
Waterfall JIT Compiler
Guido Chari – gchari@dc.uba.ar

Departamento de Comptación, FCEyN, Universidad de Buenos Aires

Hypothesis
In practice, what can be found in general, is that when
software models become mature enough these properties
holds:
✓ S1: Monomorphic dispatchs.
✓ S2: Reduced type explosion.
✓ S3: Feasible to infer types.

So… what can we do for exploiting this properties and for
having software that avoids dynamic execution overheads?

With a dynamic Just In Time Compiler that could
transparently try to maximize the amount of code that could
be statically compiled, some particular code sections could
be late transformed (on demand and inside the language)
but run efficiently by avoiding the VM runtime overhead. The
solution would also avoid resorting to two-language
approaches.

Development and Architecture

In order to experiment with our hypothesis we decided to develop a dynamic
JIT for translating SLANG code into native one. Also we developed a
transparent API and extend existing frameworks for dynamic binary code
execution inside a runtime. This are the most prominent stages of the
compiler:

· Generate an Abstract Syntax Tree of the method to be compiled.
· Transform the AST to avoid incompatibilities and restrict a little the

spectrum of the compilable SLANG.
· Translate the AST to a general purpose IR suitable for optimizations. This

IR is also executable by an interpreter.
· Nativize the method by traversing adequately the IR representation. This

stage must be repeated for any method that is referenced. Also all
SLANG primitive operations references must be compiled. This stage
could also be done at the AST avoiding the IR step.

· Use NativeBoost (a general dynamic high-level low-level programming
framework) for the generation and execution of the assembly.

Some Context and Comparison

Done and Next

What’s next:
· More experiments.
· Type Inference
· More IRs.
· Code analysis and optimizations.
· Inteface for interaction with standard compilation
 frameworks (LLVM).
· More IRs.
· Extend the possibilities of usage.
· Reflective runtimes.

What’s been done:
After the development of the JIT infrastructure we started with some
experiments. Mainly we focused on the idea of using Waterfall JIT for
improving or evolving the VM. Instead of changing the VM low-level source
code our intention was to do it in the same language that it supported. That
means Reflection at VM level instead of at language-side. For validating the
idea we decided to try changing VM primitives at runtime. To make the
experiment more real, we frame it into an instrumentation experiment. It is
well known that instrumenting primitives of the VM at language side is so
inefficient that it sometimes is even prohibitive.
Actually, we are finishing to move some plugins from VM to language side.
Linked to binaries, by moving them to language side, they could be
dynamically compiled at demand (lazily) favoring dynamic auto
customizable VMs with cleaner, smaller and more cohesive kernels.
Here some benchmarks of the primitive instrumentation experiments done
that are really encouraging:

Tool Relative DifferenceRunning Time

6.4 +/ 0.14ms

22.8 +/- 0.17ms

195 +/- 0.16ms

VM 1.0x

Waterfall ~3.6x

Reflection ~30x

Dynamic Programming Languages

SLANG
Waterfall translates from Slang language to
native code. Slang can be described with
some few statements:
✓ S1: The syntaxis is a subset of ST.
✓ S2: Only basic types.
✓ S3: No polymorphism.
✓ S4: No runtime (GC, Dispatch, etc.).
✓ S5: It is translated to C and compiled

with standard C compilers.

Pharo and Squeak Virtual Machines are
written with this language. The code is live
code inside Smalltalk standard images. For
compilation, the code scattered in lot of
Smalltalk methods is translated to C.
Finally, after compiling with standard C
compilers a binary is generated. Slang is
efficient since it is Static.

Properties that Affect Execution Time

✓: Memory management (Garbage
Collection).
✓: Polymorhism (Late binding,
dispatching).
✓: Object Creation (Object Format).
✓: Code interpretation and/or
generation.

