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On correlation sets and correlation exceptions in
ActiveBPEL ?

Hernán Melgratti1,2 and Christian Roldán1

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires.
2 CONICET.

Abstract. Correlation sets are a programming primitive that allows instance iden-
tification in orchestration languages. A correlation set is a set of properties (i.e.,
values carried on by messages) that are used to associate each received message
with a process instance: every time a service receives a message, it explores its
content and determines a service instance that should handle the received mes-
sage. Based on a concrete implementation, this paper proposes a formal model
for correlation sets accounting for correlation exceptions. We also investigate dif-
ferent type systems aimed at ensuring that orchestrators are free from some kind
of correlation exceptions.

1 Introduction

Service instances are a key concept when dealing with service composition. Typically,
a service may have several instances that concurrently interact with different partners.
Each service provides a template definition used to create process instances (all in-
stances interact by using the same operations). Instances are created when the service
receives a message that matches one of the start activities of its definition. For instance,
a service that handles purchase orders creates a new instance any time it receives a new
purchase order. All subsequent messages directed to the newly created instance should
precisely identify the target instance. For example, when the client sends the payment
details, the corresponding message should arrive to the correct instance (i.e., the one
created when the client placed the purchase order). Orchestration languages (like the
standard BPEL [4]) provide different alternatives to facilitate instance identification:
they may rely on external mechanisms like dynamic endpoint references (as defined by
WS-ADDRESSING [3]) or may use built-in primitives, like correlation sets. The main
idea behind correlations sets is that messages carry on the identification of the instance
they are targeted for, i.e., any service defines a set of properties that it will use to identify
instances. Then, any instance is associated to a particular assignment of values to those
selected properties. Consequently, any time a service receives a message, it compares
the values of the received message against the values associated to any of its instances.
The incoming message is routed to the matching instance.

Few approaches appeared in the literature have proposed a formal account for corre-
lation sets, namely core correlation calculus [13], SOCK [6], COWS [9], and BLITE [10].

? Research supported by ANPCyT Project BID-PICT-2008-00319, and UBACyT
20020090300122.

https://www.researchgate.net/publication/221602729_A_Calculus_for_Orchestration_of_Web_Services?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
https://www.researchgate.net/publication/220994062_A_Formal_Account_of_WS-BPEL?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
https://www.researchgate.net/publication/220118579_A_core_calculus_for_correlation_in_orchestration_languages?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
https://www.researchgate.net/publication/221050839_A_Calculus_for_Service_Oriented_Computing?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==


2 Hernán Melgratti and Christian Roldán

Each of these approaches proposes process calculi enriched with correlation primitives.
Nevertheless, none of them includes a definition for correlation exceptions as defined
in BPEL. In this paper, we aim at studying the relationship between correlation sets
and correlation exceptions. We start by proposing a process calculus with a correlation
mechanism, called Corr. Although Corr shares similarities with both SOCK, COWS, and
BLITE, it is very different in scope. Basically, Corr is not aimed at providing a formal
account for a complete orchestration language, consequently, several features that are
usually present in composition languages, like scopes, compensations, fault and termi-
nation handlers, state, two-way operations, are not included in the calculus. For the sake
of simplicity, we have preferred to focus on a minimal language exhibiting correlations
and correlation exceptions and to leave orthogonal features outside of the model.

It has been shown in [10] that different implementations of BPEL exhibit discrepan-
cies on the implementation of different primitives. In this paper, we follow the interpre-
tation made by ActiveBPEL for setting the semantics of the correlation mechanism. The
choices made during the design of Corr have been based on the runs of toy examples
of BPEL orchestrators (such examples can be found at http://www.di.unipi.it/
˜melgratt/activebpel). Then, we use Corr to reason about exceptions originated
by the correlation mechanism. We also propose a type system that singles out services
that are free from different kind of correlation exceptions. The main result of this paper
shows that well-typed services are free from correlation exceptions.

2 Correlation Language

We assume the countable sets of operation names O ranged over by o,o1, . . .; service
names S ranged over by s,s′, . . .; data variables V range over by x,y, . . ., data constants A
ranged over by a,a′, . . .. We write v for either a data variable or constant, i.e., v∈A∪V.

A correlation set C is a finite set of data variables, i.e., C ⊂ V, and a correlation
instance is a partial function c : V→ A∪{⊥}. For any correlation set C, we denote
with C⊥ the uninitialized correlation instance, i.e., dom(C⊥) =C and C⊥(x) =⊥ for all
x ∈ C. We will say that two correlation instances c1 and c2 do not collide if and only
if ∀x ∈ dom(c1)∩dom(c2).(c1(x) 6=⊥ ∧c2(x) 6=⊥⇒ c1(x) 6= c2(x)). We will explicitly
write correlation instances as sets of pairs, for instance c = {x 7→⊥,y 7→ b}. We will
also use correlation instances as substitutions. When a correlation instance is applied to
a term, we only substitute the variables that are mapped to values different from ⊥. For
instance, when c = {x 7→⊥,y 7→ b}, (o〈x,y〉;P)c = (o〈x,y〉;P)[b/y] = o〈x,b〉;P[b/y].
Let c1 and c2 be correlation instances, we define the update operator [ ] such that
dom(c1[c2]) = dom(c1) and

c1[c2](x) =

{ c1(x) if x 6∈ dom(c2)∨ (x ∈ dom(c2)∧ (c1(x) = c2(x)∨ c2(x) =⊥))
c2(x) if c1(x) =⊥ ∧ x ∈ dom(c2)
undefined Otherwise

Definition 2.1 (Corr). The syntax of flows, service instances and systems is given by
the following grammar

https://www.researchgate.net/publication/220994062_A_Formal_Account_of_WS-BPEL?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
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(FLOW) P ::= 0 | ∑i oi(~xi);Pi | o〈~v〉 | P|P | P;P | if v = v′ then P else P | recX P | X
(INST) I ::= 0 | c. [P] | I|I
(SYS) N ::= 0 | sO

C{P, I,M} | N||N
(MSG) M ::= /0 | o〈~v〉|M

Flows are processes of value-passing CCS [11] with guarded choices, conditional if-
then-else, and without any form of restriction. We include the operator “;” for sequential
composition because we are not able to encode this primitive with the remaining ones
(we do not have restriction). We only consider closed guarded recursive terms. The
set of instances of a service can be either the empty set denoted by 0, the singleton
containing the instance c. [P] or the union of instances I1|I2. The instance c. [P] denotes
a service instance whose correlation variables have been initialized as described by c
and its execution state is described by P. The simplest system is a service sO

C{P, I,M},
where s is the name of the service, O is the set of ports or operations it provides, C is the
set of correlated variables that it uses, P is the definition of the service, I are the active
instances and M is the bag of all the received messages that are still pending.

We will refer to the set of input and output operations of a flow P (respectively,
instances I and systems N), denoted in(P) and out(P) (respectively in(I) and out(I),
and in(N) and out(N)) as the sets of operation names that are subjects of the input and
output prefixes occurring in P. We will write subj(M) for the set of all operation names
that appear as subjects of messages in M.

We remark that any name x ∈ C acts as a binder in sO
C{P, I,M}. For instance, all

occurrences of x in N = sO
{x}{o(x,y).P,{x 7→ a} . [Q],M} are bound to the correlation

variable x. Note that x in o(x,y).P is also bound to correlation name and cannot be α-
renamed without renaming the correlation variable, i.e., N ≡α sO

{z}{o(z,y).P[z/x],{z 7→
a} . [Q[z/x]],M} for any fresh z. Contrastingly, N 6≡α sO

{x}{o(z,y).P[z/x],{x 7→ a} .
[Q],M}. In what follows we consider only systems in which any two different input
prefixes of a flow only share correlation variables (this constraint is analogous to Baren-
dregt’s hygiene convention).

We will restrict our attention to systems satisfying a well-formedness condition de-
fined below. We first introduce some auxiliary notions.

Definition 2.2 (C I I). A set of service instances I is correlated by a correlation set C,
written C I I, iff

C I 0 dom(c) =C
C I c. [P]

C I I1 C I I2
C I I1|I2

Definition 2.3 (Input-blocked). We say a flow P is input blocked iff one of the follow-
ing conditions holds

P = ∑i oi(~xi);Pi
P = P1|P2 with P1 and P2 input blocked
P = P1;P2 with P1 input blocked

The well-formedness condition is formally stated by the next definition.

https://www.researchgate.net/publication/245624208_CCS-A_Calculus_for_Communicating_Systems?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
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Definition 2.4 (Well-formedness). A flow P is well-formed if in(P)∩ out(P) = /0. An
instance c. [P] is well-formed iff P is well-formed. A system sO

C{P, I,M} is well-formed
iff all the following conditions hold:

1. The service definition P is well-formed and input-blocked;
2. All instances in I are well-formed;
3. Instances I are correlated by C, i.e., C I I;
4. The input operations appearing in service instances I and service definition P are

declared as operations provided by the service, i.e., in(I)∪ in(P)⊆ O.
5. The bag of pending messages consists of messages for the operations provided by

the service, i.e., subj(M)⊆ O.

A system N||N′ is well-formed iff there are not input conflicts among different services,
i.e., in(N)∩ in(N′) = /0.

The well-formedness condition states assumptions underlying business process mod-
els. Well-formed flows use input and output operations for communicating with third
parties and not to establish intra service synchronization (i.e., in(P)∩out(P) = /0). This
is a standard assumption implicit in most orchestration languages because each opera-
tion is associated to a particular partner link, which is different from the service itself.
Our model does not include partner links explicitly but we require a consistent usage of
operations by imposing a well-formed condition over systems. Orchestration languages
provide particular primitives for internal synchronization, like links. (For simplicity’s
sake we do not include links in our model since this primitive is somehow orthogonal to
correlation and exceptions). For services, we require all definitions to be input blocked
(condition 1), which relates to the fact that activities should causally depend on start ac-
tivities. Conditions 2, 3 and 4 stand for a relaxed form of a condition requiring instances
to actually describe partial executions of service definitions.

2.1 Operational Semantics

In order to describe the dynamics of a system, we will consider an extended form of
flows, which denotes the fact that an exception has been thrown. We add two additional
forms of processes to account for the two different correlation exceptions defined by
BPEL, namely, ambiguous receive( †) and conflicting receive(‡).

(FLOW) P ::= . . . | † | ‡

The operational semantics of Corr is defined by a labeled transition system over well-
formed terms, up-to the structural congruence defined below.

Definition 2.5 (Structural Congruence). The structural congruence is the smallest
congruence over the extended form of systems such that |, +, || are associative, commu-
tative and have 0 as identity, ; is associative and have 0 as identity and the following
axioms hold (P below does not contain † nor ‡).

0;P≡ P †;P≡ † ‡;P≡ ‡ † | P≡ † ‡ | P≡ ‡

Parallel composition of messages | is associative, commutative and have /0 as identity.
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The labeled transition system considers the following actions, whose meaning is
standard.

α ::= o(~v) | o〈~v〉 | τ
We usually refer to o(~v) as a receive action instead of as an input and o〈~v〉 as an invoke
instead of as an output.

The semantics of Corr is given by a Labeled Transition System (LTS) defined by
structural induction on the syntax of the process, following Plotkin’s Structural Opera-
tional Semantics (SOS) scheme [12]. Transitions for systems and instances are labeled
by actions α as usual, while transitions for flows are labeled by pairs α,c, where α is
an action and c is a correlation instance. A transition P

α,c−−→ P′ denotes that P becomes
P′ by performing α and assigning variables as described by c. The semantics for flows
is defined by using the auxiliary reduction relation P

α,c7−−→ P′. The meaning of labels is
analogous to

α,c−−→. The main difference between
α,c7−−→ and

α,c−−→ is that the latter accounts
for correlation exceptions while the former does not (as explained below).

Definition 2.6. The label transition system for Corr flows, instances and systems is
defined by the rules in Figure 1.

Rule (IN) is standard except for the fact that the label contains also the partial func-
tion ~xi 7→~v recording the assignment of received values (this information is used by
other rules to ensure that the use of correlated variables is consistent). Note that the
function is set to /0 in rule (OUT) because no variable is instantiated when a process per-
forms an invoke. Rules (PAR), (SEQ), (REC), (THEN), (ELSE) are standard. Rule (NO-
EXCP) states that a flow P can perform an action α without throwing any exception only
when P can perform the action α (first premise) and there is no way (i.e., any other com-
putation) for P to raise a correlation exception by performing the same action α (second
and third premises). Rule (AMB-REC-EXCP) states that a flow that concurrently acti-
vates two receive operations for handling the same input action raises the ambiguous-
receive exception. Differently, rule (CONF-REC-EXCP) states that a flow P raises the
conflicting-receive exception after performing an action α if the residual of P after α

enables two different input actions that are indistinguishable. There are two main differ-
ences between (AMB-REC-EXCP) and (CONF-REC-EXCP). Firstly, ambiguous-receive
exception is raised when a flow attempts to perform an input action that can be handled
in different ways while the conflicting-receive exception is raised when a flow performs
an action α (note that it can be any action) and the residual enables at least two input
actions for handling the same request. Secondly, the rules differ also on the conditions
imposed over the instantiation of received variables. Rule (CONF-REC-EXCP) requires
the same usage of received variables on conflicting inputs (i.e., last two premises re-
quire the same instantiation c1) while (AMB-REC-EXCP) allows for different instanti-
ation (note that premises use different correlations c1 and c2). These rules are aligned
with BPEL specification statement that reads: “If a business process instance simultane-
ously enables two or more IMAs [inbound message activities] for the same partnerLink,
portType, operation but different correlationSet(s), and the correlations of multiple of
these activities match an incoming request message, then the bpel:ambiguousReceive
standard fault MUST be thrown by all IMAs whose correlation set(s) match the in-
coming message”. This makes clear that ambiguous-receive is raised when considering

https://www.researchgate.net/publication/220118508_A_Structural_Approach_to_Operational_Semantics?el=1_x_8&enrichId=rgreq-7a5393f534dc44d1ed3d7e45a8aa9962-XXX&enrichSource=Y292ZXJQYWdlOzI2MjIzNjM5ODtBUzozMzQ0NjM4MjIyNTQwOTNAMTQ1Njc1Mzc5ODQyMQ==
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FLOW
(IN)

∑i oi(~xi);Pi
oi(~v),~xi 7→~v7−−−−−−→ Pi{~xi/~v}

(OUT)

oi〈~a〉
oi〈~a〉, /07−−−−→ 0

(PAR)

P1
α,c7−−→ P′1

P1|P2
α,c7−−→ P′1|P2

(SEQ)

P1
α,c7−−→ P′1

P1;P2
α,c7−−→ P′1;(P2c)

(REC)

P[recX P/X ]
α,c7−−→ P′

recX P
α,c7−−→ P′

(THEN)

if a = a then P1 else P2
τ, /07−→ P1

(ELSE)
a 6= b

if a = b then P1 else P2
τ, /07−→ P2

(NO-EXCP)

P
α,c7−−→ P′ P 6 α,c1−−→ † P 6 α,c1−−→ ‡

P
α,c−−→ P′

(AMB-REC-EXCP)

P1
o(~v),c17−−−−→ P′1 P2

o(~v),c27−−−−→ P′2 c1 6= c2

P1|P2
o(~v), /0−−−→ †

(CONF-REC-EXCP)

P
α,c7−−→ P′ P′ ≡ P1|P2 P1

o(~v),c17−−−−→ P′1 P2
o(~v),c17−−−−→ P′2

P
α,c−−→ ‡

INSTANCES
(CORR)

P
α,c′−−→ P′ c[c′] defined
c. [P] α−→ c[c′]. [P′]

(I-PAR)

I1
α−→ I′1

I1|I2
α−→ I′1|I2

SYSTEMS
(SVC-IN)

o ∈ O

sO
C{P, I,M}

o(~v)−−→ sO
C{P, I,o〈~v〉|M}

(NEW)

C⊥ . [P]
o(~v)−−→ c. [P′]

sO
C{P, I,o〈~v〉|M}

τ−→ sO
C{P, I | c. [P

′],M}
(DISPATCH)

I
o(~v)−−→ I′

sO
C{P, I,o〈~v〉|M}

τ−→ sO
C{P, I

′,M}

(SVC-NON-IN)

I α−→ I′ α 6= o(~v)
sO
C{P, I,M}

α−→ sO
C{P, I

′,M}
(S-PAR)

N1
α−→ N′1

N1||N2
α−→ N′1||N2

(COMM)

N1
o(~v)−−→ N′1 N2

o〈~v〉−−→ N′2
N1||N2

τ−→ N′1||N′2

Fig. 1. Labeled Transition System for Corr.
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different correlation sets (i.e., variables). For conflicting-receive, BPEL specification
says: “if two or more receive actions for the same partnerLink, portType, operation and
correlationSet(s) are simultaneously enabled during execution, then the standard fault
bpel:conflictingReceive MUST be thrown”. Consequently, conflicting-receive is thrown
when considering the same correlation set. Moreover, ActiveBPEL implements this re-
quirement as referring to IMAs of the same instance (as for ambiguous-receive) and
does not impose restrictions over simultaneous enabling on different instances.

We also remark that our calculus does not provide exception handling and hence
we make the whole instance to raise the exception. Models accounting for exception
handling should keep track of the places in which exceptions are raised.

Rule (CORR) states that a service instance c. [P] can perform an action only when
the instantiation of variables induced by the execution of such action (i.e., the assign-
ments described by c′) is consistent with the correlation values of the instance (condition
c[c′] defined). In this case, both P evolves to P′ and the correlation is updated to c[c′].
Since c′= /0 when α is either τ or an invoke action, the correlation update has effect only
for receive actions. Rule (I-PAR) deals with the behaviour of a set of multiple instances.
Note that instances are independent from each other, which corresponds to the fact that
ActiveBPEL does not impose correlation constraints between different instances.

We remark that services interact asynchronously and received messages are kept in
a bag of received messages (rule (SCV-IN)) and then they are used either for creating
a new instance (rule (NEW)) or in a received action of an existing instance (rule (DIS-
PATCH)). Differently from other approaches such as COWS, rule (NEW) have no side
conditions ensuring that it has less priority than (DISPATCH). This accounts for the fact
that ActiveBPEL may create new instances even when some other instance may han-
dle the received message. This behaviour appears related to an implementation aspect
that introduces delay in the registration of ready inputs. For this reason, ActiveBPEL
may create a new instance when an input action of an instance has not completed its
registration. The semantics of Corr abstracts away from timing issues and specifies this
kind of behaviours by introducing non-determinism for handling received messages.
Rule (SCV-NON-IN) lifts non-input actions (i.e., outputs or silent moves) of an instance
to the service level. Rules (PAR) and (COM) are standard. We only remark here that
communication is possible only between two different services.

Notation We will write⇒ to denote the relation⇒=
⋃

α

α−→. By abusing notation, we
also write⇒ for⇒=

⋃
α,c

α,c−−→. As usual we write⇒n for the sequential composition
of n steps of⇒ and⇒∗ for the reflexive and transitive closure of⇒.

We use the following examples to illustrate the main features of Corr.

Example 2.1 (Simple Correlation). Consider the following system built-up from two
different services:

N = s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉,0, /0}

|| s′OC{Q,c. [o1〈a,b〉;o1〈d,e〉;o2〈d, f 〉;o2〈a,c〉],M}

Service s provides two operations, namely o1 and o2, it has no active instances
and uses x as the only correlation variable. The two receive actions contained in the
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definition of s (i.e., o1 and o2) use the same correlation property x (x is the first parameter
in both input prefixes). Service s′ has only one active instance with correlation c —the
particular values are uninteresting because all actions are outputs. The instance of s′ is
sending the request o1〈a,b〉. Since o1 is an operation provided by s, this request will be
added to the message bag of s, as shown below.

N τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉,0,o1〈a,b〉}

|| s′OC{Q,c. [o1〈d,e〉;o2〈d, f 〉;o2〈a,c〉],M}

At this point, s may consume the message o1〈a,b〉 in its message bag to create a
new instance (by using rule DISPATCH), as shown below.

τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉,{x 7→ a}. [o2(x,z);o〈b,z〉], /0}

|| s′OC{Q,c. [o1〈d,e〉;o2〈d, f 〉;o2〈a,c〉],M}

After two reduction steps s will activate a new instance to handle the request o1〈d,e〉.
Note that {x 7→ a} . [o2(x,z);o〈b,z〉] is not able to perform o1(d,e) and hence the cre-
ation of a new instance is the only possibility. Then, the system evolves as follows.

τ−→ τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉, {x 7→ a}. [o2(x,z);o〈b,z〉] |

{x 7→ d}. [o2(x,z);o〈e,z〉], /0}
|| s′OC{Q,c. [o2〈d, f 〉;o2〈a,c〉],M}

After two communication steps the system reduces to

τ−→ τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉,{x 7→ a}. [o2(x,z);o〈b,z〉] |

{x 7→ d}. [o2(x,z);o〈e,z〉], o2〈d, f 〉|o2〈a,c〉}
|| s′OC{Q,c. [0],M}

Now, the message o2〈d, f 〉 will be handled by the instance correlated by {x 7→ d},
and the message o2〈a,c〉 by the instance correlated by {x 7→ a}, as below

τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉, {x 7→ a}. [o2(x,z);o〈b,z〉] |

{x 7→ d}. [o〈e, f 〉], o2〈a,c〉}
|| s′OC{Q,c. [0],M}

τ−→ s{o1,o2}
{x} {o1(x,y);o2(x,z);o〈y,z〉, {x 7→ a}. [o〈b,c〉] |

{x 7→ d}. [o〈e, f 〉], /0}
|| s′OC{Q,c. [0],M}

Example 2.2 (Multiple correlations). Orchestration languages provide the possibility
of defining multiple correlation sets. This is especially useful for defining services that
interact with different partners. These scenarios usually require the usage of one corre-
lation value for each partner. Multiple correlation sets are a built-in feature of Corr as
shown by the following example.
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N = s{o1,o2}
{x,y} {P,{x 7→ a,y 7→ b}. [(o1(x,z) | o2(y,w))], /0}

|| s1
01
C1
{P1,c1 . [o1〈a,d〉;R1],M1}

|| s2
02
C2
{P2,c2 . [o2〈b,e〉;R2],M2}

The instances of the service s can be identified by using indistinctly x, y or a combi-
nation of both of them. In particular, the communication between the instance of s1 and
the instance of s takes place by using operation o1 and the correlation set x, while the
communication with the instance of s2 will take place over operation o2 in combination
with correlation set y.

Example 2.3 (Colliding instances). In Corr (as in ActiveBPEL), some or all correlation
values of two different instances may coincide, i.e., there is not a unique association of
correlation values and instances. For example, the following system

N = s{o1,o2}
{x} {o1(x);o2(x),0, /0} || s1

O1
C1
{P1,c1 . [o1〈a〉;o1〈a〉],M}

may reduce after two communication steps as below

N τ−→ τ−→ s{o1,o2}
{x} {o1(x);o2(x),0,o1〈a〉|o1〈a〉} || s1

O1
C1
{P1,c1 . [0],M}

At this time, s may create a new instance with correlation {x 7→ a}, as below

τ−→ s{o1,o2}
{x} {o1(x);o2(x),{x 7→ a}. [o2(x)],o1〈a〉} || s1

O1
C1
{P1,c1 . [0],M}

In the state above, service s has an instance associated with the correlation {x 7→ a}
and an available message o1〈a〉. Note that the message cannot be handled by the only
instance of s, but s may create a new instance because its definition starts with receive
o1. Hence, the system reduces to

τ−→ s{o1,o2}
{x} {o1(x);o2(x),{x 7→ a}. [o2(x)]|{x 7→ a}. [o2(x)], /0} || s1

O1
C1
{P1,c1 . [0],M}

Now s contains two instances with exactly the same correlation values. Assume that s
receives a message o2〈a〉. Then it evolves as follows

o2(a)−−−→ s{o1,o2}
{x} {o1(x);o2(x),{x 7→ a}. [o2(x)]|{x 7→ a}. [o2(x)],o2〈a〉} || . . .

We remark here that the available message o2〈a〉 is non-deterministically dispatched
to one of the existing instances. It should be noted that correlation mechanism in Ac-
tiveBPEL does not ensures univocal identification of a session. Hence, clients of a ser-
vice cannot rely only on correlation values to identify a particular instance of a service.

Example 2.4 (Exception due to ambiguous receive). Consider the following system

N = s{o1,o2}
{x,y} {o1(x,y);(o2(x)|o2(y)),0, /0}

Then, the following computation is allowed
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o1(a,a)−−−−→ s{o1,o2}
{x,y} {o1(x,y);(o2(x)|o2(y)),0,o1〈a,a〉}

o2(a)−−−→ s{o1,o2}
{x,y} {o1(x,y);(o2(x)|o2(y)),0,o2〈a〉|o1〈a,a〉}

τ−→ s{o1,o2}
{x,y} {o1(x,y);(o2(x)|o2(y)),{x 7→ a,y 7→ a}. [o2(x) | o2(y)],o2〈a〉}

At this time, the service s may dispatch the message o2〈a〉 to its unique instance, which
will raise an exception. Note that the flow of the instance will reduce as follows

(AMB-REC-EXCP)
o2(x)

o2(a),{x 7→a}7−−−−−−−→ 0 o2(y)
o2(a),{y7→a}7−−−−−−−→ 0 {x 7→ a} 6= {y 7→ a}

o2(x)|o2(y)
o2(a), /0−−−−→ †

and hence, the complete system will evolve as shown below

τ−→ s{o1,o2}
{x,y} {o1(x,y);(o2(x)|o2(y)),{x 7→ a,y 7→ a}. [†], /0}

Example 2.5 (Exception due to conflicting receive). The simplest system exhibiting a
conflicting receive can be written as follows

N = s{o1,o2}
{x} {o1(x);(o2(x)|o2(x)),0, /0}

Then, N can reduce as follows

o1(a)−−−→ s{o1,o2}
{x,y} {o1(x);(o2(x)|o2(x)),0,o1〈a〉}

Then, the exception is raised when the service attempts to create a new instances for the
message o1〈a〉. In fact,

(CONF-REC-EXCP)

o1(x);(o2(x)|o2(x))
o1(a),x 7→a7−−−−−−→ o2(x)|o2(x) o2(x)

o1(a),x 7→a7−−−−−−→ 0 o2(x)
o1(a),x 7→a7−−−−−−→ 0

P
o1(a),x 7→a−−−−−−→ ‡

Example 2.6 (No exception for undetermined receiver). An invoke that neither matches
an existing instance nor creates a new instance will remain blocked instead of raising
an exception. For example,

N = s{o1,o2}
{x,y} {o1(x);o2(x),{x 7→ a}. [0], /0} || s1

O1
C1
{P1,c. [o2〈a〉],M}

τ−→ s{o1,o2}
{x,y} {o1(x);o2(x),{x 7→ a}. [0],o2〈a〉} || s1

O1
C1
{P1,c. [0],M}

Note that N is blocked because the unique instance of s has terminated and the mes-
sage o2〈a〉 cannot create a new instance of the service definition (operation o2 is not a
start activity of the service definition). Although BPEL does not prescribe the behaviour
of implementations, there are some engine implementations (like WEBSPHERE) that
choose to raise ad hoc exceptions in these cases. For the sake of simplicity, we prefer
to keep operational semantics simple and do not include such behaviour. Our choice
reflects also the behaviour of ActiveBPEL.
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(ZERO)

Γ ` 0 : /0

(INPUT)
Γ ` P : T

Γ ` o(~x);P : T⊕{o 7→~x}

(SUM)
Γ ` o1(~x1);P1 : T1 . . . Γ ` on(~xn);Pn : Tn

Γ ` Σioi(~xi);Pi :
⊕

i
Ti

(OUTPUT)

Γ ` o〈~v〉 : /0

(PAR)
Γ ` P1 : T1 Γ ` P2 : T2 T1 ?T2

Γ ` P1|P2 : T1⊕T2

(SEQ)
Γ ` P1 : T1 Γ ` P2 : T2

Γ ` P1;P2 : T1⊕T2
(REC)

X 7→ T,Γ ` P : T
X 7→ T,Γ ` recX P : T

(X)

X 7→ T,Γ ` X : T

(IF)
Γ ` P1 : T1 Γ ` P2 : T2

Γ ` if v = v′ then P1 else P2 : T1⊕T2

Fig. 2. Typing rules

3 Correlation exceptions

As illustrated in the examples above, there are situations in which a system may raise
an exception. These exceptions are due to the fact that the flow concurrently activates
several input actions over the same operation. In cases in which the concurrent ac-
tions use exactly the same variables in the same position, then the raised exception is a
conflicting-receive. Otherwise, the exception is ambiguous-receive.

Definition 3.1. A service sO
C{P,0,M} is free from ambiguous-receive exception iff ∀I

such that sO
C{P,0, /0} ⇒∗ sO

C{P, I,M}, then I 6≡ c . [†]|I′. Similarly, it is free from
conflicting-receive when I 6≡ c . [‡]|I′. We say that the service is free from correlation
exceptions when it is free from ambiguous- and conflicting-receive exceptions.

Following section introduces a simple type system characterizing those services that
are free from correlation exceptions.

3.1 Type system for correlation-exception-free services

We will consider the following type judgements for flows: Γ ` P : T. The type T as-
signed to a flow is a partial function from operation names to a set of tuples of vari-
ables, i.e., T : O→ P f (V

∗). Basically, the type of a flow P associates any input name
occurring in P with a set containing the formal parameters of all its occurrences in P.
Moreover, Γ is a partial function from process variables to types, i.e., Γ assigns a type
to any process variable in P. For example, T(o) = {〈x,y〉,〈z,x〉}means that all input ac-
tions for the operation o have parameters 〈x,y〉 or 〈z,x〉. With abuse of notation, we use
use T also to denote the obvious total function defined such that T(o) = /0 when o is not
in the domain of the corresponding partial function. We define also type composition as
follows (T1⊕T2)(o) = T1(o)∪T2(o).

Typing rules are shown in Figure 2. The main idea behind typing rules is that of
collecting all tuples used as formal parameters of input actions. Note that rule (INPUT)
adds a tuple corresponding to the formal parameters of the input prefix to the type of the
continuation of the process. Differently, an output prefix has no effect over the type of
a flow (see rule OUTPUT). Rule (PAR) takes into account the compatibility of the types
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assigned to parallel branches. Note that any input action that takes place in one branch
may be concurrently enabled with an input action occurring in the other branch. Hence,
type compatibility states sufficient conditions for avoiding exceptions. Our type system
is parametric with respect to the definition of the compatibility operation ?. We will
actually consider the following three alternative definitions for compatibility:

T1 ?c T2=∀o.T1(o)∩T2(o) = /0

T1 ?a T2=∀o.#(T1(o)∪T2(o))> 1⇒ (T1(o) = /0∨T2(o) = /0)
T1 ?e T2=∀o.T1(o) = /0∨T2(o) = /0

Definition for ?c requires that input actions for a particular operation taking place in
different branches use different parameters (actually, we require different tuples, which
implies that there is at least one formal parameter that differs). Differently, ?a states that
concurrently enabled input actions for a particular operation must use exactly the same
parameters. Finally, ?e forbids the concurrent enabling of two or more input actions for
the same operation. We will show that each of these definitions can be associated with
different notions of correlation exception freeness. Remaining rules are straightforward
(note that they do not check compatibility since they do not introduce concurrent en-
abling of input prefixes).

The following result states that the type of a flow captures the actual parameters of
all ready input actions of a flow.

Proposition 3.1. Let P be a flow. If Γ ` P : T and P
o(v1,...,vn),c′7−−−−−−−→ P′, then there exists

〈y1, . . . ,yn〉 ∈ T(o) s.t. dom(c′) = 〈y1, . . . ,yn〉.

Proof (Sketch). The proof follows by induction on derivation P
o(v1,...,vn),c′7−−−−−−−→ P′. When

last applied rule is (IN) P = Σioi(~xi);Pi and P′ = Pi for some i. By typing rules, we know
that T(o) =

⊕
iTi(o) where Γ ` oi(~xi);Pi : Ti. Moreover, Γ ` oi(~xi);Pi : T′i⊕{oi 7→~xi}.

Clearly, ~xi ∈ T(o) because ~xi ∈ Ti(o). Other cases follows using inductive hypothesis.

Proposition 3.2. Let P be a flow. If Γ ` P : T and P
o(v1,...,vn),c′−−−−−−−→ P′, then there exists

〈y1, . . . ,yn〉 ∈ T(o) s.t. dom(c′) = 〈y1, . . . ,yn〉.

Proof. By analysis of the applied rule for P
o(v1,...,vn),c′−−−−−−−→ P′ and Proposition 3.2.

Proposition 3.3 (Subject reduction for α,c7−−→). Let P be flow. If Γ ` P : T and P
α,c′7−−→ P′,

then there exists T′ such that (i) Γ ` P′ : T′ and (ii) ∀o.T′(o)⊆ T(o).

Proof (Sketch). It follows by induction on the derivation P
α,c′7−−→ P′. Interesting cases

are rules (PAR) and (REC). For (PAR), P = Q1|Q2 and P′ = Q′1|Q2 with Q1
α,c′7−−→ Q′1.

Since P is well-typed, Γ ` Q1 : T1, Γ ` Q2 : T2, T1 ?T2 and T = T1⊕T2. Then, by
inductive hypothesis we know that there exists T′1 such that Γ ` Q′1 : T′1 and T′1(o) ⊆
T1(o) for all o. It is easy to check that for any compatibility operator ?c, ?a or ?e the
following statement holds: T1 ?T2 and T′1(o)⊆ T1(o) for all o implies T′1 ?T2, hence
Γ ` Q′1|Q2 : T′1⊕T2. Moreover, T′1(o) ⊆ T1(o) implies that T′1(o)∪T2(o) ⊆ T1(o)∪
T2(o), and hence T′(o)⊆ T(o). For (REC) we rely on an auxiliary property stating that
Γ ` recX Q : T implies Γ ` Q[recX Q/X ] : T and inductive hypothesis.



On correlation sets and correlation exceptions in ActiveBPEL 13

Following result states that the type of a flow captures all formal parameters of the
input operations that a process may execute.

Lemma 3.1. Let P be a flow. If Γ ` P : T and c. [P]⇒∗ cn . [Pn]
o(v1,...,vn),c′−−−−−−−→ c[c′]. [P′],

then there exists 〈y1, . . . ,ym〉 ∈ T(o) s.t. dom(c′) = 〈y1, . . . ,yn〉.

Proof. The proof follows by induction on the length of the derivation⇒∗.

– n=0. This case follows immediately by Proposition 3.2.

– n=k+1. c . [P]
α,c0−−→ c′′ . [P′′]⇒k ck+1 . [Pk+1]

o(v1,...,vn),ck+1−−−−−−−−−→ c′ . [P′]. We proceed

by case analysis on the structure of P. When P = Σioi(~xi);Pi, c . [P]
oi(~v),~xi 7→~v−−−−−−→

c[~xi 7→ ~v] . [P′i ]. By Proposition 3.3 we know that there exists T1 such that Γ `
P′i : T1 and ∀o.T1(o) ⊆ T(o). By inductive hypothesis (applied over c′′ . [P′′]⇒k

ck+1 . [Pk+1]
o(v1,...,vn),ck+1−−−−−−−−−→ c′ . [P′]) we know that there exist 〈y1, . . . ,ym〉 ∈ T1(o)

s.t. dom(c′) = 〈y1, . . . ,yn〉. Since, ∀o.T1(o)⊆ T(o) we conclude that 〈y1, . . . ,ym〉 ∈
T1(o). Remaining cases follow analogously.

Lemma 3.2 (Subject reduction). Let P be a flow and c a correlation instance. If Γ `
P : T and P

α,c′−−→ P′, then one of the following holds

1. there exists T′ such that Γ ` P′ : T′ and ∀o.T′(o)⊆ T(o),
2. if P′ = † then compatibility operator is ?c, or
3. if P′ = ‡ then compatibility operator is ?a.

Proof (Sketch). The proof follows by analysis of the rule applied for P
α,c′−−→ P′. For rule

(NO-EXCP) we show that 1 holds by using Proposition 3.2. For rule (AMB-REC-EXCP)
there are two cases. (i) When compatibility is ?c then P= † and 2 holds. (ii) For ?e and
?a we show by contradiction that this rule cannot be applied. Since P = Q1|Q2 is well-

typed, Γ `Q1 : T1, Γ `Q2 : T2 and T1 ?T2. Moreover, Q1
o(~v),c1−−−−→Q1 and Q2

o(~v),c2−−−−→Q2
with c1 6= c2. For Proposition 3.2, dom(c1) ∈ T1 and dom(c2) ∈ T2. It is easy to check
that this implies that neither T1 ?aT2 nor T1 ?eT2 holds, which contradicts the fact that
P is well-typed. For rule (AMB-REC-EXCP) we proceed as in the previous case.

Next theorem states the main result of the paper, saying that services with well-
typed definitions do are free from correlation exceptions.

Theorem 3.1. Let P be a flow s.t. Γ ` P : T, then the well-formed service sO
C{P,0, /0} is

1. free from ambiguous-receive exception if type compatibility is taken as ?a.
2. free from conflict-receive exception if type compatibility is taken as ?c.
3. free from correlation exception if type compatibility is taken as ?e.

Proof. 1. We prove by induction on the length of the derivation⇒n that sO
C{P,0, /0}⇒n

sO
C{P, I,M} implies (i) I 6= c. [†]|I′ and I ≡ c. [Q]|I′ implies Q is well-typed. Case n=0

is immediate since I ≡ 0. For n=k+1, sO
C{P,0, /0} ⇒k sO

C{P, Ik,Mk} ⇒ sO
C{P, I,M}. By

inductive hypothesis, Ik 6≡ c. [†]|I′k. We show that exception cannot be raised in the last
step by case analysis on the reduction sO

C{P, Ik,Mk}⇒ sO
C{P, I,M}.
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– sO
C{P, Ik,Mk}

τ−→ sO
C{P, I,M}. There are three possibilities. For rule (DISPATCH) it

should be I′ ≡ c . [Q]|I2
o1(v1),c′−−−−−→ I = c′ . [Q′]|I2 with Q

o1(v1),c′−−−−−→ †, but this contra-
dicts Lemma 3.2. Hence, Q′ 6= † and Q is well-typed. Rule (NEW) follows anal-
ogously. Rule (SVC-NON-IN) follows immediately since τ actions in flow do not
introduce †.

– sO
C{P, Ik,Mk}

o〈v〉−−→ sO
C{P, I,M} and sO

C{P, Ik,Mk}
o(v)−−→ sO

C{P, I,M}. These cases fol-
low by noticing that these reductions do not introduce exceptions.

Cases 2. and 3. follow analogously.

4 Related works and concluding remarks

This paper introduces Corr, which is a process calculus with correlation primitives.
The formal definition of the correlation mechanism exhibited by Corr has been greatly
inspired by SOCK [6]. However, we do not include two-way operations, state manipu-
lation and assignment to keep the language simple. We are convinced that the proposed
approach smoothly extends to a calculus containing those features (this is left as a fu-
ture work). We remark that the semantics of SOCK blocks computations that generate
correlation instances that collide, while Corr does not impose restrictions among differ-
ent instances. Differently from SOCK, Corr has a mechanism that automatically raises
exceptions when instances activate receive actions that may handle the same request
non-deterministically. Although some extensions of SOCK (like [5]) provide primitives
for exception handling, exceptions in those approaches are thrown by the execution of
a particular primitive but not as a consequence of some correlation violation.

BLITE [9] is a process calculus aimed at explaining most of BPEL features. As a
consequence, it contains several primitives that are not included in Corr. With respect
to the subset of BLITE that corresponds to Corr we remark that: (i) a BLITE service
chooses the receiver of a message by using “the most specific instance principle”, i.e.,
if several instances can handle an incoming message, then the message is directed to
the instance associated with the correlation instance that have more initialized values
matching the incoming message. If there are several ones, then BLITE chooses non-
deterministically one of them. On the contrary, Corr does not have control over different
instances and raises an exception when non-determinism is internal to an instance.

Corr does not model explicitly partner links (as done in BLITE and SOCK) because
the correlation mechanism is usually used in combination with static endpoints. Con-
sequently, if partner links cannot change dynamically, we see no reason for including
them into the model (the study of correlation mechanism in combination with dynamic
endpoint identification is out of the scope of this paper).

COWS [9] relies on a pattern matching mechanism to deal with correlation sets. In
this sense, COWS describes correlations at a lower level of abstraction — although it has
been shown in [10] that it is expressive enough for encoding the correlation mechanism
of BLITE.

As already mentioned, the distinctive feature of Corr when compared against previ-
ous proposals like SOCK, COWS, and BLITE is that Corr accounts for exceptions raised
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as a consequence of incorrect usage of correlation sets. None of the previous proposals
accounts for the interaction between correlations and exceptions.

We also mention that a completely different approach for structuring interactions
among service instances is related to the concept of sessions [2,8,1,7]. Sessions are a
more abstract way of thinking about service interaction, which facilitates the analysis
of the interaction between instances.
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