
Building Efficient and Highly Run-
time Adaptable Virtual Machines

Guido Chari, Diego Garbervetsky
Departamento de Computación, FCEyN, UBA.

CONICET, Argentina
{gchari,diegog}@dc.uba.ar

Stefan Marr
Johannes Kepler University Linz, Austria

stefan.marr@jku.at

Abstract
Programming language virtual machines (VMs) realize lan-
guage semantics, enforce security properties, and execute
applications efficiently. Fully Reflective Execution Environ-
ments (EEs) are VMs that additionally expose their whole
structure and behavior to applications. This enables develop-
ers to observe and adapt VMs at run time. However, there
is a belief that reflective EEs are not viable for practical us-
ages because such flexibility would incur a high performance
overhead.

To refute this belief, we built a reflective EE on top of
a highly optimizing dynamic compiler. We introduced a
new optimization model that, based on the conjecture that
variability of low-level (EE-level) reflective behavior is low in
many scenarios, mitigates the most significant sources of the
performance overheads related to the reflective capabilities
in the EE. Our experiments indicate that reflective EEs
can reach peak performance in the order of standard VMs.
Concretely, that a) if reflective mechanisms are not used the
execution overhead is negligible compared to standard VMs,
b) VM operations can be redefined at language-level without
incurring in significant overheads, c) for several software
adaptation tasks, applying the reflection at the VM level is
not only lightweight in terms of engineering effort, but also
competitive in terms of performance in comparison to other
ad-hoc solutions.

Categories and Subject Descriptors D.3.4 [Processors]:
Run-time Environments, Optimization

General Terms Languages, Performance, Experimentation

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords Reflection, Virtual Machines, Metaobject Proto-
cols, Performance

1. Introduction
VMs for dynamic programming languages provide a wide
range of heterogeneous functionalities including the language
semantics, memory management, native code compilation,
security enforcement and the interaction with the operating
system. The low-level nature and interdependency of these
features cause industrial strength VMs to be complex arti-
facts. Consequently, adapting VM features at run time is
challenging and usually only possible in an ad-hoc manner.

A Fully Reflective Execution Environment (EEs) [5]
enables VMs to be modified at run time using reflective
APIs. Fully reflective EEs are based on metaobject protocols
(MOPs) [11] and enable adaptation scenarios ranging from
simple changes in the semantic of individual operations
up to the complete reimplementation of its components.
Consequently, fully reflective EEs have an enormous potential
as a general platform for developing flexible and adaptable
applications. To support such adaptation capabilities, fully
reflective EEs must expose their structure and behavior to the
language level.

In stark contrast to other reflective approaches, fully reflec-
tive EEs provide reflective capabilities in every component
of the VM such as the interpreter, memory manager, garbage
collector, object layout, etc. This flexibility implies a signifi-
cant proliferation of indirections and conditions (guards) that
the EE needs to check at run time to realize the proper se-
mantics. The same applies also for (partially) reflective EEs,
which follow the same approach but implement reflection
in a subset of the components and functionalities. Recent
work has shown that speculative compilers can remove the
run-time overhead for common usage patterns of reflection
and even for simple MOPs [14]. Although these performance
results do not apply directly to fully reflective EEs they show
a promising path for exploring ways to make them efficient.

In this paper we show preliminary empirical evidence
that reflective EEs can reach a peak performance similar to
standard non-reflective VMs. To do so, we first built an ex-

1 2016/8/18



perimental reflective EE named TruffleMate,1 which is an
extension of TruffleSOM,2 an optimized implementation of
SOM Smalltalk. TruffleMate supports an adapted version of
Mate v1’s MOP, a prototypical reflective EE presented in [5].
Based on the conjecture that the variability of actually ob-
served metaobjects is low for consecutive executions of the
VM semantics, we designed and implemented an optimiza-
tion model that minimizes indirections of the meta-level by
speculating that its behavior is stable.

We assess the peak performance of TruffleMate with VM
benchmarks and measure the overhead incurred by the Mate
MOP for individual VM operations. Furthermore, we evalu-
ate TruffleMate in on-the-fly adaptation scenarios that need
intervention at the EE level: introducing immutable (read-
only) references [2] and monitoring method activations. The
evaluation shows that our reflective EE has on average zero-
overhead at peak performance compared to TruffleSOM when
no adaptations are needed. The same applies for the redef-
inition of individual VM operations at language-level. We
finally show that for more elaborated scenarios the reflective
solutions using TruffleMate introduce low overheads while
its MOP-based implementation is lightweight in terms of
engineering effort.

In summary, the contributions of this work are:

• An approach to optimize MOP-based reflective EEs based
on the assumption that the actually observed local meta-
variability at run time is low.

• TruffleMate: an EE with reflective capabilities for exe-
cution semantics and object layouts that implements the
aforementioned optimizations.

• Empirical evidence showing that TruffleMate can run
efficiently in terms of peak performance.

2. Background
To set up the remainder of the paper, this section describes
the main characteristics of reflective EEs following the Mate
approach. Then we introduce the Graal dynamic compiler and
Truffle. Finally we describe TruffleSOM, an implementation
of SOM in Truffle.

2.1 Mate Approach to Virtual Machines
In Fully Reflective EEs every VM component provides com-
prehensive reflective capabilities, i.e., it is possible to in-
trospect and intercede its structure and behavior from the
language level [5]. This characteristic enables flexible adapta-
tions at run time, e.g., to implement new language features,
security properties, monitoring facilities, or to optimize an
object’s low-level representation. The Mate approach uses a
MOP to mediate between the application and the VM reflec-
tive capabilities.

1 https://github.com/charig/TruffleMATE
2 https://github.com/SOM-st/TruffleSOM

Execution
Message

Lookup
Activate

Executor
Store Field
Load Field
Push On Stack
Pop From Stack
Send Message 
Return

Organization
Memory

Not 
Implemented 
in Mate V1

Layout
Read Field
Write Field
Initialize Field
Count of Fields
Create Layout
Customize Structure

Context
Receiver
Arguments
Return Frame
Stack

Figure 1. Mate V1’s MOP (based on Figure 2 of [5]).

Mate v1 is a prototypical implementation of the Mate
approach to demonstrate its feasibility and experimenting
with its applicability. As such, it supports reflective capabili-
ties for a subset of the VM’s components. However, it does
not include reflective capabilities for the memory manager.
That is the reason why it is considered a reflective but not
fully reflective EE. Concretely, Mate v1 consists mainly of
an interpreter for the Smalltalk-80 bytecode set [8] extended
with hooks (intercession handlers) in the reflective VM com-
ponents. Figure 1 shows the MOP representing Mate v1’s
reflective capabilities at the VM level with the reflective oper-
ations clustered by their corresponding VM component. The
operations highlighted with italic fonts represent behavioral
operations while the others represent structural features. The
remainder of this paper refers to the Mate v1’s MOP simply
as the Mate MOP.

2.2 Example: Tracing Program Execution with Mate
In Mate v1 metaobjects can be installed either to individual
objects or to method activation frames. When installed, they
govern the semantics of the interceded entity. To illustrate
their usage, below we show how to install a metaobject that
monitors the number of method invocation that an individual
object is making (in Section 6 we generalize this to all
application objects using metaobjects installed in frames).
Consider this to be part of a server application scenario, where
the requirement is to dynamically enable the aforementioned
monitoring in a module without shutting down the application.
On top of Mate we only need to create a metaobject with the
monitoring semantics and install it into the required object:

1 class TracingMessageMO extends Metaobject {
2 def activateWithArgs(subject, aMethod, args){
3 Counter.addMethodActivation();
4 super.activateWithArgs(subject, aMethod, args);
5 }
6 }
7 tracingMO = new TracingMessageMO();
8 monitoredObject.installSemantics(tracingMO);

Listing 1. Metaobject to trace method activations

The first step consists of subclassing the Message metaob-
ject and redefining the activateWithArgs method so it
increments a global counter (Lines 1-3). Then the method ac-
tivation delegates the execution to the superclass method that
defines the standard activation. Finally, it becomes a matter

2 2016/8/18



of simply installing the metaobject into the required object
(Lines 7-8).

2.3 Truffle and Graal
The Truffle framework allows developers to build program-
ming languages by expressing their semantics as abstract
syntax trees (ASTs). To realize self-optimizing AST inter-
preters [25], Truffle provides a framework to specify spe-
cializations. Specializations express special cases for a lan-
guage’s execution that need to do less work at run time than
a generic implementation (e.g.: use primitive operations for
integers instead of language methods). This approach min-
imizes run-time checks and interpreter code executed for a
specific program.

In combination with the Graal JIT compiler [24], self-
optimizing interpreters can reach performance of the same
order of magnitude as Java on top of HotSpot [13]. To reach
this performance, Truffle applies partial evaluation on the
specialized ASTs to determine the compilation unit that
corresponds to a relevant part of a guest-language’s program,
which is then optimized and compiled to native code by
Graal using classic compiler optimizations, inlining, and
escape analysis. According to Simon et al. [19], the Graal
compiler produces native code for Java benchmarks (DaCapo,
SPECjvm2008, and others) that is on average 8% slower
than the code produced by HotSpot’s highly optimizing C2
compiler.

Truffle Object Storage Model. Truffle includes an object
storage model (OSM) [23] that provides language imple-
menters with an efficient representation for objects. The OSM
maintains a so-called object shape. Shapes are immutable
representations of a fixed set of fields and the types that have
been observed for an object at one point in time. The OSM
optimistically optimizes objects of the same class or proto-
type based on the assumption that the potential dynamicity
that is allowed by a language’s object model is rarely used.

Objects are represented by a set of memory locations
for fields and a pointer to a shape describing their memory
layout. When a field is accessed at run time, its actual memory
location is determined by inspecting the object’s shape and
then accessed directly. The OSM speculates on the memory
location information for a specific shape to avoid repeated
lookup at run time. With this approach, the run-time overhead
is a simple comparison between the shape of the current
object, and the one used for speculation.

In the context of Mate, these shapes are an implementation
of the Layout component of the MOP. We use them to realize
layouts, and for consistency refer to them as layouts as well.

2.4 TruffleSOM
The Simple Object Machine (SOM) [9] is a Smalltalk im-
plementation designed to avoid inessential complexity. It
includes fundamental language concepts such as objects,
classes, closures, and non-local returns. Following the

Smalltalk tradition, control structures such as if or while
are defined as polymorphic methods on objects and rely on
closures and non-local returns for realizing their expected
behavior.

TruffleSOM [12, 14] is a SOM implementation using
Truffle. When used in combination with Graal it is just 2.7x
slower than Java for a set of classic VM benchmarks (cf.
Section 6.2). TruffleSOM relies on Truffle and the Truffle
OSM to run efficiently by speculating on the observed run-
time types and using primitive operations such as integer
additions or String access operations.

2.4.1 Dispatch Chains
Dispatch chains are a generalization of polymorphic inline
caches (PICs)[10, 14]. PICs record type information and
cache methods to minimize their lookup overhead. Dispatch
chains generalize PICs to generic operations such as object
field accesses and metaprogramming, caching arbitrary val-
ues [14, 23]. Like PICs, which are based on the observation
that the number of invoked methods at a call site in a pro-
gram is typically small [6, 10], dispatch chains rely on the
stability and low variability of the run-time behavior. They
are structured so that the last element implements the fallback
behavior (i.e., the behavior for the most general case).

TruffleSOM uses dispatch chains to implement its opti-
mizations. Figure 2 shows an example: on the left-hand side
is the unoptimized AST of an expression that accesses object
field foo and invokes the method bar with a constant integer
parameter. The right-hand side shows the optimized AST.
The optimized state is reached after executing the expression
at least once. The Literal Node is rewritten to an Integer Lit-
eral Node and the Message Node is identified as a generic
message. The bottom compound nodes are an example of a
dispatch chain for optimizing a field read. The first node of
the list already cached the value of the only observed layout
until now and the location where the corresponding field is
located for that layout. In further executions of the field read,
the VM first checks if the layout of the receiver is the same as
the one cached. In case of a hit, the location for the field does
not have to be computed. In case of a miss, the chain executes
the following node. The last node of the chain (in this case
Uninitialized Read node) must always decide if it adds a new
cached entry to the chain or if it executes the generic, and
thus more expensive in terms of performance, read operation.

3. The Overhead of Supporting VM
Reflective Capabilities

Traditionally, supporting reflective capabilities comes with a
significant run-time overhead [14]. Before executing opera-
tions such as invoking a method, reading a field, or accessing
a local variable, a reflective EE must verify whether the oper-
ation is redefined at the language level, and if so, execute the
language-level code. This is known as intercession handling
(IH). Instead of using highly optimized code, IH requires

3 2016/8/18



Field 
Read 
Node

foo
Integer
Literal 
Node

1

Generic
Message 
Node

"bar"

Cached
Read

Uninit
Read

Layout

Location

Field 
Read 
Node

foo

Literal 
Node

1

Uninit
Message 
Node

Uninit
Read

"bar"

Figure 2. Parser output (left) and Optimized (right) ASTs
for an expression foo.bar(1) in TruffleSOM.

run-time checks and relies on language-level code to realize
basic operations.

As a preliminary evaluation, we added the Mate MOP
naively without any kind of optimizations to TruffleSOM,
an optimized Smalltalk VM. We observed on average an
overhead of 4.6x when analyzing a set of macro benchmarks
that do not redefine semantics (cf. Section 6.3). Considering
the massive proliferation of IH sites in a reflective EE 4.6x
on peak performance can be seen as a great achievement of
the Graal compiler. At the same time, it also exposes that
several extra indirections are still being executed, even when
the MOP is not being used. Furthermore, we saw an overhead
of at least 100x when we started using metaobjects. This is
prohibitive and blocks adoption of reflective EEs.

The most significant additional behavior introduced by
our reflective EE are the ubiquitous IHs. Analogously to call
sites for method invocations, we give the name IH site to
any independent place where the IH is actually triggered.
Mate v1 requires the installation of an IH site just before the
VM execution of any of the behavioral operations included
in Figure 1. Furthermore, Mate supports the intercession of
every VM operation at both, the object and method levels.
The following algorithm defines the common substrate:

1 def IH(frame, operation){
2 result = NOMETAOBJECT.
3 metaobject = frame.getMetaobject();
4 if (metaobject != null){
5 result = metaobject.activateFor(operation);
6 }
7 if (metaobject == null or result == null) {
8 metaobject = getReceiver().getMetaobject();
9 if (metaobject != null){

10 result = metaobject.activateFor(operation);
11 }
12 }
13 return result;
14 }

Listing 2. Algorithm describing Mate’s IH.

First, the IH checks for the existence of a metaobject
associated with the current frame of execution. In that case the
IH activates (dispatches to) the language-level redefinition of
the current operation in the corresponding metaobject. In case
there is no metaobject for the frame, or it does not redefine the
VM operation being executed, the IH checks for a metaobject
in the subject of the current VM operation (e.g., in a variable
read operation, the concrete object owning the variable).
Again, if there is a metaobject the IH delegates the execution
to the operation redefined in the metaobject. Otherwise, the
IH returns the NOMETAOBJECT constant and the VM executes
the default behavior for the current operation.

Performance Analysis of IH. Metaobjects are objects
themselves. Therefore, interacting with them requires ac-
cessing memory. As a consequence, in addition to the perfor-
mance overhead caused by the tests in each branch, the IH
incorporates several indirections (memory accesses) to the
execution of each VM operation. However, we expect that
both, receiver of the operations and the corresponding frames
for these operations are used repeatedly in consecutive execu-
tions of the IH. Therefore, a dynamic compiler should be able
to factor out most of the repetitive indirections introduced by
subsequent IH sites. This can be illustrated in the context of
the execution of a method. A method is composed of several
operations such as field reads, variable accesses, and other
operations, each defining a different IH site in the context
of a reflective EE. We conjecture that the subject of most
of these operations, in this case the receiver or frame of the
method, is the same.

The Challenge of Meta-Variability. We observe that the
main difficulty of compilers in the context of reflective EEs
is dealing with the variability of metaobjects. To enable
arbitrary dynamic adaptation, reflective EEs allow users
to freely change metaobjects for subjects or frames. For
a compiler, this means it cannot make any assumptions
about the meta-level operations, which in turn prevents many
optimizations. For example, let us consider the compilation
of a block of code that accesses the metaobject of the same
object multiple times. Since the metaobject could change at
any point in time, a compiler would only optimize out the
accesses and the corresponding meta-level operations if it is
able to prove that the metaobject does not change. If not, the
compiled code needs to include all reads of metaobjects and
the corresponding operations on them.

As a result of the meta-variability problem, several opera-
tions relating to metaobjects cannot be remove. Even worse,
compiler optimizations such as inlining may not be generally
applicable any longer, which means that several of the indi-
rections introduced by IH cannot be optimized out. This leads
in the end to what we call the proliferation of indirections
at run time resulting in a significant impact on application
performance.

4 2016/8/18



4. Optimizing Mate
This section details the strategy to minimize the overhead
introduced by Mate’s VM-level reflection.

4.1 Conjectures about the Dynamic Usage of the Mate
MOP

Reflective EEs are a very recent approach for building flexible
systems. As a consequence, there are no large applications
from which common usage patterns could be derived. In-
stead, we conjecture that the usage patterns will be similar to
what is observed for dynamic languages [14], i.e., the appli-
cations use only a minimal degree of the potential dynamicity
the language provides, showing very stable behaviors. This
conjecture is also informed by literature on unanticipated dy-
namic adaptation approaches [16], where the most common
scenarios described require small dynamicity at run time.
Mate’s MOP fits well as an expressive medium for intro-
ducing additional stable behavior into an application. Our
conjectures can be detailed as follows:

Stable semantics: We expect users of the Mate MOP to
freely define and combine metaobjects describing (novel)
adaptations to the EE at run time. However, we do not expect
those adaptations to be changed often and, thus, show a
stable behavior eventually. The main reason is that it is
hard to reason about frequently changing behavior. This
means, we assume users are not going to constantly create
new metaobjects with different behavior within the same
application.

Low local meta-variability: While a single IH site can po-
tentially observe many different metaobjects, we expect
the behavior to be similar to that of dynamic method dis-
patches [10]. This means that the large majority of IH sites
will be monomorphic, i.e., they observe only a single metaob-
ject. Few IH sites will be polymorphic with multiple me-
taobjects observed. Only in very rare cases many observed
metaobjects will make an IH site megamorphic. We further
assume this behavior correlates strongly with method poly-
morphism. A megamorphic call site is likely to have a higher
probability to observe more metaobjects than a monomorphic
call site that is used only in very specific cases.
Overall, this means that for a wide variety of use cases, the
local meta-variability will be minimal and most IH sites will
be monomorphic.

4.2 Optimizing IH Sites
This section describes the optimization model based on our
conjectures of low local meta-variability.

Speculate on metaobjects: We propose to cache, at each
IH site, a predefined number of the metaobjects that has
been seen at that site. Furthermore, for each metaobject
we propose to cache the entry point of the (language-level)
method reimplementing the corresponding VM operation at
the current IH site. This way, at run time, we only need to test

whether the current metaobject is in the list of the cached ones.
In case of a cache hit, we can directly call the corresponding
cached method saving all the indirections that the lookup of
the method in the metaobject consume. In case of a miss, we
have to execute all checks and lookups. If the stable behavior
assumption holds misses will be infrequent. Any dynamic
change of the metaobject attached to a frame or object will
trigger a deoptimization at run time, eventually stabilizing
again.

Speculate on method activations: Similarly, metaobjects
assigned to frames are cached at each IH site.

Combine metaobjects with object layouts: Most IH sites
are triggered by VM operations that may need to access
the state of objects. For instance, reading/writing fields
or obtaining object’s meta information like its class, e.g.,
for method lookups. Hence, we designed an object model
where the metaobjects are coupled with the object’s layout.
The dispatch chain can then store object layouts and the
entry point of the redefined method for the corresponding
metaobject. At run time, the dispatch chain guard only needs
to check the object layout with pointer equality. Since for
most VM operations the layout needs to be accessed, this
check does not introduce overhead. A possible drawback of
this strategy is that objects with the same structure but with
different metaobjects have distinct layouts. As a consequence,
the size of any dispatch chain guarding object layouts may
increase, incurring additional overheads. Nevertheless, we do
not expect a significant impact due to the low meta variability.

We expect that an aggressive dynamic compiler in combi-
nation with the proposed optimizations will remove most of
the indirections caused by the IHs. We validate this hypothe-
sis in Section 6.

5. Implementing Mate Efficiently
TruffleMate is our prototypical implementation of a reflec-
tive EE supporting the Mate MOP (cf. Section 2.1). It is
implemented as an extension of TruffleSOM and incorpo-
rates all the optimizations described in Section 4. We chose
a Smalltalk-like language as target because it already fea-
tures advanced reflective capabilities at the language level
that eases the implementation of the VM-level reflective API.
Nevertheless, our contributions focus mainly on supporting
reflection at the VM level and we expect them to be language
independent.

For supporting the Mate MOP, TruffleMate mainly incor-
porates: reflective layouts, reflective execution contexts and
IH sites for all the behavioral operations of the MOP. In Mate,
the semantics of each VM operation can be redefined at the
object or method level (cf. Section 3). To support the former,
every object is able to refer to a metaobject that describes
the semantics of a set of VM operations for itself. To support
the latter, we modified the calling convention so that every
method receives an extra parameter with the metaobject that

5 2016/8/18



Wrapper 
Node

Intercession 
Handler Node

Frame IH 
Node

Receiver 
IH Node

Wrapper 
Node

Intercession 
Handler Node

...

Cached
Frame

Uninit
Frame

Metaobject
Cached
Rcvr

Cached
Rcvr

Uninit
Rcvr

Layout Layout2

Message 
Node

"Bar"

Literal 
Node

1

Target
Method 

Target
Method 

Target
Method 

Figure 3. Truffle Mate’s AST version of foo.bar(1) statement
without including the field read node but with dispatch chains
already filled. The bold circle nodes are metalevel nodes
exclusive for Mate. Simple circled nodes were inherited from
TruffleSOM.

governs the semantics of its execution. This implies that each
frame includes the metaobject describing how the activated
method must behave.

5.1 Meta-level Nodes
We refer to nodes that are part of TruffleSOM, e.g., the nodes
presented in Figure 2, as the base-level nodes. In TruffleMate,
the MOP semantics are implemented with new AST nodes.
We refer to nodes related to Mate as meta-level nodes. The
base-level nodes for VM operations that can be customized by
the MOP are wrapped with meta-level nodes that perform the
IH. If the execution of the IH in the meta-level node returns
that the operation is not redefined, then the meta-level node
delegates the execution to the base-level node.

Figure 3 shows the expression of Figure 2 after wrapping
the message send node. Bold thick nodes represent meta-level
nodes. The IH is composed of several meta-levels nodes. Each
node implements a fragment of the IH algorithm presented
in Listing 2 (cf. Section 3), or is part of a dispatch chain
(compound nodes) implementing the optimizations described
in Section 4.2. We introduce the meta-level nodes below, and
leave the description of the dispatch chains for the following
section.

Wrapper Node: the entry point of every VM operation
that can be redefined. It wraps a base-level node (a VM
operation) and connects it with its corresponding meta-level
nodes implementing the IH. Its role is to delegate first to
the IH to execute the meta-level behavior if the operation is
redefined or delegate to the base-level node otherwise.

Intercession Handler Node: orchestrates the intercession
handling relying on the Receiver and Frame IH nodes.

Receiver and Frame IH Node: checks whether the environ-
ment/receiver has a metaobject redefining the current opera-
tion. In that case delegates the invocation of the corresponding
language-level method to its dispatch chain.

5.2 Optimizations
Below we explain how we implement the optimization model
presented in Section 4 in order two optimize IHs in general,
and the dispatch chains for subjects and frames, in particular.

Speculate on the Metaobject of Subjects. As explained in
Section 4, we expect the variability of metaobjects at a spe-
cific IH site to be low. Thus, we cache the observed metaob-
jects and the corresponding language-level operations within
a dispatch chain. This optimization avoids to lookup for the
redefinition of an operation in a metaobject whenever the
metaobject is the same. Furthermore, it enables a compiler
to inline the language-level operation. In the dispatch chain
hanging from the Receiver IH Node (Figure 3), each Cached
Frame Node caches a Layout and the target method reimple-
menting the VM operation. In case the assumption of a low
meta-variability fails, the dispatch chain falls back to using a
generic implementation without caching.

Speculate on the Metaobject of Frames. Analogously to
the previous case, we implemented a similar dispatch chain
speculating on the metaobjects attached to frames. This
dispatch chain hangs from the Frame IH Node of Figure
3. In contrast to the previous case, this dispatch chain caches
the actual metaobject because frames do not have a layout.

Optimize Metaobject Guards. We combine object layouts
with metaobjects as a mean to reduce an extra indirection
in the IHs (cf. Section 4.2). Concretely, we add to every
object layout an extra field denoting its metaobject. Then, by
just testing two layouts we can determine any change in the
metaobject assigned to an object. Accordingly, we store in
the dispatch chains that caches metaobjects, not only them,
but also a pointer to the layout. Therefore, at run time when
each Receiver IH node walks through the Cached Rcvr nodes
of the dispatch chain, it first compares the current subject’s
layout with the stored layout to determine whether it can
execute the corresponding optimized node. In case of hit, it
saves the extra indirection of reading the actual metaobject
assigned to the current subject.

Speculate on IH branches. Due to the low variability it is
likely that each IH will execute only one of its branches (i.e.,
receiver or frame). However, the compiler is not always able
to figure that out and cannot optimize accordingly. We thus
profile branches related to the usage of metaobjects to help
the compiler to speculate on which branches to compile and
optimize.

6. Validation
This section evaluates the impact of our optimizations on
TruffleMate’s peak performance.

6.1 Research Questions
We based our evaluation on these research questions:

6 2016/8/18



RQ1: What is the inherent peak performance overhead of
running programs in a reflective EE?

RQ2: What is the peak performance overhead of redefining
individual VM operations at language level?

RQ3: What is the peak performance overhead of running
applications that dynamically adapt by redefining VM
operations at language level?

6.2 Methodology
To account for the non-determinism in modern systems as
well as the adaptive optimization techniques in TruffleMate,
Graal, and HotSpot, each reported result is based on 100
measurements after a steady state has been reached, thus
measuring peak performance. To determine when a steady
state is reached, we run several iterations of the same bench-
mark in a single process execution and manually select a
threshold since where measurements does not show signs of
compilation. We report geometric means. The benchmarking
machine is a quad-core Intel Core i7-3770, 3.40 GHz with 16
GB RAM, running Ubuntu with Linux kernel 4.2, and Java
1.8.0_91 with HotSpot 25.91-b14.

Subjects. The benchmarks for the experiments were col-
lected from various sources and include classic VM bench-
marks used for Smalltalk VMs, JVMs, JavaScript VMs (e.g.
Octane and JetStream suites), as well as own additions. They
have been translated to Java 8 and Smalltalk respectively
idiomatically, so that they behave strictly identical on both
languages, and to avoid code patterns that are unexpected
by the compilers. This allows for an assessment of the ef-
fectiveness of the compiler optimizations and gives as much
comparability between languages as possible. The bench-
marks for assessing the performance of using reflection at the
VM level are described in their particular sections.

Base Performance. TruffleSOM, our baseline for the ex-
perimentation, is on average only about 2.7x slower than
Java 8 on the HotSpot JVM. This is comparable with the
performance of the V8 VM.

Warmup. To assess the warmup behavior of TruffleMate
and TruffleSOM, we analyzed time series plots for the micro
and macro benchmarks reported in Section 6.3. The plots
are not included because of space constraints.3 Overall,
TruffleMate and TruffleSOM show very similar warmup
patterns, i.e., compilation happens in the same phases, and
the curves have the same shape.

To characterize warmup, we measure the first iteration for
which execution time differs by at most 10% from the mean
peak performance, and whose next 5 subsequent iterations
maintain the same condition. Based on this proxy, it takes
TruffleSOM, on average, 42 iterations and 3.8 seconds to
warmup, while 46 iterations and 8.3 seconds to TruffleMate.
Considering only the first iteration where the code is mostly

3 Warmup behavior of TruffleSOM is reported in [12].

interpreted, the mean execution time in TruffleSOM is 0.4
seconds while 0.7 in TruffleMate respectively. As a conclu-
sion, the IH does not increase significantly the warming up
iterations while it has some impact on the overall execution
time because more code needs to be executed and compiled.

6.3 Inherent Overhead
For assessing the inherent overhead of our reflective VM we
evaluate a set of benchmarks that do not execute meta-level
behavior, in both, TruffleSOM and TruffleMate. Therefore,
the performance difference is determined solely by the inher-
ent overhead of TruffleMate.

Overhead without optimizing the meta level. Figure 4
shows that, even if no metaobjects are being used, there
is an inherent overhead from executing IH sites that the
compiler could not optimize. The mean of this overhead is
3.38x for micro benchmarks, 5.3x for macro benchmarks,
and the worst cases are FieldLoop with 12.9x and Richards
with 8.53x correspondingly.

Overhead when optimizing the meta level. Figure 4 also
shows the results when our optimizations are enabled. The
mean overhead is 0.97x and 1.02x for micro and macro
benchmarks, with worst cases of 1.13x for TreeSort and
1.21x for DeltaBlue. Notice that some runs are even slightly
faster in TruffleMate. This may be influenced by the use
of different memory layouts, and cache effects triggered by
the additional IH code. Considering all the benchmarks, the
mean overhead is 0.99x. This shows that our optimization
strategy (cf. Section 4.2) reduced the performance overhead
significantly in a scenario when the flexibility of the VM is
available, but not used.

Answering RQ1, we conclude from these results that
reflective EEs can reach the performance of state-of-the-art
VMs when metaobjects are not activated.

6.4 Individual Operations of the MOP
To analyze the impact of redefining VM operations at lan-
guage level, we use mircobenchmarks to asses the overhead
of redefining field reads/writes, method dispatches, returns,
and all operations together. The redefinitions in Mate realize
the standard behavior, but use language-level reflective opera-
tions. We also compare the cost of reading a field on a mono
and megamorphic IH site. Concretely, we pseudo-randomly
select an element from a list of 20 objects and read a fixed
field. In the monomorphic benchmark (mono), all the objects
use the same metaobject redefining the read operation. In the
megamorphic (mega), we simulate a megamorphic site by as-
signing a distinct metaobject, redefining equally the reading
operation, to each object.

Overhead without optimizing the meta level. The top quad-
rants of Figure 5 shows the results using TruffleMate without
dispatch chains. The micro benchmarks show a mean over-
head of 1532x. The worst case is the ‘All’ benchmark with

7 2016/8/18



Micro benchmarks
●
●

●●

●
●
●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●

●

●
●●●●●●●●

●

●●
●●●●●●
●
●

●●●●

●

●●●
●●●
●●
●●
●
●
●
●●●
●●●

●

●●

●
●●●
●
●●●●●●●●●

●●●●●●●●●●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●
●●●●●●●●●●●●●●

●●
●
●
●●●●●●●●●
●●●

●●●●●●●●
●●●●●●

●
●
●
●●●

●
●
●●
●●●●●●
●●
● ●●●●●●

●
●●●
●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●●
●
●●●●●●●
●
●●●

●●●●
●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

3
6
9

●●●●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●
●●

●●●
●
●
●●
●

●

●●
●
●
●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●
●
●●●

●

●●●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●●●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●
●●

●

●
●

●

●

●
●

●●

●
●

●●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●
●
●●
●●

●

●

●

●●●

●
●●●
●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●
●●

●

●●
●
●●●

0.8
1.0
1.2
1.4
1.6

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
F

ie
ld

Lo
op

In
te

ge
rL

oo
p

Li
st

Lo
op

Q
ue

en
s

Q
ui

ck
S

or
t

S
ie

ve
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
Macro benchmarks

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●
●●●●●●●

●●
●
●

●

●●
●
●

●

●

●
●●●●

●

●

●

●●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●

●
●●
●
●●
●
●●

3
6
9

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

● ●
●●●●●●●●●●●●●
●

●

●●
●

●
●
●●●

●●
●
●●●
●
●

●
●

●

●

●●●
●●
●
●

●●

●

●
●
●

●
●
●
●
●
●
●
●

●

●

●

●
●●

●

●●

●

●
●●

●●●●
●

●

●

●
●

●

● ●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

● ●
●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●

●

●●

●●

0.8
1.0
1.2
1.4
1.6

D
el

ta
B

lu
e

G
ra

ph
S

ea
rc

h

Js
on

M
an

de
lb

ro
t

N
B

od
y

P
ag

eR
an

k

R
ic

ha
rd

s

Figure 4. Overhead of TruffleMate normalized to Truffle-
SOM, clustered by micro and macro benchmarks, without
(above) and with (below) optimizations.

13563x overhead since it is the one that redefines more opera-
tions. The mono/mega morphic analysis in the top-right figure
presents a mean overhead of 31.36x, with similar results in
both cases.

Overhead when optimizing the meta level. The boxplot in
the bottom-left quadrant of Figure 5 indicates that there is no
considerable overhead in executing a redefined VM operation
at language level in terms of peak performance. The mean
overhead for this micro benchmarks is zero while the worst
case is the redefinition of the read operation with 1.035x.

In the top-right quadrant the monomorphic site exposes
a mean overhead of 1.10x. The only difference with the
individual operation case (with zero overhead) is that the
monomorphic site observes much more objects. This suggests
that, in some cases, the compiler is still not able to remove
all indirections when dealing with a IH site that executes
multiple subjects with the same metaobject. On the other
hand, the megamorphic site is 18.5x slower showing that low

●●●

●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●0

5000
10000
15000

●●●●●●
●
●

●●
●
●

0
10
20
30

●
●

●

●●
●

●

●

●●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●●
●
●●

●

●

●
●●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.8
1.0
1.2
1.4

A
ll

R
ea

d

W
rit

e

S
en

d

A
ct

iv
at

io
n

R
et

ur
n

●●●

●
●

●

●
●●

●

●●

●
●
●

●●

●●
●●

●●●●●●●●0
10
20
30

M
eg

a

M
on

o

Figure 5. Left-hand side. Above: the overhead of running
VM operations redefined at language-level, normalized to
the same operation at the VM level. Below: the same but
without dispatch chains. Right-hand side images show the
overhead of an IH site that observe only one (mono) or several
metaobjects (mega).

meta-variability is a requirement to optimize the Mate MOP
successfully.

To answer RQ2, we conclude from this experiment that
for cases with low meta-variability there is no perceptible
overhead in redefining a VM operation at language-level. The
excessive overhead of the unoptimized version expose the
impact of our optimizations.

6.5 Using the MOP
To answer RQ3, we evaluate a more comprehensive usage of
the Mate MOP. To assess the peak performance overhead of
creating and activating metaobjects at run time, we analyze
one implementation of read-only references and a case of
instrumentation of method activations. These two scenarios
intend to represent use cases of run-time adaptation for enforc-
ing security properties (read-only references) or monitoring
application’s behavior (tracing). The former evaluates a more
in-depth usage of metaobjects attached to subjects while the
latter to frames. Both install metaobjects dynamically.

6.5.1 Read-only References
A read-only reference ensures that all objects reachable
transitively through itself cannot be modified. Arnaud et
al. [2] proposed an implementation of read-only references
based on the idea of handles, a kind of proxy protecting the
read-only reference. To enforce the transparency of handles,
this approach requires the modification of the underlying VM.
Later, an approach based on delegation proxies [22] proposed
a language-level implementation. It uses hidden classes to
instrument all the code that will eventually be called by a
proxy. Using Mate’s MOP we dynamically introduce handles
using metaobjects with less than 50 lines of code:

8 2016/8/18



1 class HandleMO extends Metaobject (
2 def read(subject, anIndex){
3 return new Handle(subject.instanceVarAt(anIndex));
4 }
5 def write(subject, anIndex, aValue){// ignore write}
6 def lookup(subject, aMethodName){
7 class = subject.target().getClass();
8 return super.lookup(
9 subject.getTarget(), aMethodName);

10 }
11 def activateWithArgs(subject, aMethod, args){
12 if(aMethod.name().equals("=="))
13 args["receiver"] = subject.getTarget();
14 }
15 )
16 class Handle extends Object = (
17 fields: target;
18 static fields: semantics = new HandleMO();
19
20 def getTarget(){ return target;}
21 def static getSemantics(){return semantics;}
22 constructor Handle(anObject){
23 target = anObject;
24 this.installEnvironment(Handle.getSemantics());
25 }
26 )

Listing 3. Metaobject for immutable references.

The Handle class is a proxy to the readonly object (the
target field) that installs a metaobject on its instances at
initialization time. This metaobject enforces the readonly
behavior by redefining the semantics of read, write, lookup
and activation. The write operation is redefined to do nothing.
The read enforces that any access to a field of an object
referenced by a read-only reference returns a handle wrapping
the reference. The lookup enforces that any method invoked
in a Handle is looked up in the target reference (line 8). The
activation ensures that the identity of read-only references is
preserved. This way, clients always perceive that they interact
directly with objects and not with handles.

For the sake of the analysis, we implemented a version of
delegation proxies that do not use metaobjects. To compare
both implementations, we ran a program that creates a (read-
only) reference to the head of a linked list and traverses
the list attempting to write some of its elements. We use
TruffleMate with standard mutable references as baseline.
Note that the version with handles attaches metaobjects to
handles whenever a reference is read (Lines 3 and 24, Listing
3). In our setting, changing metaobjects is a slow operation
since it requires to modify the object’s layout. To avoid this
slow operation during the traversal, we exploit TruffleMate’s
reflective capabilities on layouts. Concretely, we cache a
predefined layout with a metaobject defining the read-only
behavior already assigned, and instantiate handles using this
layout.

●●●●●●●●●

●●●●●●●

0
2000
4000
6000

Readonly

●●

●
●
●

●

●

●

●
●
●
●
●

●
●
●
●
●

●

●
●

●
●
●
●
●
●●

●

●
●
●
●
●

●
●
●●

1
2
3
4
5

D
.P

ro
xi

es

M
O

P

●

●●1

2

3

4

D
el

ta
B

lu
e

Js
on

N
B

od
y

Q
ui

ck
S

or
t

Tracing Method Activations

Figure 6. Left-hand side: Overhead of a traversing and
intending to modify a readonly list in TruffleMate with two
different approaches, DelegationProxies and the Mate MOP.
The baseline is the same traversal but with standard mutable
references. Above are the results without dispatch chains and
below with the optimized version. Right-hand side: Overhead
of monitoring method activations normalized to the same
benchmarks without the monitoring.

Overhead without optimizing the meta level. The top left-
hand side of Figure 6 shows that the overhead for delegation
proxies is 4.1x while for Mate is a prohibitively 5946x.

Overhead when optimizing the meta level. The bottom
left-hand side of the figure shows the optimized version
results. Delegation proxies overhead does not vary since
it does not use any kind of meta behavior, and as such,
the overhead is mainly a result of the extra allocations and
its double dispatching usage. Mate outperforms delegation
proxies with a mean overhead of 3.5x. Furthermore, the
implementation of handles in Mate is simpler and transparent
to the language level. Moreover, it does not require an
extensive framework, which might impede integration into
existing code bases. It is worth noting that both approaches,
delegation proxies and handles, need to wrap each field read
during the traversal with a proxy or handle. This instantiation
of considerably more objects than the baseline version is a
plausible explanation of their overheads.

6.5.2 Tracing
In this experiment we asses the overhead of TruffleMate when
a large number of IHs trigger the execution of metaobjects.
This happens, for instance, when metaobjets are attached
to the execution context of the VM operations (i.e., the
frame in the IH). Therefore, we introduce a metaobject that
redefines the activation of methods to account for the number
of activations made by the program. The redefined method
activation increments a counter and invokes the original
activation logic. It is intentionally simple because we are
interesting in measuring the overhead of the IHs rather than
the “tracing” itself. The actual metaobject is similar to the
one presented in 2.2. The main difference is that it is attached

9 2016/8/18



to frames instead of objects to ensure the monitoring is
propagated in subsequents activations.

We ran the experiment on the DeltaBlue, NBody and
Json macro benchmarks and the Quicksort micro benchmark.
In an attempt to simulate the execution of more realistic
applications we increased the input size for the benchmarks,
and used a 55MB file for the Json parser instead of the original
of 90KB.

Overhead without optimizing the meta level. Running this
experiment without optimizations was not possible because
the runs did not finish within a day.

Overhead when optimizing the meta level. Right-hand
side of Figure 6 shows the results. QuickSort presents zero
overhead, Json 1.33x, NBody 2.74x, and DeltaBlue 3.43x.
Recall that this overhead includes the cost of the counting
logic in all activations, including even activations on primi-
tive types like integers and strings (e.g., sum, multiplication,
etc.).

DeltaBlue and NBody perform a significant amount of
computation on primitive types. Moreover, we noticed that
they are more sensitive to the inlining parameter of the Graal
compiler. This may also increase their running times because
the cost of invoking a method is usually higher than inlining
the callee.

To answer RQ3, our experiments suggest that the peak
performance overhead when dynamically adapting applica-
tions can be reasonably low in TruffleMate, specially when
compared with language-level approaches.

6.5.3 Conclusions
Our experiments analyze the peak performance of Mate for
scenarios that activate a small number of metaobjects at mul-
tiple places. Overall, Mate ran efficiently, being competitive
with the alternative approaches. This indicates that our opti-
mizations help the compiler to eliminate redundant indirec-
tions introduced by the ubiquitous IH sites. On the other hand,
the 3.43x slowdown on DeltaBlue for the tracing experiment
indicates remaining potential for performance improvements.

7. Discussion
Our empirical evaluation showed that the proposed optimiza-
tion model removes most of the indirections introduced by
the Mate IHs that normally a dynamic compiler cannot re-
move. The experiments also illustrate that a high local meta-
variability leads to a severe degradation of the performance,
implying that the flexibility of the MOP comes with a price
and must be used with care. Nevertheless, it is worth men-
tioning that the experiments with megamorphic IH sites are
purely synthetic. Currently, we do not anticipate concrete use
cases using the MOP to this extent. As discussed in Section
4.1, we assume a low local meta-variability.

While our original work aimed to make all components of
a VM reflective [5], TruffleMate focuses on the components

for language semantics and the representation of objects.
TruffleMate does not currently provide reflective capabilities
for the memory manager, the garbage collector, or other
(lower level) components. Consequently, our work does not
assess the impact of our optimizations on IH sites concerning,
e.g., memory operations. The main reason is that building an
efficient VM is an extremely time demanding task. We use
the Truffle framework to implement a language efficiently,
without having to implement low-level features such as
memory management and compilation ourselves. However,
for the next step of reflective capabilities, this means we need
to adapt Truffle and Graal to support run-time interaction
with memory allocation, garbage collection, and just-in-time
compilation. We consider the corresponding effort out of the
scope of this paper.

A potential threat to the validity of our evaluation is the
selection of benchmarks. We may lead to conclusions that
may not generalize to other programs. To mitigate this threat
we selected a set of benchmarks included in the literature of
the field [12, 14]. We also evaluated the MOP in use cases
appearing in previous works (read-only [2], tracing [15]). It
is worth noting however, that the field of reflective EEs is
comparatively unexplored and the work on applications that
harness the capabilities of reflective EEs has just started. Con-
cerning the readonly experiment, we implemented Delegation
Proxies following the guidelines of the paper [22]. Additional
benchmarks challenging our optimization model (e.g., more
meta-variability) will provide more information about perfor-
mance impact when our assumptions do not hold. However,
we gathered preliminary insights about this kind of scenar-
ios in the dynamic instantiation of metaobjects (readonly
experiment) and the evaluation of mono and megamorphic
IH sites.

8. Related Work
8.1 Reflective VMs
Ungar et. al. [4] introduced several optimizations for improv-
ing the performance of Self programs. Based on this work,
Ungar and others worked on Klein, a metacircular VM for
Self [20]. To the best of our knowledge, Klein is the only VM
that tries to provide comprehensive reflective capabilities sim-
ilar to Mate. Unfortunately, there are neither optimizations
nor performance evaluations documented that could be used
for a comparison.

Pinocchio [21] is a research prototype of a metacircular
VM for Smalltalk that also shares some reflective charac-
teristics with Mate. Unlike Mate, Pinocchio features reflec-
tive capabilities only for the execution component. However,
Pinocchio does not impose a limit in the number of metalevels.
With respect to performance, Pinocchio is only implemented
as interpreter, which according to Verwaest [1] performs 250
times slower than a native Smalltalk interpreter.

CLOS is an object-oriented layer for LISP that features an
advanced MOP, which is regarded as one of the most com-

10 2016/8/18



plete in terms of introspection and intercession reflective ca-
pabilities on the language level [11]. In terms of performance,
the CLOS MOP employs currying to facilitate memoization
of lookups. However, this is not sufficient to eliminate all run-
time overhead. Furthermore, by exposing memoization in the
API, it shifts the burden of optimization from the runtime
system to the developer, which we avoid in TruffleMate.

8.2 Efficient Run-time Adaptability
Based on Self-Optimizing Interpreters. Marr et al. [14]
showed that dynamic compilation and dispatch chains can be
used to remove the run-time overhead of reflective operations
and IH for language level concepts. They showed that spec-
ulating on stable behavior for IH of field access or method
invocation provides the compiler with enough information
to optimize the operation to a normal base-level access or
invocation.

Although we use the same fundamental technique (dis-
patch chains) for caching meta-level information, our work
has significant differences with theirs: 1) The Mate approach
aims at providing reflection at VM level, i.e., targeting low-
level operations of VM components instead of including only
language-level operations. 2) In this context, Marr et al. con-
sider only field accesses and method execution. Mate’s MOP
in addition allows to customize object layout, separates IH for
method lookup and activation, and provides fine-grained IH
for variable and argument access as well as a MOP for stack
frames. This results in a much higher degree of flexibility and
consequently a much higher number of IH sites exacerbating
any inefficiencies in the runtime system. 3) We designed and
described a new optimization model targeted to our particular
IH that combines object layouts and meta-level semantics
to minimize run-time cost. 4) Our evaluation also considers
more comprehensive usages of the MOP. For instance, we
evaluated dynamic adaptation scenarios of more realistic ap-
plications to support the claims that the ubiquitous IH sites
can be optimized effectively.

Seaton et al. [17] optimizes out the overhead of debug-
ging when it is not activated. This is achieved by wrapping
operations with a kind of IH that checks if debugging for the
current operation is activated. We use a similar approach for
wrapping Mate’s base-level nodes. In contrast to Mate, the
intercession handling is simpler because it does not depend
on metaobjects, and is fixed at compilation time. Thus, they
do not need to handle the meta-variability problem.

General Approaches Several recent works delegate the
burden of optimizing performance to the developer. Such
approaches provide language abstractions to communicate
hints to the compilers so that it can optimize execution.
For instance, Shali and Cook [18] proposed the notion of
hybrid partial evaluation, which is a combination of partial
evaluation and compile-time metaprogramming. DeVito et
al. [7] proposed Exotypes, which are similar in spirit but
used staged programming, which is a form of run-time code

generation. Finally, Asai [3] explores the usage of staged
programming for improving the performance of a tower of
meta interpreters with a powerful metaobject protocol.

As a common denominator, these approaches impose
restrictions on the supported dynamicity, i.e., meta-variability.
In contrast, TruffleMate does not need any modification to
the source code of the programs for doing the optimizations,
and while high meta-variability can lead to slower execution,
the expressivity is not restricted by the system.

9. Conclusions and Future Work
This work presents preliminary evidence suggesting that a re-
flective EE can run programs efficiently. This contradicts the
belief that reflection at VM level is impractical, and opens the
door to further research in this area. The main optimizations
applied to TruffleMate, our reflective EE, are the speculation
on low local meta-variability and the combination of the meta
behavior with object layouts. The experiments showed that
when the MOP is not activated, or when it only redefines indi-
vidual VM operations, the mean peak performance overhead
is zero. Furthermore, the overhead is at most 3.5x when deal-
ing with elaborated, and on the fly, adaptation requirements.

With these results as a foundation, future work could
explore how the Mate approach could be applied to further
low-level VM components. The next step could be to explore
incorporating reflective capabilities into the compiler. This
could enable dynamic optimizations for specific use cases
such as the customization of compilation/inlining thresholds,
or the adaptation of the structure and length of dispatch chains.
It could also further improve performance by leaving the
choice of whether an optimization should be based on run-
time or compile-time checks to the user. In performance
critical parts, a user could explicitly disable or lower the
degree of dynamicity supported by a MOP.

Acknowledgments
We would like to thank the reviewers of this paper for
their constructive feedback which contributed to improve
it. This work was partially supported by the projects PCYT
PICT 2011-1774, ANPCYT PICT 2012-0724, ANPCYT
PICT 2013- 2341,ANPCYT PICT 2014-1656, UBACYT
20020130100384BA, UBACYT 20020130300036BA, CON-
ICET PIP 112 201301 00688 CO. Stefan Marr was funded by
a grant of the Austrian Science Fund (FWF), project number
I2491-N31.

References
[1] Bridging the Gap between Machine and Language using First-

Class Building Blocks. PhD thesis, University of Bern, 2012.

[2] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel,
and M. Suen. Read-only execution for dynamic languages. In
TOOLS, pages 117–136. Springer, 2010.

[3] K. Asai. Compiling a reflective language using metaocaml. In
GPCE, pages 113–122. ACM, 2014.

11 2016/8/18



[4] C. Chambers, D. Ungar, and E. Lee. An efficient implementa-
tion of self a dynamically-typed object-oriented language based
on prototypes. In OOPSLA, pages 49–70. ACM, October 1989.

[5] G. Chari, D. Garbervetsky, S. Marr, and S. Ducasse. Towards
fully reflective environments. In Onward! ACM, 2015.

[6] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In POPL, Jan. 1984.

[7] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan.
First-class runtime generation of high-performance types using
exotypes. In PLDI, pages 77–88. ACM, 2014.

[8] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley, 1983.

[9] M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr,
A. Bergmann, A. Heise, M. Kleine, and R. Krahn. The som
family: Virtual machines for teaching and research. In ITiCSE,
pages 18–22. ACM, 2010.

[10] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In ECOOP, pages 21–38. Springer, 1991.

[11] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, 1991.

[12] S. Marr and S. Ducasse. Tracing vs. partial evaluation: Com-
paring meta-compilation approaches for self-optimizing inter-
preters. In OOPSLA, pages 821–839. ACM, 2015.

[13] S. Marr, T. Pape, and W. De Meuter. Are We There Yet? Simple
Language Implementation Techniques for the 21st Century.
IEEE Software, 31(5):60–67, 2014.

[14] S. Marr, C. Seaton, and S. Ducasse. Zero-Overhead Metapro-
gramming: Reflection and Metaobject Protocols Fast and With-
out Compromises. In PLDI, pages 545–554. ACM, 2015.

[15] D. Rothlisberger, M. Harry, A. Villazon, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Augmenting static

source views in ides with dynamic metrics. In ICSM ’09, pages
253–262, Sept 2009.

[16] G. Salvaneschi, C. Ghezzi, and M. Pradella. An analysis of
language-level support for self-adaptive software. TAAS, 8(2):7,
2013.

[17] C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at
full speed. In DLYA, pages 1–13. ACM, 2014.

[18] A. Shali and W. R. Cook. Hybrid partial evaluation. In
OOPSLA, pages 375–390. ACM, 2011.

[19] D. Simon, C. Wimmer, B. Urban, G. Duboscq, L. Stadler, and
T. Würthinger. Snippets: Taking the High Road to a Low Level.
ACM Trans. Archit. Code Optim., 12(2):20:1–20:25, June 2015.

[20] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacircular
virtual machine in an exploratory programming environment.
In OOPSLA, pages 11–20. ACM, 2005.

[21] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and O. Nies-
trasz. Pinocchio: Bringing reflection to life with first-class
interpreters. In OOPSLA, pages 774–789. ACM, 2010.

[22] E. Wernli, O. Nierstrasz, C. Teruel, and S. Ducasse. Delegation
proxies: The power of propagation. In Modularity, pages 1–12.
ACM, 2014.

[23] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and
H. Mössenböck. An object storage model for the truffle
language implementation framework. In PPPJ, pages 133–
144. ACM, 2014.

[24] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One vm
to rule them all. In Onward!, pages 187–204. ACM, 2013.

[25] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing ast interpreters. In DLS, pages
73–82. ACM, 2012.

12 2016/8/18


