matching executions.

V TS is meant to existentially predicate on executions.
That is, it is used to state a simple but yet relevant family of
questions of the form “Is there a potential run of the system
that can match this generic scenario?”. These questions are
closely related to the concept ofanti-scenarioor forbidden
scenario(e.g. [18, 28]) as we use them to express infringe-
ments of safety or progress requirements. These questions
turn out to be decidable, and we have developed a tool to

edit scenarios and model check them over timed automata
models of the system under analysis. This article is struc-
tured as follows. We start by giving an intuitive approach to
V TS by means of some basic examples. We then present
the formal syntax and semantics ofV TS, together with a
real-life example, and we provide a mapping fromV TS
scenarios to timed automata in order to model check sys-
tem models. In the next section we show the value and ver-
satility of V TS and the software tool by applying it to a
case study. We then compare our approach with other nota-
tions based on scenarios or event correlation. To close the
article we provide a summary and a discussion on current
and future lines of research.

2. Introducing V TS

The basic elements of our graphical notation are points
connected by lines and arrows. Points are labeled by (possi-
bly empty) sets of events, meaning that the point stands for
an occurrence of one of the events during execution. An ar-
row between two points indicates precedence of the source
point with respect to the destination. Events labeling the ar-
row are interpreted as forbidden events between both points.
The following examples serve as an introduction toV TS.

The scenario in Fig. 1(a) expresses a predicate about a
run that is true if and only if it contains a stimuluse fol-
lowed by two responses (the nextr1- and r2-events) not
separated by another responser3. Triangles bellow points
are used to assign them an optional name. The arrows from
stimulus to response1 and2 indicate thate occurs before
r1 andr2. To state that the pointresponse1 is the first oc-
currence of its label aftere (i.e. there is not anotherr1 be-
tweene and r1), the arrowstimulus-response1 was la-
beledr1. In order to express the condition “... which are
not separated by another responser3”, a dashed line links
response1 andresponse2, with labelr3. We use a line in-
stead of an arrow because there is no precedence between
response1 andresponse2 (their relative order is unimpor-
tant). To illustrate when a given executionmatchestheV TS
scenario of Fig. 1(a), suppose we have the following se-
quences of events:

s1 :...a, e, b, c, r1, d, r3, r2, z...,

s2 :...a, e, b, c, r1, d, r2, f, r3, z...,

s3 :...a, e, b, r2, r1, c, r3, r2, z....

Then sequencess2 ands3 match the scenario, because the
first r1-event andr2-event after the onlye-event have no
r3-event in between. If this should be interpreted as aneg-
ativescenario, we would discard systems producings2 and
s3 for violating our requirement. On the contrary, the se-
quences1 does not match the scenario, and therefore would
satisfy (agree with) the requirement.

estimulus r1response 1r2response2
r1r2 r3

(a) Separated responses

e

stimulus

r1

response 1

r2

response2

¬
[2
0
,
1
0
0
]

(b) Correlated responses

Figure 1. V TS scenarios

The trained reader should immediately appreciate the
simplicity of this notation over non-graphical alternatives.
For example the following TCTL [2] formula1 expresses the
same requirement as the scenario in Fig. 1(a).
after (e) ⇒ ((¬(after (r1) ∨ after (r2)))∃U

(after (r1) ∧ (¬after (r3)∃U after (r2))))
∨((¬(after (r1) ∨ after (r2)))∃U

(after (r2) ∧ (¬after (r3)∃U after (r1))))
V TS has the virtue, over this kind of notations, of being

intuitive enough to be used by industry practitioners lacking
academical training, while still possessing a formal seman-
tics and serving as an input for formal verification methods
such as modelchecking.

Let us describe a more complex requirement including
temporal constraints: a correlated response. Fig. 1(b) shows
a V TS scenario for the violation of the requirement that
whenever two responses follow a given stimuluse (i.e., the
nextr1- andr2-events), they should be separated by at least
20 and at most 100 time units (t.u.). As in Fig. 1(a), the ar-
rows indicate the relative ordering betweene, r1 and r2.
Here we introduce an abbreviation to represent a frequent
sub-pattern: certain point represents thenextoccurrence of
r1 after e. The abbreviation is a second (open) arrow near
r1, and is equivalent to addingr1 as a forbidden event on

1 We are using a trick to predicate on states instead of events as is used
in the Kronos tool [10]. Another possible technique are fluents [17].

the arrow (as we did in Fig. 1(a)). Conversely, in order to ex-
press that there is not anothere-event after a particulare and
before anr1-event (i.e. to signal thepreviouse-event be-
forer1) there is a symmetrical notation: an open arrow near
thee extreme. The restriction¬[20, 100] on the dashed line
means that the temporal distance between the responses is
smaller than 20 t.u. or greater than 100 t.u.

Scenarios including temporal restrictions must be
matched to time-stamped sequences. Let us consider the
previous sequences, with a timestamp added to each event
(for the sake of simplicity, we use natural numbers as times-
tamps, butV TS admits any non-negative real number):
s4 : ... a

12
e
15

b
39

c
50

r1
72

d
123

r3
140

r2
148

z
155 ...,

s5 : ... a
3

e
7

b
12

c
88

r1
109

d
111

r2
114

f
121

r3
125

z
152 ...,

s6 : ... a
5

e
7

b
69

r2
78

r1
87

c
100

r3
146

r2
152

z
199

It can be seen thats4 does not match the scenario in
Fig. 1(b), because the temporal distance betweenr1 andr2
(148 - 72 = 76 t.u.) is not in the time span¬[20, 100]. The
opposite happens fors5 with inter-response distance of 114
- 109 = 6 t.u.; ands6, with 87 - 78 = 9 t.u.

Another useful idiom asserts that something happens (or
not) since the beginning or until the end of a given exe-
cution.V TS has two special symbols: a big full circle for
begin, and two concentric circles forend. The scenario in
Fig. 2 states that the temporal distance since the firsta to
the lastb (both in the whole execution) is at most 100 t.u.a b<=100

Figure 2. Begin and end symbols

V TS can also identify thefirst or thelast event in a set.
The graphical representation for the first event in a set is a
point linked to each point in the set by dotted lines ending
in small empty circles. The notation for the last event uses
full circles. Nested combination of first and last representa-
tives as in Fig. 3 are allowed. Part of this scenario will match
situations where, given two sets of events,{a1, a2} and
{b1, b2, b3}, the temporal distance between the last event
to occur in each set is less than 100 t.u. Fig. 3 also shows
howV TS can convey very complex properties of a system.
This scenario depicts the case where a watchdog is turned
on (wd on) at least 50 t.u. before any event in both sets
occurs, and not turned off until all monitored events have
occurred. The watchdog is supposed to detect the case de-
scribed above (certain time spread between the first and the
last group to end). As this is a negative scenario, it matches

(faulty) traces in which all these conditions are met and yet
the watchdog fails to issue an alarm.

a1

a2

b1

b2

endA

last group to endfirst group to end

endBb3

start

wd on

>50

alarm

Figure 3. Representatives

Fig. 4 shows the complete graphical notation ofV TS.

3. Formalizing V TS

We callIN the set of integer-bounded intervals of posi-
tive real numbers. Atime restrictionis a formula of the form
θ or¬θ, whereθ is an interval inIN. Φ is the set of all time
restrictions. Given a non-negative real numbert and an in-
tervalθ, we sayt ² θ iff t ∈ θ andt ² ¬θ iff t /∈ θ.

Definition 1 (Sequence).Given a setC, asequence overC
is a (possibly infinite) sequence of elements fromC. Given

a sequences, |s| is its length (we say that|s| def
= ∞ when

s is infinite).Π(s)
def
= {i ∈ N / 0 ≤ i < |s|} is the set of

positions ofs. Giveni, j ∈ Π(s), si is theith element ofs;
si] is the prefix ending at positioni; s[i is the suffix starting
at positioni ands[i,j] is the subsequence from positioni to

positionj (if i > j, s[i,j]
def
= s[j,i]). Using ‘(’ or ‘)’ instead

of ‘ [’ or ‘]’ means the corresponding subsequence does not
include its border(s). We callfirst(s) the first element of
s. If s is finite, last(s) is its last element.

Definition 2 (Temporal Sequence).A temporal sequence
is a weakly increasing sequence of timestamps (i.e. non
negative real numbers). Given a finite temporal sequence
τ we define∆(τ) as the time elapsed duringτ . ∆(τ) =
last(τ)− first(τ) or 0 if |τ | = 0.

Definition 3 (Trace). A traceover a setC is a pair〈s, τ〉
wheres is a sequence overC ∪ {λ} andτ is a temporal se-
quence of the same length.

3.1. V TS Syntax

Definition 4 (Scenario). A scenario is a tuple
〈Σ, P, `, <, <first, <last, γ, δ〉, where Σ is a finite set
of events;P is a finite set of points;̀ : P → 2Σ is
a function that labels each point with a set of events;

q matches the next b-event after p
time and event restrictionpoint l is the lastpoint to match(either p or q,in this case) f is the firstpoint to match(either p or q,in this case)ap bq(min, max]forbidden events

ap bq ap bqp precedes qap bq(min, max]forbidden events p matches the a-event previous to ql fap bq(min, max]forbidden events ap bq(min, max]forbidden eventsp and q are consecutive a and b eventsap bqeventspoint namebegin end (min, max]forbidden events
Figure 4. V TS graphical notation

<⊆ P] {0} × P] {∞} is a precedence relation among
points (0 and∞ represent the beginning and the end of ex-
ecution, respectively);<first⊆ P × P ties a point to
the first of a set;<last⊆ P × P ties a point to the last
of a set;γ : P] {0,∞} × P] {0,∞} → 2Σ as-
signs to each pair of points the set of events forbidden be-
tween them; andδ : P] {0} × P] {0} → Φ assigns to
each pair of points a restriction for the time elapsed be-
tween them. The transitive closure(< ∪ <first ∪ <last)+

must be a partial order overP] {0,∞}. For all pointsx
andy; γ(x, y) = γ(y, x) andδ(x, y) = δ(y, x) must hold.

3.2. V TS Semantics

The semantics ofV TS assigns to each scenario a set of
traces satisfying it. Labelled points represent events in the
traces. A point can be matched to a particular position in
a trace if the event in that position is among the allowed
events associated to the point by the labelling function`.
Points that are not labelled are calledinstants. They rep-
resent moments in the execution not necessarily associated
with an event.

A point p in Dom(<first) (resp.Ran(<last)) is called
a representative, as it represents the first (resp. last) point in
the setR = {p′/p <first p′} (resp.{p′/p′ <last p}) to be
matched in a trace. The setsR for a (first- or last-) rep-
resentativep, are denotedFirstOf(p),LastOf(p), resp.
Non-representative points are calledconcrete. Intuitively, a
matchingis a mapping between points in a scenario and po-
sitions in a trace, intended to show how the trace satisfies
the scenario. Two concrete points must match different po-
sitions in a trace2.

Definition 5 (Matching). Given a scenario
S = 〈Σ, P, `, <,<first, <last, γ, δ〉, a traceσ = 〈s, τ〉
over Σ and a mappinĝ· : P 7→ Π(σ); we say that̂· is a
matchingbetweenS andσ iff for all points p, q ∈ P : M1

`(p) = ∅ or sp̂ ∈ `(p); M2 ·̂ is injective for concrete points;
M3 if p < q then p̂ < q̂; M4 s(p̂, q̂) ∩ γ(p, q) = ∅; M5

2 Weaker assumptions can still be expressed with several scenarios.

sp̂) ∩ γ(0, p) = ∅ ands(p̂ ∩ γ(p,∞) = ∅; M6 ∆(τ[p̂, q̂]) ²
δ(p, q); M7 ∆(τp̂]) ² δ(0, p); M8 if p is a first-representative
(resp. last-) then̂p = min{r̂/r ∈ FirstOf(p)} (resp.max
andLastOf).

We say that a traceσ satisfiesa scenarioS (notedσ ² S)
iff there exists at least one matching between them.

3.3. Stock Exchange Example

In a re-engineering project for the electronic market at
Buenos Aires Stock Exchange, part of our team was in-
volved in suggesting ways to rigorously specify real-time
requirements for the problem of brokers placing bids and
receiving updated data. The goal was to evaluate the suc-
cess or failure of competing protocols at meeting those re-
quirements. For instance, in Fig. 5 we show a timing con-
straint for the “simultaneity” of re-multicasts of messages
in a TRMP-based protocol ([24]) for three receivers.

Ack(e)_senttoken site
R1_Rcv_Ack(e)R2_Rcv_Ack(e)R3_Rcv_Ack(e)

R1_ReMulticastR2_ReMulticastR3_ReMulticast
>50 lastfirst

Figure 5. Stock Exchange: simultaneity

Another proposed protocol periodically broadcasts a to-
ken to collect the bids accumulated in brokers’ machines.
The broadcast acts as a logical tick. Following are some
of the relevant requirements for this protocol expressed
as anti-scenarios3. Fig. 6(a) expresses the requirement that

3 Other examples can be found at www.dc.uba.ar/people/proyinv/VTS.

subsmission broker Aarrival token for broker A
(a) Bids are collected

submission broker A
submission broker B

arrival token for broker A
arrival token for broker Bnew collecting round¬(0, 30)

(b) Bounded unfair time windowsubmission broker A arrival token for broker Aarrival data broker A data processing>60
(c) Freshness of bids

Figure 6. More Stock Exchange scenarios

the token must eventually arrive. In this protocol, two bids
from different brokers collected in the same token broad-
cast round belong to the same logical time tick. Such a pair
of bids might thus be matched to the offers in an incorrect
order (with respect to the wall clock time). Fig. 6(b) sets a
time limit for this unfair behavior (that is, the anti-scenario
detects two bids processed on the same round and submit-
ted in two too-distant moments). Fig. 6(c) sets a bound on
the age of the bid when the data is processed.

4. Model Checking Scenarios

In this section we provide a mapping fromV TS sce-
narios to timed automata. Given a scenario, we describe a
tableau that recognizes all traces matching the scenario.

Timed automata are a widely used formalism to model
and analyze timed systems. They are supported by sev-
eral tools (e.g. [10, 8]). Their semantics is based on labeled
state-transition systems and time-divergent runs over them.
A complete formal presentation can be found in [3, 10]. In

a few words, a time automata is a finite state machine where
clocks are introduced in order to predicate on maximum and
minimum time that must or may elapse between transition
occurrences.The parallel compositionA1 ‖ A2 of TAsA1

andA2 is defined using synchronous product of automata
([10]).

Given a model of the system under analysis represented
as a timed automatonA and a scenarioS, we define;A ² S
iff there exists a time divergent runr of A, starting in the
initial state ofA, such thatr ² S.

Definition 6 (Timed Automata). A timed automa-
ton (TA) is a tuple A = 〈L,X, Σ, E, I, l0〉, where L
(denotedlabel(A)) is a finite set of locations,X is a fi-
nite set of clocks (non-negative real variables),Σ (de-
notedlocs(A)) is a set of labels,E is a finite set of edges,

I : L
tot→ ΨX is a total function associating to each loca-

tion a clock constraint called the location’s invariant, and
l0 ∈ L is the initial location (denotedinit(A)). Each edge
in E is a tuple〈l, a, ψ, α, l′〉, wherel ∈ L is the source lo-
cation, l′ ∈ L is the target location,a ∈ Σ is the label,
ψ ∈ ΨX is the guard,α ⊆ X is the set of clocks re-
set at the edge. The set of clock constraintsΨX for
a set of clocksX is defined according to the follow-
ing grammar:ΨX 3 ψ ::= x ≺ c|ψ ∧ ψ|¬ψ, where
x ∈ X,≺∈ {<,≤} andc ∈ N.

Usually, a TAA has an associated mappingP : L 7→
2Props which assigns to each location a subset of a set of
propositional variables (Props).

4.1. Tableau Construction

Given a scenario, a tableau (a non-deterministic timed
automaton) can be built that recognizes all traces matching
the scenario. Its construction is based on the notion of con-
figurations –closed subsets of the PO that stand for possi-
ble sets of matched points in a run–, which are used to la-
bel automaton states. Transitions represent extensions of the
matching from one configuration to another one.

For the rest of the section, when we refer to a scenarioS,
we are referring to the tuple〈Σ, P, `, <, <first, <last, γ, δ〉.

A configurationΘ of a scenarioS is a subset ofP such
that: C1 Θ is left-closed under the relation(< ∪ <first

∪ <last)+; C2 if a pointp is a first-representative andp ∈ Θ
thenFirstOf(p) ∩ Θ 6= ∅; andC3 if a point p is a last-
representative, andLastOf(p) ⊆ Θ thenp is in Θ.

A set of pointsF ⊆ P is asingle step extensionof a con-
figurationΘ by labela (denotedΘ a→ Θ ∪ F) iff E1 Θ ∪ F
is a configuration ofS; E2 There exists at most one concrete
point in F E3 (@p, q ∈ F)(p < q); E4 (∀p, q ∈ F)(0 ²
δ(p, q)) E5 (∀p ∈ F)(`(p) = ∅ ∨ a ∈ `(p)); andE6 if F ′ is
a proper non-empty subset ofF thenΘ ∪ F ′ is not a con-

figuration. We say thatΘ λ→ Θ∪F iff conditionsE1,E2, E3,
E4 andE6 hold, while(∀p ∈ F)(`(p) = ∅).

Given a configurationΘ, an event restriction between a
pair of points〈p, q〉 is said to beactive in Θ iff p is in Θ
andq is not in Θ (by definition, a restriction〈0, p〉 is ac-
tive if p /∈ Θ, and 〈p,∞〉 is active only if p ∈ Θ). We

call Γ(Θ)
def
=

⋃
γ(p, q) for all active restrictions〈p, q〉 in

Θ. Furthermore, an event restriction〈p, q〉 is strictly active
in Θ wrt a set of pointsF iff it is active andq /∈ F . We

call Γ.F (Θ)
def
=

⋃
γ(p, q) for all strictly active restrictions

〈p, q〉 in Θ, wrt the set of pointsF .
Given a time restrictionϕ and a clockx, we define

ψx(ϕ) as the clock constraint overx such that for every
non-negative real numbert, ψx(ϕ)[x\t] is true iff t ² ϕ.
For example,ψx((a, b]) is the constrainta < x ∧ x ≤ b.

Given a scenarioS and F ⊆ P , we define the

set RF
def
= {xp/p ∈ F ∧ ∃q.δ(p, q) 6= [0,∞]}. Given

a configuration Θ and an extensionF , we define

ψF
Θ

def
=

∧
q∈Θ]{0}, p∈F ψxq(δ(q, p)).

Definition 7 (Tableau construction). The tableauTS for
V TS scenarioS is a timed automaton〈L, X, Σ, E, I, l0〉
such that:T1 L = {Θ/Θ is a configuration ofS}] {strap},
we call saccept the configuration P (i.e. the con-
figuration with all the points in the scenario);T2

X = {xp/p ∈ P] {0}};
T3 E = {〈Θ, a, ψF

Θ , RF , Θ′
〉
/Θ a→ Θ′ ∧ a /∈ Γ.F (Θ)}

∪ {〈Θ, λ, ψF
Θ , RF ,Θ′

〉
/Θ λ→ Θ′}

∪ {〈Θ, a, true, ∅, Θ〉 /a ∈ Σ ∧ a /∈ Γ(Θ)}
∪ {〈Θ, a, true, ∅, strap〉 /a ∈ Γ(Θ)}
∪ {〈strap, a, true, ∅, strap〉 /a ∈ Σ} whereΘ′ = Θ ∪ F ;

T4 (∀ l ∈ L)(I(l) ≡ true); T5 l0 is the empty configuration.

Fig. 7(b) shows the resulting tableau for theV TS sce-
nario in Fig. 7(a).

The central result presented in [?] states that a timed
automaton (modeling the real-time system under analysis)
comprises a run that matches a scenario iff that automaton
can steer the tableau for the scenario to a location that stands
for “all points matched”. That verification can be performed
by off-the-shelf timed modelchekers.

Theorem 4.1 (Model checking V TS). Given
a Timed Automata A and a scenario S, with
Σ ⊆ label(A), P(accept) = locs(A) × {saccept}
andP(init) = {(init(A), init(TS))}.

A ² S iff A||TS ² init ⇒ ∃♦(∃¤ accept)

To prove this result we first show that if we fix any non-
trap noden as an acceptance node, then the tableau accepts
all traces matching the configuration associated ton. Thus,
since theaccept proposition is associated toP (the whole
set of points), the satisfaction of the TCTL [2] property

init ⇒ ∃♦ accept (“accept is reachable frominit”) would
mean that we can match the scenario. However, we have to
check whether we can remain in that acceptance node with-
out receiving any forbidden events (i.e. events that should
not occur until∞), that is init ⇒ ∃♦(∃¤ accept) (“It is
possible to evolve frominit to accept and remain there for-
ever”). Verification engineers need not be aware of the ex-
istence of the temporal logic TCTL, since the verification
goal is automatically generated by our tool when translat-
ing a scenario.

5. V TS Tool and Case Study

TheV TS tool consists of a GUI and a translation com-
ponent. The front-end is implemented as a Microsoft
Visio R© add-in to visually edit scenarios and save them
as XML documents. These are processed by the transla-
tor, which performs the tableau procedure to obtain ob-
servers suitable for Kronos [10] and Uppaal [8] tools.

5.1. Remote Sensing

The Remote Sensing case study is a system basically
consisting of a central component and two remote sensors.
Sensors periodically sample a set of environmental vari-
ables and store the values in shared memory. When the cen-
tral component needs them, it broadcasts a signal to the sen-
sors with a minimal inter-arrival time (RqstSent event).
Each sensor runs a thread devoted to handle this message
by reading the last stored value from shared memory and
sending it back to the central component. The latter pairs
the readings so that another process can use that piece of in-
formation to perform certain action on some actuators.

The model for this example was generated using the
technique introduced in [11] to translate real-time system
designs based on fixed-priority scheduling into timed au-
tomata. The idea underlying the translation is the use of
fixed-priority scheduling theory to build a conservative (and
practically analyzable) model of behavior which can be
checked by model checkers such as Kronos and Uppaal.

In this case the model comprises 12 timed automata (one
for each design component, featuring 12 clocks) interacting
somewhat asynchronously.

For previous model checking techniques engineers
needed to express requirements as a special timed au-
tomaton (the observer). The introduction ofV TS greatly
improves the usability of the approach through its user-
friendly notation for expressing anti-scenarios.

A natural requirement for these system is synthesized in
the anti-scenario of Fig. 8 where a request to collect a pair
of data items from the central components is not fully an-
swered in less than D time units.

apbq
cr<5e ¬(3, 4)e, f c>2<=1 >8 sfirst last

(a) Scenario

[] [q, f]
[p, f]

b{zq, z f}a ; z0≤1{zp , zf }
a ; z0≤1; zf≥8zq [f, p, q, l]zqb ; z f≥8 [f, p, q, l, r]c ; zp<5; zq>2zr [f, p, q, l, r, s]zs ; zr≤3 v zr≥4

trapa a e ce e, f
 / {a} / {a} / {e} / {e, f} / {c}

\{e}
(b) Tableau

Figure 7. V TS scenario and corresponding tableau

RqstSentRqstArrivedAtS1RqstArrivedAtS2 UpR1UpR2 V1SentV2Sent UpPair V1V2Paired
>D

Figure 8. Remote Sensing bounded resp.

A correlation requirement is informally stated as “paired
values should have been sampled in not-too-distant time in-
stants”. Fig. 9 illustrates how to compactly formalize the
idea of correlation inV TS, while also showing an ad-
vance use of scenarios available to verification engineers
for avoiding state space explosion. A couple ofRqstSent
events were added to the original scenario by the verifica-
tion engineer in order to check correlation over the second
request only, since she believes that observing the evolu-
tion of the second request should suffice to verify this prop-
erty.

Table 1 summarizes the translation and verification re-
sults for some of the scenarios using a Windows-based ver-
sion of Uppaal tool on a Pentium IV 1.6 Mhz PC with 512
MB. It includes the size of the observers, as well as verifi-
cation options and optimization techniques used4.

4 We useObsSlice, a slicer for timed models based on the topology of
the observer (see [12]) that reduces the amount of work to be done by
the model checker (often rendering the analysis feasible).

sample V1 store V1 read V1

V1 sent

V1 arrives

V1-V2 paired

V2 arrives

V1 sent

read V2store V2sample V2

reqstsent

first

reqstsent

second

Figure 9. Remote Sensing correlation

V TS scenario: Bounded Response
Tableau size: #locs=29 and #trans=520
Value Transl. Verification
for D time Match? time options
380 0.8 sec. Yes 5.6 secs. ObsSlice + -Was
390 0.8 sec. No 5.8 secs. ObsSlice + -Was

V TS scenario: Correlation
Tableau size: #locs=57 and #trans=959
Value Transl. Verification
for D time Match? time options
185 1.1 sec. Yes 147 secs. ObsSlice + -WasdC
195 1.1 sec. No 6 secs. -Was -A

Table 1. Verification results

6. Related work

Though other notations were proposed for negative sce-
narios (e.g., [28, 26, 18, 16])V TS combines some exist-
ing and novel features in a way that makes it a powerful

tool for the verification of real time applications: a simple
formal syntax based on partial orders, an underlying de-
scriptive semantics based on the idea of matching, an op-
erative semantics based on Timed Automata –probably the
most thoroughly studied and supported timed formalism for
both dense and discrete time. Besides, events are neither re-
stricted to be communication-events, nor to be consecutive;
and the negation of event occurrence in intervals permits
identifying next or previous events of a given sort. The con-
cept of representative events and instants are novel features
too, as are the begin and end points (specially suited for
negating progress). Additionally,V TS deals with real-time
constraints in a dense-time domain without using timers.

The TimeEdit tool ([26]) is also meant to sim-
plify the task of expressing never claims (for the Spin or
FeaVer modelchecking tools). Something similar could be
said about an event-based variant of GIL (Graphical Inter-
val Logic) presented in [6]. GIL is a logic featuring proposi-
tional operators, modalities and nesting. Both TimeEdit and
GIL are based on timeline diagrams and do not feature par-
tial ordering of events. While TimeEdit does not support
timing constraints, GIL can constrain duration of in-
tervals which are bounded by contiguous events. More
precisely, in [6] it is remarked that they are able to con-
struct and determinize Hybrid Automata oracles by hand
when all intervals to be timed are specified using a bidirec-
tional search operator. We believe that, while being more
expressive (for example, by allowing nesting), GIL formu-
las are potentially more complex and difficult to understand
than our event-based notation.

Timing Diagrams are a known notation in the context of
hardware design. Regular Timing Diagrams ([4]) (and ex-
tensions) are a good exponent of this class of visual notation
suited for asynchronous systems. They are basically a set of
independent waveforms on signals where events (change of
values) can be causally constrained –and time-constrained
by a number of ticks of a given clock– or defined as con-
current. In this setting, RTDs induce deterministic match-
ing and this implies sacrificing expressive power in favor of
an efficient modelchecking.

Perhaps the most remarkable and widespread example
of a visual formalism for scenario-based specifications are
Message Sequence Charts and UML versions (ITU Z.120).
Unlike our approach, MSCs are not used to describe neg-
ative scenarios but to describe some or all possible behav-
iors of a protocol in a systemic view. This usually results
in more cumbersome and error-prone diagrams, as the com-
plement of a very simple anti-scenario can consist of many
possible and complex (positive) scenarios.

Uchitel et al. ([28]) introduced a language to describe
negative scenarios based on MSCs to elicit requirements.
Something similar was done, with a different purpose, in
LSCs of Harel et. al. ([18]). Though we share the idea of

working with a partial order to describe scenarios, our ap-
proach differs from both works in several aspects. On the
one hand, we conceive our language as a means to ex-
press properties to be checked against a model or imple-
mentation under analysis; we neither focus on creating an
executable specification language, nor on eliciting require-
ments. On the other hand, we are neither constrained to de-
scribe message interchange, nor to define the instances that
perform events. Moreover, event visibility is treated quite
differently in our case: two contiguous events in an sce-
nario do not need to match contiguous events of the same
kind in the run, except when explicitly noted. Also, we do
not resort to after/until notation or triggering conditions to
express when a matching is valid. And the first/last feature
of V TS is not present in the cited approaches. Addition-
ally, our tools deal with real-time constraints in a dense-
time domain without using timers as is the case of [18]. Un-
like LSCs, our semantic definitions are given in a declara-
tive (denotational) way, and then the tableau procedure is
presented, also declaratively, to show the algorithmic solu-
tion to the checking problem. Finally, our notation can be
used to express some class of liveness constraints, as in the
case of a pattern stating that a given stimulus is never an-
swered.

Firley et.al. ([16]) mix UML sequence diagrams and
modelchecking. Diagrams are translated into observers in
the Uppaal formalism and Uppaal models are instrumented
to be composed with the observer. Again, no semantics
is given for the checking problem beyond the algorithmic
translation itself and a set of proof obligations in branch-
ing logics. They follow the “contiguous semantics”: the se-
quence specifies exactly the message exchange that may oc-
cur –thus featuring a sort of loop construct– except for the
starting event in the optional interpretation. The presented
construction only supports totally ordered sets of events.
UML sequence diagrams do not support the concept of in-
stants or liveness constraints.

To further compareV TS’s expressive power to that of
other languages, consider Fig. 3, which shows a case that
is not (at least, naturally) expressible using any of the no-
tations reported so far. The use of negative constraints on
the occurrence of events (e.g. previous-match) together with
first- and last-representatives for grouping activities (sets of
events) is unique toV TS and can be used to compactly rep-
resent complex patterns such as this one.

As mentioned earlier, theV TS formalism can also serve
as a means to analyze collected traces. It is worth mention-
ing that the need to describe event-scenarios is shared by
at least three interconnected lines of research: monitoring
and debugging of distributed systems (e.g. [7, 27, 13, 23]),
event correlation detection (e.g. [29, 25]), and run-time
verification (e.g. [19, 22, 14]). Works such as [7, 29, 23]
use regular-expression-like syntax to denote event patterns.

While those approaches also feature the negation of events,
precedence and timing constraints, we believe that visual
formalisms likeV TS are better suited for expressing re-
quirements. Moreover, in the approaches based on regular
expressions, some matching situations (such as constrain-
ing a pair of events which can be identified by matching
other common related events) becomes at least a cumber-
some task (see for instance Fig. 1(b)).

Some other works on debugging and visualization of
distributed behavior (e.g. [27, 13]), are based on querying
databases of events and messages. In most cases, instead
of rooting the ideas on traces, causality graphs synthesized
from the execution of a distributed system are queried. In
these cases, precedence can only be stated on causality-
related events and this limitation becomes a major obsta-
cle when trying to express a real-time constraint between
time-consecutive but causally-unrelated events. Again, we
believe that relational queries are not really well suited to
express requirements in an early stage of design. Event cor-
relation notations are usually based on operational and ex-
pressive formalisms such as transducers (e.g. [25]). Their
design goal is to build a scripting language for a middle-
ware service in publish/subscribe architectures, and not nec-
essarily to define a suitable language for expressing require-
ments. On the other hand, run-time verification literature
usually bases the requirements on some sort of finite-trace
linear-time temporal logic (e.g. [19, 22, 14]).

7. Conclusions and Ongoing Work

We presentedV TS, a visual formalism to express and
model check complex event-based requirements for Real-
Time Systems. We can summarize the main achievements
in terms of a set of design goals:

Simple Features: We base the notation on natural notions
such as events and constraints. We do not resort to
timers. Future expressive power extensions and syntac-
tic sugar additions will be driven by pragmatic consid-
erations on different application domains, always pri-
oritizing not to obscure language semantics.

Simple and Precise Semantics:Formal semantics is
a must for promising non-trivial automatic sup-
port. Moreover, the semantics of our formalism
is based on a descriptive notion of matching, in-
stead of an indirect and cumbersome translation into
some other operational formalism.

Ease of Use:We identify two key factors for successful
adoption of such a tool by the industry: notation should
be visual and it should not require the entire descrip-
tion of behavior. Besides, the underlying notion of par-
tial order allows engineers to compactly express con-
current scenarios.

Model Checking Tool Support: Scenarios are automati-
cally translated into timed automata for model check-
ing purposes. TA are probably the most thoroughly
studied and supported timed formalism for both dense
and discrete time.

Extensibility: We have already identified potential exten-
sions of the language, like modularity and modalities,
which seem to fit as natural generalizations.

Portability: Besides serving as a front-end for mod-
elchecking, we believe thatV TS can be tailored to
other Verification Engineering applications, such as
testing of control-intensive systems and run-time veri-
fication.

Our research group agenda includes the addition of syntac-
tic sugar such as providing modularity, parametrization and
extended event-name matching capabilities as well as en-
hancements of expressive power without sacrificing decid-
ability and ease of use. In cases where the model has some
built-in identification mechanism to allow traceability (for
example, pairing a stimulus with its response), this exten-
sions should allow engineers to describe a generic scenario
without the need to explicitly depict chains of events, which
would couple the requirement to a specific proposed solu-
tion.

In order to provide more evidence supporting the practi-
cal relevance of the approach we plan to study how some
patterns ([15]) translate into scenarios to help the con-
struction of requirements (some examples can be found
in [1]). We also intend to compare the expressive power of
V TS against finite-trace linear-time logics ([20]) identify-
ing equally expressive fragments.

We are currently defining new modalities for scenarios
to exploit branching nature of time. This will enable natu-
rally expressing patterns such as: “when a given scenario
is matched then one specific scenario continuation happens
at least in one (all) future behaviors”. This kind of modal-
ity is not featured by any other current scenario-based nota-
tions grounded on linear-time semantics.

The fact that the notation is based on partial orders opens
the door to the use of future modelchecking technology that
could eventually avoid the explicit or symbolic traversal of
the interleaved model. Moreover, scenarios may serve as a
visual explanation of what may go wrong in a system ex-
ecution generated by the model checker as a counterexam-
ple.

We also conjecture thanV TS scenarios are amenable
to serve as verification objectives in a run-time verification
tool (which are usually expressed using fine-trace linear-
time logics ([20])) or as test purpose to guide the extrac-
tion of test cases from formal models ([21]).

References

[1] A. Alfonso. Un lenguaje visual para la especificación y veri-
ficación autoḿatica de requerimientos de tiempo real com-
plejos. Master’s thesis, FCEyN. Universidad de Buenos
Aires, 2003.

[2] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking
in dense real-time.Information and Computation, 104(1):2–
34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata.Theoretical
Computer Science, 126(2):183–235, 1994.

[4] N. Amla, E. A. Emerson, and K. S. Namjoshi. Efficient de-
compositional model checking for regular timing diagrams.
In Porc. of Intl. Conf. on Correct Hardware Design and
Verification Methods, volume 1703 ofLNCS, pages 67–81.
Springer Verlag, 1999.

[5] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. TIMES — A tool for modelling and implementation
of embedded systems. InProc. of the 8th Conf. TACAS ’02,
volume 2280 ofLNCS, pages 460–464. Springer Verlag,
2002.

[6] G. S. Avrunin, J. C. Corbett, and L. K. Dillon. Analyzing
partially-implemented real-time systems. InProc. of the 18th
ACM/IEEE Conf. ICSE ’97, pages 228–238. IEEE, 1997.

[7] P. C. Bates. Debugging heterogeneous distributed systems
using event-based models of behaviour.ACM Transactions
on Computer Systems, 13(1):1–31, 1995.

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL - a tool suite for automatic verification of
real-time systems. InProc. of the Intl. Conf. on Hybrid Sys-
tems, pages 232–243. Springer Verlag, 1995.

[9] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Ve-
nier, D. Weil, and S. Yovine. Taxys = esterel + kronos - a
tool for verifying real-time properties of embedded systems.
In Proc. of Conf. CDC ’01.IEEE Control Systems Society,
2001.

[10] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. Kronos: A model-checking tool for real-time sys-
tems. InProc. of the 10th Intl. Conf. CAV ’98, volume 1427
of LNCS, pages 546–550. Springer Verlag, 1998.

[11] V. A. Braberman and M. Felder. Verification of real-time de-
signs: combining scheduling theory with automatic formal
verification. InProc. of the 7th ACM/SIGSOFT Intl. Conf.
ESEC/FSE ’99, pages 494–510. Springer Verlag, 1999.

[12] V. A. Braberman, D. Garbervetsky, and A. Olivero. Improv-
ing the verification of timed systems using influence infor-
mation. InProc. of the 8th Intl. Conf. TACAS ’02, volume
2280 ofLNCS, pages 21–36. Springer Verlag, 2002.

[13] M. Consens and A. Mendelzon. Hy+: a Hygraph-based
query and visualization system. InProc. of the ACM Intl.
Conf. SIGMOD ’93, pages 511–516, 1993.

[14] D. Drusinsky. The temporal rover and the ATG rover. In
Proc. of the 7th Intl. Workshop SPIN, volume 1885 ofLNCS,
pages 323–330. Springer Verlag, 2000.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. InProc.
of the 21th ACM/IEEE ICSE ’99, pages 411–420. ACM
Press, 1999.

[16] T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz.
Timed sequence diagrams and tool-based analysis A case
study. InProc. of the 2nd Intl. Conf. UML ’99, volume 1723
of LNCS, pages 645–660. Springer Verlag, October 1999.

[17] D. Giannakopoulou and J. Magee. Fluent model checking
for event-based systems. InProc. of the ACM/SIGSOFT
Intl. Conf. ESEC/FSE 2003, pages 257–266. ACM, Septem-
ber 2003.

[18] D. Harel and R. Marelly. Playing with time: On the speci-
fication and execution of time-enriched lscs. InProc. of the
10th IEEE/ACM Intl. Symp. MASCOTS ’02, pages 193–202.
IEEE Computer Society, 2002.

[19] K. Havelund and G. Rosu. Monitoring java programs with
java pathexplorer. InProc. of the 1st Intl. Workshop RV ’01,
volume 55. ENTCS, Elsevier, 2001.

[20] K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. InProc. of the 8th Intl. Conf. TACAS ’02, volume
2280 ofLNCS, pages 342–356. Springer Verlag, 2002.

[21] J. C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-the-
fly verification techniques for the generation of test suites.
In Proc. of 8th Intl. Conf. CAV ’96, volume 1102 ofLNCS,
pages 348–359. Springer Verlag, 1996.

[22] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal spec-
ifications. In Proc. of the IEEE Intl. Conf. PDPTA ’99,
1999.

[23] M. Mansouri-Samani and M. Sloman. Gem: A general-
ized event monitoring language for distributed systems.Dis-
tributed Systems Engineering Journal, 4(2):96–108, 1997.

[24] N. F. Maxemchuk and D. H. Shur. An Internet multicast sys-
tem for the stock market.ACM Transactions on Computer
Systems, 19(3):384–412, 2001.

[25] C. Sanchez, S. Sankaranarayanan, H. Sipma, T. Zhang,
D. Dill, and Z. Manna. Event correlation: Language and se-
mantics. InProc. of the 3rd Intl. Conf. EMSOFT ’03, volume
2855 ofLNCS. Springer Verlag, 2003.

[26] M. H. Smith, G. J. Holzmann, and K. Etessami. Events and
constraints: A graphical editor for capturing logic require-
ments of programs. InProc. of the 5th IEEE Intl. Symp.
RE ’01, pages 14–22, 2001.

[27] R. Snodgrass. A relational approach to monitoring complex
system.ACM Transactions on Computer Systems, 6(2):157–
196, 1988.

[28] S. Uchitel, J. Kramer, and J. Magee. Negative scenar-
ios for implied scenario elicitation. InProc. of the 10th
ACM/SIGSOFT Intl. Conf. FSE ’02, pages 109–118. ACM
Press, 2002.

[29] D. Zhu and A. S. Sethi. Sel, a new event pattern specifica-
tion language for event correlation. InProc. of the IEEE Intl.
Conf. ICCCN ’01, pages 586–589, 2001.

