
Efficient implementation of the or-
dered read write locks model on multi-
core architectures
Diciembre 2018

Rodrigo Campos Catelin
rodrigo@sdfg.com.ar

Director
Jens Gustedt

jens.gustedt@inria.fr

Co-Director
Diego Gabervetsky
diegog@dc.uba.ar

Facultad de Ciencias Exactas y
Naturales
Universidad de Buenos Aires
Ciudad Universitaria - (Pabellón I/Planta

Baja)

Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires

República Argentina

Tel/Fax: (++54 +11) 4576-3300

https://exactas.uba.ar

Abstract

Multi-cores are ubiquitous in present computing, from mobile phones and
servers to watches and glasses. However, their adoption raises some challenges
among which concurrency control is probably one of the toughest to overcome.
Current programming languages provide rudimentary support to successfully
exploit these systems, and there are numerous ways to tackle this issue. Each
one has advantages and disadvantages and there is no silver bullet.

This work presents an efficient implementation of the Ordered Read Write
Locks model, an approach to address this problem that eliminates the possibility
of deadlock and achieves high CPU parallelization. Such implementation was
motivated by insights from a custom instrumentation created to that end, and
observations about invariants imposed by the model.

This new implementation improves the performance on multi-core architec-
tures several times, scaling better with increasing number of cores while still
being usable for small computations.

Agradecimientos

Acknowledgments

1

Contents

1 Introduction 4
1.1 The Fort de Mutzig Conundrum 4
1.2 Multi-cores . 4
1.3 Parallel programming . 5
1.4 About this work and it’s organization 6

2 The Ordered Read Write Locks model 7
2.1 Major concepts . 7
2.2 Example . 9
2.3 Handles, resources and their FIFO queue 10
2.4 The initialization phase: important observations 12
2.5 Main benefits . 13

3 Reference library evaluation 14
3.1 Definitions . 14
3.2 Runtime evaluation . 14

3.2.1 Measurement strategy . 15
3.2.2 Instrumentation . 15

3.2.2.1 Alternatives considered 16
3.2.3 Meassuring per-call CPU time 17
3.2.4 Adding instrumentation 17

3.2.4.1 Definitions . 18
3.2.4.2 Instrumentation of inline functions 18
3.2.4.3 Instrumentation of non inline functions 18
3.2.4.4 Instrumentation of library internal threads . . . 18
3.2.4.5 Estimate CPU-time spent inside the library . . . 19
3.2.4.6 Requirements from the OS and libc 19
3.2.4.7 Other benefits 19
3.2.4.8 Disadvantages 20
3.2.4.9 Future improvements 20

3.2.5 Estimation of waiting time 21
3.3 Results and interpretation . 21
3.4 Code Analysis . 23

4 Proposed design for multi-core architectures 25
4.1 Definitions . 25
4.2 Why write a new library? . 25
4.3 Proposed changes in algorithms and data structures 26

2

4.3.1 Important observations 26
4.3.2 From idea to implementation 28

4.3.2.1 Locations, handles and resources overview . . . 28
4.3.2.2 ORWL hot-path API 28

4.3.3 New data-structure for ORWL resources queues 29
4.3.4 Critical ORWL functions implementation 30

4.3.4.1 The initialization phase 30
4.3.4.2 The computation phase 32
4.3.4.3 Summary . 33

4.4 Design decisions . 34
4.5 Usage and dependencies . 34
4.6 Main differences with current ORWL library 35

5 Results and experimentation 37
5.1 About the examples used . 37
5.2 Benchmarks . 37

6 Conclusions 42

3

Chapter 1

Introduction

1.1 The Fort de Mutzig Conundrum
The Fort de Mutzig, also known as Feste Kaiser Wilhelm II, is a fort located
near the town of Mutzig, in the Bas-Rhin departement of France. It is one of
the forts built by Germany at the end of the 19th century to defend Strasbourg.

It has been historically disputed between Germany and France and one of
the things that were constantly remodeled when the fort changed hands were
the bathrooms. Under French control the bathroom had latrines, but under
German control they were changed into toilets. Besides this cosmetic detail,
Germans even had a rule to use the bathroom: while a General is using the
bathroom, no other soldier can use it.

In other words, a General has exclusive access to the bathroom while the
soldiers can all go in at the same time. This brings-up some questions on how to
enforce the rule: will a General always wait until the bathroom is empty when
they want to use it? If so, an important question is how to guarantee that a
General in a hurry will be able to use it anytime soon. And otherwise, if the
soldiers are going to wait until no General wants to use the bathroom, how can
soldiers in need be guaranteed they will be able to use it soon?

Respecting military hierarchy and guaranteeing that soldiers and Generals
can both use the bathroom in a fair way is no different to some problems in
computer science. For instance, we can use this as an analogy for read-write
locks, where the bathroom is the arbitrated resource, the soldiers want to read
and the Generals want to write. The previous questions on how to guarantee
a fair access to soldiers and Generals are equivalent to the problem known in
computer science as starvation. Starvation was a problem back then at the fort,
and it is a problem today in computer science.

Problems at the fort are out of scope for this work. However, the Ordered
Read Write Locks model presented here guarantees no starvation.

1.2 Multi-cores
Moore’s law is becoming no longer accurate for single-core computing. David
Patterson recently said: “We are now a factor of 15 behind where we should
be if Moore’s Law were still operative. We are in the post–Moore’s Law era”.

4

Technology used in modern processors is getting closer to physical limits and
it is not expected that advances in this front will be able to keep pace with
performance demands. This, inevitably, leads to the use of multiple processing
cores in order to meet the new performance requirements.

Nowadays multi-core systems can be found from traditional server and desk-
top computers to mobile phones and smartwatches. It is possible today to buy
systems with 61 cores and 244 threads, like the one provided by the Intel Xeon
Phi co-processor. Multi-core systems are a reality now and there is no reason
to think that they will go away anytime soon.

However, the adoption of multi-core platforms raises some challenges of
which concurrency control is probably one of the toughest to overcome. Al-
though strictly speaking current programming languages do provide rudimen-
tary support to take advantage of these kinds of systems, they don not provide
friendly ways to effectively take advantage of them.

A possible avenue for improving upon this is to design and implement com-
pletely new programming languages and paradigms. This approach, while valid
and worth pursuing, also has some drawbacks; and the tradeoffs when compared
to improving the existing languages are not always convenient.

The Ordered Read Write Locks model presented in this work approaches the
problem within widely used programming paradigms. Furthermore, this model
completely eliminates the possibility of deadlock, one of the main challenges
when programming concurrent systems.

1.3 Parallel programming
One of the keys to successfully exploit multicore systems is making an appli-
cation run in parallel. Probably the most simple way of doing this is running
multiple instances of a sequential program, but this is usually not an option.
Alternative solutions are available, but the ones that are actually useful in real-
life are hard to implement because of their complexity. Sometimes most of the
complexity can be hidden inside the compiler, and sometimes it needs to be
addressed directly by the programmer. But complexity is always present.

Compilers focused on automatic parallelization have been in the scientific
computing arena for many years. They are able to create parallel programs
from sequential code without the programmer’s intervention. One way they
accomplish this is optimizing the for loops accessing arrays. The theory behind
the optimizations applied in this way is based on a mathematical framework
called the polytope model[16, 11, 10]. Examples of such compilers are SUIF[17],
Polaris[4], PIPS[8], Pluto[14], VMAD[13] and Apollo[5]. However, there is no
established compiler using this technique, as there is no general consensus that
the complexity is worth the performance gains.

If complexity is not dealt with inside the compiler, it must be addressed by
the programmer. That means programmers might need to make difficult deci-
sions that can vary from marking which parts of the code can run in parallel
to modeling the problem in a completely different way, like using message pass-
ing techniques. This wide spectrum is supported by different tools. Some are
different forms of CPU threads (POSIX[1], OpenMP [18], TBB [19]), accelera-
tor threads for GPUs (CUDA [20], OpenCL [21], OpenACC [22]), and message
passing (MPI [23]). Other examples include GPH[2], HiHP[15], Chapel[6] and

5

Sequoia[9].
When using these languages the programmer has to indicate, in one way or

another, which parts of the code can run in parallel. But this is not ideal, as
the programmer is required to handle complex issues such as selecting a conve-
nient algorithm for parallelization, analyzing the dependencies between parts of
the code, ensuring correct semantics and using a suitable programming model.
Nevertheless, this approach is the current industry-standard, and manages to
achieve the best results in practice.

1.4 About this work and it’s organization
The Ordered Read Write Locks model was created some years ago along with
it’s reference implementation. The main goal of this work is to improve its
performance on multi-core architectures.

Before looking into the proposed improvements, a detailed explanation of
the ORWL model is given (chapter 2). This includes all that is needed to follow
this work and some key invariants of the model.

To achieve performance improvements, the first step is to understand the
current implementation and its run time behavior (chapter 3). To that end, a
special instrumentation was incorporated. The combination of runtime analyses
and observations about the model and its invariants led to the proposal of a new
implementation with different algorithms and data structures (chapter 4).

Finally, performance is compared between the reference and the new imple-
mentation (chapter 5).

6

Chapter 2

The Ordered Read Write
Locks model

The Ordered Read Write Locks model is similar to POSIX read-write locks,
suitable for data-flow or iterative computations, and fits within existing pro-
gramming paradigms and languages.

It introduces some restrictions upon the locked code, which are easy to abide
in most common cases, and in exchange it can guarantee the absence of dead-
locks and starvation. Some typical concurrency tasks, like adding a new node
to the cluster where the task executes, using more cores, or using the GPU of a
node to compute, are tasks that are expected to be relatively simple when using
the ORWL model.

These advantages are achieved by a trade-off on the type of problems this
model can represent. Not all algorithms are suitable to implement using the
ORWL model. ORWL can handle algorithms where the output of a task is the
input to one or more tasks, and the read and write access to the shared data
cannot be done atomically. An example of an algorithm suitable for ORWL is
block oriented matrix computations[3], where the data chunks that are needed
for reading are far too big to allow for an atomic wait-free operation on system
level.

2.1 Major concepts
ORWL is based on four major concepts that compose its model of computation:
tasks as units of program execution, resources as an abstraction of data or
hardware on which tasks interact, handles as means of access of the tasks
to these resources, and critical sections to organize access to resources and
computation. Major theoretical properties and proofs for them can be found
in[7]; in particular, this paper shows how to construct iterative applications as
a set of autonomous tasks such that any execution has guarantees of liveness
and fairness.

In this work, iterative computations refers to computations which show data
dependencies that allow to run parallel execution by slicing data and feeding
a pipeline. An iterative algorithm generally computes until stabilization or a
predefined number of iterations, and the computation over a single data block

7

is performed with the following loop: wait to acquire the lock, then perform
computation, then release the lock.

Tasks Tasks are units of program execution. A given set of tasks T is to
perform some computation, and data dependencies exist between these tasks.
Tasks may be recurrent, as part of an iterative application. Data dependen-
cies are distinguished read and write operations that are not necessarily atomic.
Therefore a dependency of task v from task w is modeled by v reading data that
w has written previously. Hence, v may only be executed while w is not. This
model provides a way to control the execution order of tasks algorithmically
based on their data dependencies. ORWL tasks run concurrently, they are con-
trolled autonomously through dependencies on resources (there is no centralized
scheduler) and they may be heterogeneous, that is each task may run a different
compute kernel designed to be executed on a CPU core, on GPU cores or on
other accelerators. ORWL tasks and OS processes or threads are only loosely
related. In fact, one OS process can perform one or several tasks, while several
OS threads will be used by ORWL to perform a task.

There are two phases in an ORWL program: an initialization phase, and a
computation phase. During the initialization phase, tasks declare all resources
that will be needed during a computation. Then, once all tasks have been
initialized, they begin the computations phase. During the computation phase,
they perform computations over the resources.

Resources Each task has a fixed number of control data structures coined
resources. Usually, resources represent a particular data structure in RAM, but
they can also represent files or hardware entities such as CPUs or GPUs.

To each such resource ORWL associates a FIFO queue that regulates the
access to it.

• Prior to an access, a tasks inserts a request in the FIFO of the resource.

• Access is then granted, once that request becomes the first element in the
FIFO.

• In order to grant access to the following requests in the FIFO, the task
releases the resource as soon as it may.

Such requests follow semantics of read-write locks: several adjacent read request
are served simultaneously, and write requests are exclusive.

Handles In contrast with traditional concurrency control tools such as POSIX
mutexes, semaphores or read-write locks, access to an ORWL resource is not
granted to a process, thread or task ID but to a handle, which is a separate
data structure. There is no separation between the lock and the data protected
by it (as happens with POSIX read-write locks), as the only way to access the
resource is through a handle.

A handle is declared during the initialization phase. It is bound to a par-
ticular resource, and is given initial priority, which determines in which order
access will be granted (via the resource FIFO queue).

A task can have multiple handles for the same resource, and each task may
hold several handles that are linked to the same resource with different priorities

8

in the FIFO. Each handle can be used to either write (exclusive access) or read
(shared access) from the resource.

Critical Sections A critical section is a block of code that guarantees the
desired access to a resource, either exclusively or shared, via a handle. The
resource is locked on entry of the block and data is mapped in the address space
of the task; on exit of the block, the lock on the resource is released and the
mapping into the address space is invalidated.

The emphasis of the ORWL programming model lies in its expressiveness of
a localized view of the computation. For each task it is necessary to identify the
data resources that it manages and how the access to these resources relates to
the access of other tasks. After that, programming of the effective computation
phase is easy: ORWL guarantees that computation only takes place if data is
available, routes computed data as needed by tasks, and guarantees that the
computation is deadlock free and fair overall.

2.2 Example
The following example illustrates the concepts just presented. The example
consists of 10 tasks numerated with an id from 0 to 9. Each task has a single
in-memory resource associated with it. Each task and its resource receive the
same id number.

During the initialization phase, handles are declared and tasks request write
access to a resource with the same id.

During the computation phase, tasks write to the resource for a predefined
number of iterations. The content written depends on the task id (if the task
id is even, they write a 0 and if it is odd, they write a 1).

void ∗ t a s k (i n t task_id)
{

// I n i t i a l i z a t i o n phase

s t ruc t orwl_handle he r e ;
orwl_handle2_init(&he r e) ;

// Request a c c e s s to w r i t e l o c a t i o n wi th same i d
orwl_handle2_write_insert(&here , task_id , 1) ;

// I n i t i a l i z a t i o n phase f i n i s h e s and
// computat ion phase s t a r t s .
orw l_schedu l e (task_id) ;

f o r (i n t i = 0 ; i < 100000; i++) {
orwl_handle2_acquire(&he r e) ;

double ∗here_mem = orwl_write_map(&he r e) ;
i f (task_id % 2 == 0)

∗here_mem = 0 ;
e l s e

9

∗here_mem = 1 ;

orwl_handle2_release(&he r e) ;
}
return NULL ;

}

This example intends to illustrate and help to correlate the concepts in
previous sections with real code, focusing in the following aspects:

• Tasks may run very similar code that differs on what is executed on run-
time, using some variables as the task id. For example, some tasks write
a 0 and some others write a 1 in the previous example.

• Access to a resource only happens via the handle, so there is no separation
between the data and the lock as it happens with regular POSIX mutex,
read-write locks, etc.

• The critical section, delimited via the orwl_handle2_acquire() call and
it’s _release() counterpart, guarantees that the requested access (read
or write) is provided when the handle is on the top of the FIFO queue.

• The data mapping of the resource, via orwl_write_map(), is only valid
to use inside critical sections.

2.3 Handles, resources and their FIFO queue
When a task wants to access a resource via a handle, it needs to request access
to read or write the resource, including which priority to use for access.

For example, a task t1 wants to have priority 1 to write on a resource and a
task t2 wants to have priority 2 to read to the same resource. The FIFO of the
resource will look like this:

If, there is also a task t3 that wants to read with priority 2, the FIFO will
look like this:

This is because read access is not exclusive, so both task can read at the
same time. Please note the grey background for write and white for read access.

The priorities and types of accesses (read or write) for all handles must be
given to the ORWL framework at compile time. There is an algorithm[7] to

10

compute them from a given set of data dependencies, but in many cases they
can easily be determined manually. In any case, at compilation time of an
ORWL program these priorities and access types have to be known.

In addition, these priorities need to be consistent between all tasks. The
only case in which different requests can access the same resource with same
priority is if they are read requests. In any other case, it is not valid as the
write request would not be exclusive.

There are two types of handles that are designed for different situations:

• orwl_handle: this type of handle is used to add a request to the FIFO
queue of the resource. Access is granted to the resource via a handle of
this type only once. This is okay in some cases, but iterative computations
usually access more than once.

• orwl_handle2: this type of handle is identical to the previous, except
once the access is granted, a new request is automatically appended to
the FIFO of the resource.

It is important to understand how the FIFO queues evolve during an ORWL
computation. As said at the beginning of the chapter, the computation over a
single data block is usually performed with the following loop: wait to acquire
the lock, then perform computation, then release the lock. Thus, the following
example illustrates how FIFOs associated with resources evolve during such
computation.

The example consists of two tasks, with id 1 and 2 respectively. Each task
has a resource identified with the same number. The code for each tasks is as
follows:

1 vo id ∗ t a s k (i n t task_id)
2 {
3 // I n i t i a l i z a t i o n phase
4
5 s t r u c t orwl_handle my_read ;
6 o rw l_hand l e2_in i t (&my_read) ;
7
8 s t r u c t orwl_handle my_write ;
9 o rw l_hand l e2_in i t (&my_write) ;

10
11 // the s i g n a t u r e i s : <handle >, <loc_id >, <pr i o >
12 orwl_handle2_read_insert(&my_read , task_id , 1) ;
13 orwl_handle2_write_insert(&my_write , task_id , 2) ;
14
15 // I n i t i a l i z a t i o n phase f i n i s h e s
16 // Computat ion phase s t a r t s
17 orw l_schedu l e (task_id) ;
18
19 f o r (i n t i = 0 ; i < 100000; i++) {
20 orwl_handle2_acquire(&my_read) ;
21 orwl_handle2_release(&my_read) ;
22
23 orwl_handle2_acquire(&my_write) ;
24 orwl_handle2_release(&my_write) ;
25 }
26 }

In the example:

• Lines 2 and 3 add a read/write request to the task’s own location

11

• A read lock is acquired and released

• A write lock is acquired and released

• Iterates several times doing the same procedure

The FIFO queues of the resources look like this in line 18:

This is because the reads have a lower priority, thus they are on the top.
Nevertheless, the queues will look like this when line 22 is executed in both

tasks:

The difference is subtle: now the write lock is on the top of the queue, so it
is ready to be acquired, and a new entry at the end of the queue is added for the
read request. This is because the handle just released is of type orwl_handle2.

2.4 The initialization phase: important observa-
tions

Its important to note that handles can only be created during the initialization
phase, by its definition. Therefore, as resources can only be accessed via handles,
after the initialization phase there is a fixed number of handles and resources
that can be accessed: the ones created during the initialization phase.

In contrast with general programming environments, where resources and
ways to access them can be created at any point during the computation, when
developing a program under the ORWL model resources can only be crated
during initialization. This is an important limitation to take into account when
creating a program to run under the ORWL model.

These limitations are something the work proposed here will take advantage
of, as explained in chapter 4.

12

2.5 Main benefits
The main benefits of using the ORWL model are:

1. The program is deadlock free: as long as the initial data dependency is
deadlock free, it will be deadlock free for the whole life of the program.

2. The number of tasks can easily be changed before the start of the compu-
tation.

3. Fairness to each task is guaranteed.

Proofs for properties 1 and 3 can be found here[7].
Regarding property 2, the number of tasks used is a parameter to the ORWL

framework. So, it is usually trivial to change the number of tasks, as long as
the framework is used properly.

13

Chapter 3

Reference library evaluation

The reference library can run in two different ways: several processes that com-
municate between them over the network or one process with several threads.
This works focuses on the latter because this is how it is run on each node when
running a computation on a cluster. So, improvements done when running on
one multi-thread process would probably also reflect when running on clusters as
well. Therefore, the focus on this work is on the ORWL use on single machine,
multi-core architectures.

The library evaluation is divided in two parts: runtime evaluation, and code
analysis. The runtime evaluation focuses on performance and describes the
instrumentation created for assessing it. The code analysis part studies what
operations are performed in the hot path and whether there are algorithms that
can be simplified.

3.1 Definitions
User threads refers to threads that are doing the computation the user of
the library wants to do.
Library threads are internal threads needed for book keeping.
CPU time refers to the time spent using a single CPU core.
Wall-clock time refers to the time taken to execute the program, as measured
by a wall clock, regardless of how many cores are used.

For example, if a system with 140 cores executes a program using all of its
cores in 1 second, the wall-clock time of that run will be 1 second, whereas the
CPU time will be 140 seconds, as all 140 cores executed for 1 second.

3.2 Runtime evaluation
There are some relevant characteristics to take into account when trying to
measure performance of the ORWL library:

• There are several user threads doing work.

• The library has inline functions.

14

• There are many library internal threads for book keeping (more than one
per user thread).

So, there are many more threads than cores, as the number of user threads
usually matches the number of cores.

3.2.1 Measurement strategy
The focus is on measuring CPU time as the main driver for performance. This
is due to the fact that ORWL is mostly used with CPU intensive applications
so the main concern is the overhead CPU time added by the library.

This is usually done via profiling, but most common techniques are sample-
based (which sacrifice accuracy) and do not handle inline functions. In addition,
inline functions in the library are expected to be short (run fast) but to consume
a big percentage of the overhead added, as they are called very often. In order
to get accurate measurements it was decided to avoid profiling and instead add
a custom instrumentation.

The library run time performance measurements is approached from two
complementary angles: the CPU time overhead the ORWL library adds, using
the custom instrumentation, and checking that “as much CPU time as possible”
is used during the computation. The idea is that if the overhead is small and
the CPU time is high, the execution of a CPU bound program is very efficient.

The “uses as much CPU time as possible” part stated previously is also a
critical part. It is very easy to have bottlenecks synchronizing hundreds of cores
and have the penalty for synchronizing increase when more cores are used. This
can even make the program slower to execute when more cores are used. Section
3.2.5 gives a guide to deal with this.

With these two guides a big picture of the current library performance is
presented.

3.2.2 Instrumentation
A complementary library, called deep instrumentation, was created and ex-
tended the current ORWL implementation to use it.

Deep instrumentation can be thought as the UNIX time command, but for
the CPU time spent inside the library only (not the whole process, because that
would include the user computation). The main features of this instrumentation
are:

• Accurate measurements of the CPU time spent inside the ORWL library

• Negligible branch miss-predictions and CPU time overhead

• Zero overhead if disabled at compile time

This instrumentation tries to minimize the CPU time overhead when enabled,
at the cost of having a bigger impact on the wall-clock time. This is not a
problem as the focus is on the CPU time and not wall-clock time.

15

3.2.2.1 Alternatives considered

The path to create deep instrumentation was not an obvious one and several
other ways to create it were considered. This section briefly analyze the failed
attempts.

The initial alternative that we explored was to instrument low-level locking
primitives, measure time waiting for locks, and check if the caller was the library
or the user code. The problem with this approach is that, due that the library
and the user code use the same ORWL functions to wait on locks, the two were
indistinguishable.

The second alternative was a tweak to the first one: differentiate the locks
that the user and the library use. This would require to rename functions, or
do some macro tricks at compile time. It was discarded because a fundamental
flaw was found. It doesn’t really matter if there is lot of time waiting as long
as all cores are active. It is expected for the library to have idle threads, by
design. Therefore, attempts to measure the idle time per thread were discarded
as didn’t provide useful information.

Learning from the above, a third alternative considered was to measure
the CPU-time spent inside the library. This was the first attempt to measure
the consumed CPU-time, instead of the idle CPU-time. To measure the time
inside the library ltrace was considered and rejected, as it was not actively
maintained, only worked on a few architectures, and most importantly it throw
segmentation fault errors. Another way to measure CPU-time considered was
using gcc with the option -finstrument-functions and custom callbacks cre-
ated to that end. We attempted this route, as it should even work with inline
functions, but ended up discarding it as the functionality did not work and gcc
had a bug reported about it for almost a year. This was eventually fixed in gcc,
three years later deep instrumentation was finished.

The fourth alternative explored was to use custom code to instrument the
inline functions. To store the CPU-time an array was used, with an element
for each thread. However, at initialization there was no easy way to know the
number of threads, hence there was no easy way to know the number of elements
the array needed. Work-arounds were found for that limitations, nonetheless it
was a complex solution as it had to be cache-aligned, using posix_memalign()
and other tricks to reduce the overhead.

By the time the prototype for the fourth alternative was working an easier
solution was found: mix the previous attempt with thread-local variables and
atomic operations. The fifth attempt was, then, to re-write it using this idea.

At this point, the instrumentation was using getrusage() to measure time.
It was supposed to work for obtaining the CPU-time and had extra flexibility for
returning more information if needed. However, when doing some preliminary
tests, it was discovered that it had low precision (in the order of 10ms) which
rendered it unusable for our use case, since the windows of time measured were
many orders of magnitude smaller

To replace getrusage(), we explored using the RDTS instruction, which is
an assembler instruction for x86 architecture that measures CPU-cycles. The
problem, though, is that it doesn’t take into account CPU migrations, hence it
cannot be trusted for an application that has many more threads than cores (as
it is expected for threads to be migrated in that case). Although using CPU
affinity to avoid migrations when running with instrumentation is an option it

16

was discarded after all: the consequences when using cpu affinity with programs
that have several times more threads than cores are difficult to estimate, as it can
have a big hit on performance, and the instrumentation might end up measuring
something very different than the original program performance.

Therefore, we explored how linux-perf dealt with this problem and found
that the timing information was retrieved using hardware support (confirmed by
looking at the code and, also, by talking to its maintainer, Arnaldo Carvalho de
Melo). Hardware support was very new at the time, and imposed a significant
constraint into the portability and usability of the instrumentation. Finally,
a promising alternative was found: to use clock_gettime(). This alternative
become the heart of deep instrumentation, which is explained in detail in the
following sections.

3.2.3 Meassuring per-call CPU time
The deep instrumentation implementation depends heavily on the clock_gettime()
syscall. This syscall provides per-thread CPU usage. It is similar to RDTS, but
it is POSIX compliant, not x86 dependent and, when implemented with OS sup-
port, takes into account CPU migrations. The latter is critical as the programs
that use ORWL have many more threads than cores and see thread migration
frequently.

Measurements are taken as follows:

• When a library function is called, a call to clock_gettime() is made to
know the current CPU usage by the calling thread

• The current CPU usage is stored in a thread local variable

• When the library function that was originally called ends, another call to
clock_gettime() is made to get the current CPU usage

• The elapsed CPU usage inside the library is calculated and stored in a
thread local variable

The overhead is dominated by the call to clock_gettime(), as using thread
local variables is usually cheaper than a syscall.

Last but not least, before the ORWL computation is finished, all thread
local variables are added up, with the result being the total CPU time spent
inside the library. This is a cheap way for all threads to collaborate without
using locks or synchronization during the computation, thus it avoids having a
big impact on performance. The synchronization is made at the end, after the
computation is finished.

Although the current functionality is to expose the time spent by the ORWL
library, without any kind on granularity where that time was spent inside the
ORWL library, some granularity can be easily added. It is possible to extend
its output, for example, to the CPU time spent on different ORWL subsys-
tems. This can be done by saving the elapsed time on different (per subsystem)
variables.

3.2.4 Adding instrumentation
The name deep instrumentation is due to the major overhead this instrumenta-
tion adds. When compiling the ORWL library with instrumentation 2 system

17

calls are added per library call. The wall-clock time overhead is not negligi-
ble when using deep instrumentation. Nevertheless, the CPU time overhead is
smaller.

An important requirement is that the instrumentation should be possible
to be disabled and in that case there should be no performance penalty at
all. This is very important because ORWL programs are CPU intensive and
cannot afford reducing it’s performance to incorporate instrumentation. Deep
instrumentation achieves that by adding zero overhead when compiling without
it. All instrumentations calls, when disabled, are expanded to NOPs that are
then optimized out by the compiler.

By instrumenting all library function calls, we ensure the resulting measure-
ments are complete, and not based on sampling.

Special attention is needed to handle correctly the case where an instru-
mented library call ends up calling (directly or indirectly) another library func-
tion that is instrumented too. To handle this, a counter of how many "levels"
inside the library is used and only the outermost does the accounting.

3.2.4.1 Definitions

As the focus of the instrumentation is CPU time, the use of the term time in
the following sections should be interpreted to mean CPU time.

3.2.4.2 Instrumentation of inline functions

To instrument an inline function, calls to functions named _start() and _stop()
were added around each function’s body. These functions are exported by the
deep instrumentation library, and inlined to avoid introducing unexpected func-
tion calls. Also, their code is carefully written to minimize overhead.

3.2.4.3 Instrumentation of non inline functions

To instrument non inline functions, a small shared library is used with LD_PRELOAD
to intercept library functions. The main reason is that it is easier compared to
adding code to every function needed to overload (as it is done with inline
functions) and is simpler to maintain. Wrappers are automatically generated.

A way to get the pointer to the real function is added to the library initial-
ization, overloading orwl_init(), too. After that, the instrumentation stores
pointers to these functions and they are used when needed.

3.2.4.4 Instrumentation of library internal threads

The ORWL library has a thread pool implementation that is used for library in-
ternal threads and for user tasks. A given thread blocks until there is work to do,
does it, and blocks again. As expected, the instrumentation adds _thread_start()
and _thread_stop() calls around each execution, which are analogous to the
ones shown above.

The only difference with the _start() and _stop() functions used before
is that the thread variants checks if the thread is a library internal thread and
returns immediately if not.

18

3.2.4.5 Estimate CPU-time spent inside the library

When using deep instrumentation an estimation of the time inside the library
is made, EstimatedTL. This estimation also accounts the overhead of the
instrumentation. In other words:

EstimatedTL = TL + δ

where TL stands for the time inside the library when running without in-
strumentation.

Consider the CPU time when running with deep instrumentation enabled
as calculated with the time unix command. It returns the CPU time spent in
user-space and system. The sum is the total CPU time used by the program:

α1 = User + System

The estimation of time spent inside the library, hence, can be estimated as:

EstimatedTL

α1
× 100

This percentage estimates the CPU-time inside the ORWL library. And as
the instrumentation does not add much CPU-time overhead, it seems a rea-
sonable estimation (the absolute CPU time when running with and without
instrumentation for the whole computation was measured to change about 1-
2%).

3.2.4.6 Requirements from the OS and libc

This technique uses clock_gettime() with CLOCK_THREAD_CPUTIME_ID as clock_id
to get the CPU usage of the current thread. Some platforms used to gives bogus
results for this function and, as expected, deep instrumentation will give bogus
results on those platforms too.

For example, old versions of glibc (< 2.4) implemented this clock on many
platforms using timer registers from the CPUs (TSC on i386, AR.ITC on Ita-
nium). These registers may differ between CPUs and as a consequence this
clock may return bogus results if a thread is migrated to another CPU.

Since glibc 2.4, the wrapper functions for the system call avoid the problems
mentioned above by employing the Linux kernel implementation of clock_gettime()
when it’s available (Linux 2.6.12 and later).

When using Linux and glibc, Linux ≥ 2.6.12 and glibc ≥ 2.4 is needed. When
using something else, it is recommended to check that the clock_gettime()
syscall works as expected on that platform.

It is worth to mention that the manpage for clock_gettime() had an out-
dated note about it not working on SMP systems. A bug was filled and sub-
mitted a patch to fix it after some investigation to know that it was indeed
outdated. The fix is already merged upstream as commit 78638aa.

3.2.4.7 Other benefits

Deep instrumentation has some advantages when running on non x86-64 plat-
forms as well: there is no need for profiler support (the valgrind tool suite, for

19

https://bugzilla.kernel.org/show_bug.cgi?id=60602

example, is not ported to many architectures) nor hardware requirements, like
performance counters.

As mentioned above, the only the requirements are: clock_gettime() with
OS support and a C compiler.

A small set of requirements can be very useful. For example, on the Xeon
Phi co-processor programs must be compiled with icc Intel C compiler, with
special flags for the Xeon Phi, and the platform it runs is Linux ≥ 2.6.12 with
glibc ≥ 2.4. In other words, there are quite a few restrictions but none of them
are a problem when using deep instrumentation.

Using deep instrumentation turned out to be an easy way to get measure-
ments on any platform. We discovered this later on the project, when trying to
use the Intel Xeon Phi, and it was a pleasant surprise.

3.2.4.8 Disadvantages

The instrumentation has some disadvantages, too, that should be taken into ac-
count when using it for an analysis. One already mentioned is that it introduces
some runtime overhead.

Another disadvantage is that it uses a syscall. This syscall cannot be served
in user-space and has a non negligible overhead in the wall-clock time, which
can cause several problems. For example, if the thread that performs the syscall
is holding a spinlock, this thread will take more time to unlock it, causing other
threads to consume more CPU too. Furthermore, in some cases this may affect
how the operating system schedules threads to run during the computation.

To validate this was not a significant issue during the analysis, several mea-
sures were done. It was validated that the CPU time when running with and
without instrumentation was very similar (close to 1% overhead); we also com-
pared most metrics exposed by linux-perf (branch mis-predictions, etc.), and
removed the usage of spin-locks.

3.2.4.9 Future improvements

Linux provides a kernel mechanism for exporting a carefully selected set of kernel
space routines to user space applications so that applications can call these
kernel space routines in-process, without incurring the performance penalty of
a context switch that is inherent when calling these same kernel space routines
by means of the system call interface. This mechanism is called vDSO (virtual
dynamically linked shared object).

Several syscalls use it, and clock_gettime() uses it depending the parame-
ters it’s called with. At the time of this writing (Linux 4.15) this mechanism is
not used for the parameters the deep instrumentation uses to clock_gettime().
It was considered to write a patch to the Linux kernel to make it use the vDSO
functionality, and even talked to Peter Ziljstra (Linux Scheduler maintainer) for
advise. But it is left as future work.

Another topic for future improvements is making deep instrumentation easy
to plug with any other program. The code itself is agnostic of the program it
instruments and can be plugged to any program. In fact, deep instrumentation
was used to instrument the new proposed library in chapter 4 and it was a
trivial task. Nevertheless, right now it needs to be injected into the program
manually and it is not a standalone project. In the future it can be separated as

20

a standalone project and modified to automate most of the tasks to instrument
any program.

3.2.5 Estimation of waiting time
Consider the time it takes for a program to execute. It is easy to see that the
CPU time of that execution is not more than the wall-clock time it took times
the number of cores/threads. This will be called ideal CPU time. In other
words, let cores be the number of cores and elapsed be the wall-clock time it
takes to execute a program. The ideal CPU time, then, is defined as:

ideal cpu time = cores× elapsed

For example, consider a program running on a 4 cores CPU and takes 3.03
seconds to execute. The ideal cpu time for that program is to use the 4 cores
during the whole 3.03 seconds it took to run. In other words, the ideal cpu time
for that program is 4× 3.03 seconds.

Consider also the CPU time a given program execution has. Let it be
cpu time. And consider the ideal cpu time for that execution: the number
of cores the system has and the wall-clock time the execution took. Another
interesting number is the percentage of the ideal cpu time an execution used:

cpu time

ideal cpu time
× 100

If the percentage is high, then there is not much time waiting during the
execution. Time spent waiting is, by definition, time not using the CPU.

To see how this number changes with the number of cores can help to see if
the library scales well. This is very important, as coordinating tasks on a high
number of CPUs needs coordination and it is very easy to have bottlenecks on
this part. This analysis helps to make sure if this happens or not and how big
of a problem it is.

3.3 Results and interpretation
Previous section introduced techniques, using a custom instrumentation, to mea-
sure performance of the ORWL library. They are used here to understand the
ORWL library performance and evaluate if it seems possible to improve it.

The the well-known block cyclic algorithm for dense matrix multiplication
is used for the evaluation. This algorithm uses ATLAS (Automatically Tuned
Linear Algebra Software) for optimal performance and has been tuned for other
ORWL publications[12]. A real world algorithm is used due to synthetic bench-
marks and simple examples being susceptible to present artifacts, like exacerbate
scalability problems or the absolute opposite, that may not happen on real world
examples.

The test were run on an AMD Opteron Processor 6172 with 24 cores, running
at 2.1 GHz under Linux 4.15 x86-64 and with 32 GB of RAM memory.

The following figures show the percentage of the ideal CPU time used, the
percentage of CPU time spent inside the ORWL library and the wall-clock time
for different matrix sizes.

21

Figure 3.1: Percentage of cpu time spent inside the library when the number of
ORWL tasks increases

Figure 3.2: Percentage ideal cpu time when the number of ORWL tasks increases

22

Figure 3.3: Wall-clock time when the number of ORWL tasks increases

Figure 3.1 shows that the percentage is above 5% for the matrix with n =
15000, when the number of tasks is bellow 30. For n = 10000 it is close to
5%, too. And, although ∼ 5% is not a extremely high overhead, it not a low
percentage of CPU time to consume from a CPU intensive computation. Hence,
it is enough to hint about possibilities to improve the CPU time spent inside
the ORWL library.

In Figure 3.2 the percentage of ideal CPU time is higher when the matrix
is bigger. Also, it is higher when the number of tasks is higher. These are
desirable outcomes. However, the percentage is quite low when the matrix is
small and uses less than 30 tasks (bellow 85%), thus this suggest that ORWL
has opportunities for further enhancement on smaller computations.

The wall-clock time hits a minimum value when using 24 tasks (the number
of cores the system has), as can be seen in figure 3.3, and shows that adding
tasks above that value is slower for the overall computation. For that reason,
this indicates that for more than ∼24 tasks the values in previous figures should
be ignored. In particular, the high percentages achieved in previous figures with
more than ∼24 tasks are, consequently, not relevant.

Therefore, as the ideal CPU time is a quite low percentage for values bellow
∼24 tasks (bellow 85%) and the CPU time inside the library suggest there is
room for improvement, these analyses hint that, overall, there might be oppor-
tunities for further enhancement in the ORWL library.

3.4 Code Analysis
Tn order to improve the performance on multi-core architectures, besides run-
time measurements as described above, we performed a fair amount of code
analysis, with an emphasis on the hot paths. These will be used, in conjunction

23

with previous benchmarks, as motivation to try other algorithms and data-
structures that might be more efficient.

The ORWL library is a complex piece of code. It is written in C, with
heavy macro usage and tricks to work-around limitations in the C programming
language, like using default arguments to functions. Other examples to show
it is not trivial are that it has a thread pool implementation and a reference
counting mechanism.

As usually happens with complex code over the years, it is not a trivial
task to understand when first reading it. For the following observations the
reader should probably start by the macro for ORWL_SECTION and the lock
insertion/release when using orwl_handle2. Those are enough for the scope of
this section.

The observations about the ORWL implementation that are useful to com-
pare with the new proposed design are:

1. The FIFO queue used is implemented using an arbitrary long queue and
needs a memory allocation on insertion

2. When using one of the most common handle types (orwl_handle2), re-
leasing a lock implies to:

(a) Hold a mutex
(b) Remove the current element on top of the queue
(c) Do some atomic ops
(d) Allocate memory to insert in the queue again

The hypothesis around these are that a not contended mutex is usually a cheap
operation, the allocations are probably fast and atomic operations are not a big
issue performance-wise.

And there is a fair justifications for all these steps. The mutex is needed to
coordinate with remote nodes when a lock is added. The atomic operations are
needed to avoid other types of locks. And a queue with dynamic length is quite
standard, easy to implement and gives some flexibility if needed in the future.

As seen in chapter 2, a typical use of ORWL for iterative computations
does a heavy use of orwl_acquire() and orwl_release() with orwl_handle2
handle type. And that is why those functions are in the hot-path of an ORWL
computation and important to look at.

However, the expectation about those steps being fast can be untrue and
definitely worth challenging. If a function in the hot-path of the computation
can be improved, it can have a big effect on the overall improvement.

As seen also in chapter 2, there are some important properties about the
initialization phase that seem ignored by the current library. Hence, it’s not
crystal clear that this is the more efficient way to do it. Furthermore, some
questions are not easy to answer, like:

• Is a dynamic length queue really needed and worth the performance costs?

• Is there a way to reduce the locking in these hot-path functions?

• Can this be implemented in a more efficient way?

The next chapter will shed some light into this.

24

Chapter 4

Proposed design for
multi-core architectures

To try out the proposed designed, explained in later sections, a new library was
written from scratch in plain C. The design and it’s data-structures is quite
different from the ones used in the current ORWL library. When trying to
modify the current ORWL library to try them out, some details were not easy
to figure out. Therefore, this new library was written as a small proof of concept
that deals, as much as possible, only with the essential complexity needed to
try those algorithms.

The simplified data-structures proposed with the reduced scope in it’s func-
tionality resulted in some other unexpected benefits, besides the performance
gains: really small in LOCs, reduced object size and compile-time, easy to debug
with gdb and valgrind and simplicity to run.

This chapter explains in detail the proposed data-structures, algorithms and
their correctness, the motivations for these changes, the implementation per-se,
and the main differences between both ORWL libraries.

4.1 Definitions
The new ORWL library refers to the library created with the proposed
design explained in this chapter. It is also called tiny ORWL or torwl.
The current ORWL library refers to the reference implementation and is
the library that was analyzed in previous chapters.

4.2 Why write a new library?
The main reason is simplicity. The ORWL API is quite simple and seems easy
to fulfill with the new design.

In addition, as the data-structures proposed here and the ones in the current
ORWL library are quite different, they do not fit well together. The current
ORWL library has complex semantics for internal structures (like a thread pool
implementation, several internal locks mechanism, uses reference counting to

25

delete unused objects, etc) and it proved too hard to correctly mix the current
library with the new algorithms. The devil really is in the details.

Another reason to write a new library is that the current ORWL library
doesn’t support running with gdb and valgrind. Those are very valuable tools
when writing such a complex piece of code. It is, of course, possible to fix
that limitation (it is a C program after all). But it is not trivial and doing it
postpones challenging the main hypothesis: see if these new data-structures are
useful performance-wise in an ORWL computation.

Therefore, a new library was written from scratch. It is possible to use with
valgrind and gdb and easy to run without initialization scripts.

4.3 Proposed changes in algorithms and data struc-
tures

This section explains the changes proposed. The critical changes are in the
ORWL hot-path of a computation and this is where most of the explanations
focus. The rest of the code just accommodate to work with these changes, it
does not contain anything complex nor important performance-wise.

The explanations try to make obvious the reasoning and path it was explored.
Of course this was not so linear in real life, but hopefully the explanation makes
it seem natural to go down this route.

The new orwl implementation treats orwl_handle and orwl_handle2 al-
most indistinctly. Therefore, examples only for orwl_handle2 are shown in
most sections.

4.3.1 Important observations
The proposed design tries to take advantage of some invariants imposed by
the ORWL model to make more efficient the hot-path. In this section some
observations are made that will lead to new ideas to explore in the hot-path.

In chapter 2.4 there is one observation that states:

• There is a fixed amount of resources and handles after the initialization:
the ones created during the initialization

Each handle is represented by an element in the location’s FIFO queue. One
immediate consequence of noting that there is a fixed amount of handles is that
the FIFO queue size is known after the initialization. And as no handles can be
created nor destroyed, the size is constant during the computation.

This implies that the queue size is fixed after the initialization phase and,
then, it might be possible to manage the queue without memory allocations.
This is the first observation that the proposal will leverage.

Another key observation arise from looking at handle type orwl_handle2
and how FIFO queues evolve during an ORWL computation. The definition for
both handle types are:

• orwl_handle: this type of handle is used to add a request to the FIFO
queue of the resource. Access is granted to the resource via a handle of
this type only once. This is okay in some cases, but iterative computations
usually access more than once.

26

• orwl_handle2: this type of handle is identical to the previous, except
once the access is granted, a new request is automatically appended to
the FIFO of the resource. Thereby the system ensures that the access to
that same resource is granted iteratively in the same initial FIFO ordering.

Consider a FIFO queue filled with only orwl_handle2 handles during an ORWL
computation. Then, the queue will always have the same handles (instead of new
or different handles during the execution), in the same relative order, modulus
a rotation. Because the requests are inserted again.

In other words, let n be the number of handles a FIFO queue has and let
x1, x2, ..., xn be the handles type orwl_handle2. Let the queue at the start of
a computation have the requests in the following order:

x1, x2, x3, ..., xn

After the first item (x1) is processed, it is deleted from the queue and added
back again, by definition of orwl_handle2. Then, as it is a FIFO queue, the
new order is:

x2, x3, ..., xn, x1

The next item processed will be x2, with the expected results. Therefore,
during a computation the queue will always look like:

xi, xi+1, ..., xn, x1, x2, ..., xi−1

In this way, it is easy to see that the elements of the queue will always be
the same handles, in the same relative order, modulus a rotation. Thus, an easy
way to model this FIFO queue, where items do not change and are added right
back again when processed, it is using a circular buffer.

Figure 4.1: Circular buffer using an array

A circular buffer can be implemented with an array as the figure shows, going
back to the first element when the array size is met. This can easily handle this
types of queues with no need for memory allocations nor complicated operations:
just moving a pointer to the next element.

To also handle orwl_handle, and not just orwl_handle2, a small adaptation
can be used over a circular buffer: mark orwl_handle items as processed once
they were processed. Then, when moving the pointer to the next element of
the queue, it needs to skip all handles type orwl_handle already marked as
processed.

Hence, the second observation is that a fixed-size FIFO queue with handles
type orwl_handle or orwl_handle2 items can be implemented using a circu-
lar buffer and needs cheap operations only: moving a pointer and no memory
allocations.

27

4.3.2 From idea to implementation
The presented observations are nice ideas to implement new algorithms and
data-structures for ORWL. But to successfully do it some other problems need to
be solved, like choose a mechanism to wake-up threads or how to take advantage
of these structures without using locking schemes that slow things down. In
other words, this idea seems promising but it is still not clear if it can be used
without major drawbacks. Next sections will deepen on these problems.

4.3.2.1 Locations, handles and resources overview

Before discussing in detail how to satisfy the ORWL API, a brief summary of
locations, handles and how threads interact with them is presented.

A program might have any numbers of threads, let’s say threads_nr. Each
thread has its own id, identified with a number from 0 to threads_nr − 1.
Each thread, by default, also has its own location that is identified with the
same number.

Each location, during the initialization phase, receives concurrent requests
from others threads to read or write it with certain priority. After the ini-
tialization phase, the locations are accessed by means of orwl_acquire() and
orwl_release().

The functions that allow a specific handle to access a given location have
the following signature:

void orwl_handle2_write_insert (struct orwl_handle ∗h ,
s i ze_t l o c id , s i ze_t pr i o) ;

void orwl_handle2_read_insert (struct orwl_handle ∗h ,
s i ze_t l o c id , s i ze_t pr i o) ;

4.3.2.2 ORWL hot-path API

The hot-path of an ORWL computation, as was discussed previously, is calling
functions that access critical sections. To access a critical section a program
uses orwl_acquire() and its orwl_release() counter-part. Their signature is
as follows:

void orwl_handle2_acquire (struct orwl_handle ∗h) ;
void orwl_handle2_release (struct orwl_handle ∗h) ;

The acquire function takes the handle as an argument and blocks until its
on the top of the corresponding FIFO queue to grant access. When access is not
needed anymore, the resource must be released with orwl_release(). When
all locks are released, the next item of the FIFO queue is moved to the top.

This has two consequences that are relevant when creating an implementa-
tion:

• Once an item is on the top of the FIFO queue, all threads waiting for it
should be unblocked

• Once all handles are released for the item on the top, the next item in the
FIFO queue should be processed

28

Therefore, a way to wake-up or unblock threads should be used and there should
be a way to know when all handles for the item on top of a location have been
released.

How to wake-up threads and do it efficiently is a problem on itself and it is
not the main goal of this work to have a detailed analysis of all the alternatives.
Semaphores, Linux futex and condition variables were tried as mechanisms and
semaphores were chose. Section 4.4 explains the reasoning.

To realize when to process the next item of the FIFO queue, it was decided
that orwl_release() will:

• Count the number of calls to orwl_release()

• When the last handle is being released, it process the next item in the
FIFO queue

And a way to achieve this in a correct and performant way is as follows.
The number of calls to orwl_release() is always an integer number. Hence,

an easy way for different threads to collaborate counting calls to orwl_release()
in an efficient way is using atomic operations (i.e avoids mutex or other more
expensive mechanisms). Therefore, when a lock is released an atomic operation
to modify the count of released handles is done. Only one thread will account
for the last released handle and this thread has the extra task of processing the
next item in the FIFO queue.

It is important to note that exactly because only one thread accounts for the
last released lock and does the extra process, that thread is the only to process
the FIFO queue at a given time. And this has an important consequence:
the FIFO queue doesn’t need to be thread safe, as only one thread modifies
it at any given time. This is another advantage performance-wise the torwl
implementation will use in it’s favor.

4.3.3 New data-structure for ORWL resources queues
Previous sections discussed how to address some issues when creating a new
implementation while also propose some ideas to implement the internal FIFO
queue with a circular buffer. These concepts are quite coupled between them, so
a high level overview of the algorithm is presented here and details are expanded
in later sections for better clarity. In particular, this section explains a high level
overview of how to articulate the initialization phase with circular-buffer FIFO
queues.

On one hand, there is the circular buffer FIFO queue. The proposed imple-
mentation, however, has some requirements:

1. The FIFO queue size must be known at creation time

2. It is not thread safe

The reasons for this are:

1. The circular-buffer FIFO queue is implemented using an array, which al-
ways is fixed-size. Hence, if the size is not known at creation time the array
underneath the circular-buffer FIFO queue will have to be destroyed, cre-
ated again with the new size, and data moved.

29

2. As was explained, the circular-buffer FIFO queue does not need to be
thread safe during the hot-path. This make it faster during the hot-path
(the critical part this algorithm tries to optimize)

On the other hand, the initialization phase needs to articulate with these
FIFO queues. During the initialization phase an arbitrary number of handles are
created for a resource. Therefore, the final circular-buffer FIFO queue cannot
be created before the initialization phase finishes. But as was noted in section
2.4, this size is constant after the initialization phase.

A simple algorithm to mix the initialization phase with circular-buffer FIFO
queues with these restrictions can simply:

• During initialization phase: accumulate the handle requests and it’s char-
acteristics (orwl handle type, priority, etc.) in some collection, like a linked
list

• After the initialization phase finishes, the size for each FIFO queue is
known. Therefore, the algorithm can iterate over all the accumulated
handle requests and create a circular-buffer FIFO queue for each location

This is a high-level overview of how the circular-buffer FIFO queues idea
will be integrated in torwl and more details are in the next sections.

4.3.4 Critical ORWL functions implementation
This section explains in detail the implementation of the most important func-
tions in torwl. All the previous discussed ideas and scope-reduced observations
come together to join all the pieces in new clear algorithms and data structures
in torwl that provide the complete functionality.

For better clarity, the pseudo-code shown in this section doesn’t implement
error handling. The torwl implementation, though, does check for errors and
even has an optional mechanism for easy debugging common errors.

4.3.4.1 The initialization phase

During the initialization phase, request are accumulated as explained. These
are accumulated in an static global array:

struct orwl_tmp_loc {
s i ze_t id ;
s i z e_t pr i o ;
s i z e_t waiters_nr ;
bool read_only ;
orwl_ww_t ∗handler ;
bool a c t i v e ;

} ;

#define LOC_SIZE 1000
stat ic struct orwl_tmp_loc tmp_locs [LOC_SIZE] ;
stat ic pthread_mutex_t tmp_locs_mtx =

PTHREAD_MUTEX_INITIALIZER;

30

A long fixed-size array is used in conjunction with a bool to know if the
position in the array is already used or not.

Calls to add read or write requests, then, iterate this array on the valid
positions (active=true), matches for the id and prio and add the request. A
pseudo-code for this is:

void orwl_handle2_write_insert (struct orwl_handle ∗h ,
s i ze_t l o c id , s i ze_t pr i o)

{
pthread_mutex_lock(&tmp_locs_mtx) ;

orwl_handle2_insert (h , f a l s e , l o c id , p r i o) ;

pthread_mutex_unlock(&tmp_locs_mtx) ;
return ;

}

void orwl_handle2_read_insert (struct orwl_handle ∗h ,
s i ze_t l o c id , s i ze_t pr i o)

{
pthread_mutex_lock(&tmp_locs_mtx) ;

orwl_handle2_insert (h , true , l o c id , p r i o) ;

pthread_mutex_unlock(&tmp_locs_mtx) ;
return ;

}

void orwl_handle2_insert (struct orwl_handle ∗h , bool
read_req , s i ze_t l o c id , s i z e_t pr i o)

{
// Check i f en try f o r (l o c i d , p r io) e x i s t
// Returns NULL i f i t doesn ’ t e x i s t
struct orwl_tmp_loc ∗ l o c = f ind_loc (l o c id , p r i o) ;

// Check i f i t ’ s a read r e que s t
i f (read_req && lo c != NULL) {

loc−>waiters_nr++;
return ;

}

// A new l o c a t i o n i s a l l o c a t e d
struct orwl_tmp_loc ∗new_loc = f ind_loc_free () ;

// I n i t the tmp l o c a t i o n wi th the id , prio , e t c .
orwl_tmp_loc_init (new_loc , l o c id , pr io , read_req ,

h−>handler) ;
}

The functions are protected with a mutex as they can be called concurrently.
This way access to the global array is serialized and thread safe.

31

After all requests are created, each thread calls orwl_schedule(). Af-
ter this function is called on all threads, the initialization phase is finished
and the circular-buffer FIFO queues can be created. Each orwl task calls
orwl_schedule() with its default location id as parameter, and each task has
a different id. The pseudo-code for orwl_schedule() is:

void orwl_schedule (s i ze_t l o c i d)
{

// Make sure everyone f i n i s h e d adding l o c k s
pthread_barrier_wait(&schedu le_star t) ;

// Load a l l r e qu e s t s in orwl_tmp_loc array
// to a c i r cu l a r−b u f f e r FIFO queue
create_loc_from_tmp_loc (l o c i d) ;

// Make sure a l l f i n i s h e d c r ea t i n g the l o c a t i o n s
// be f o r e s t a r t i n g the computation
pthread_barrier_wait(&schedule_end) ;

// Wakeup the f i r s t one
orwl_loc_wakeup_curr (l o c i d) ;
return ;

}

4.3.4.2 The computation phase

After the initialization phase finishes, the critical sections are accessed by means
of orwl_acquire() and orwl_release().

The orwl_acquire() function waits for the item to be on top, using the
abstraction for the synchronization primitive created:

void orwl_handle2_acquire (struct orwl_handle ∗h)
{

orwl_ww_wait (h−>handler , &h−>handler_ct l) ;
}

The orwl_ww_* is the abstraction created for synchronization primitives.
In the case of a semaphore, for example, orwl_ww_wait() calls sem_wait()
underneath.

The struct orwl_handle is not expanded here for simplicity. It is a simple
struct that has the handle’s relevant properties (if it’s a read or write handle,
the location associated with, etc.).

The release function, though, is more complex as it has to count all threads
that have released the lock to process the next item in the queue when appro-
priate. The pseudo-code is as follows:

void orwl_handle2_release (struct orwl_handle ∗h)
{

// Get l o c a s s o c i a t e d wi th handle
struct orwl_loc ∗ l o c = h−>lo c ;

// Get the r e que s t a s soc ia t ed , i t has the number

32

// o f th reads wai t ing , i f i t s read/wri te , e t c .
struct o_rwl_loc_req ∗ req = orwl_loc_curr (l o c) ;

// Do the r e l e a s e
orwl_ww_release (h−>handler , &h−>handler_ct l) ;

// I t the curr r e que s t i s a wr i t er , we are the
l a s t one to r e l e a s e i t

i f (! req−>read_only)
goto wakeupnext ;

// I f we are the l a s t s to r e l e a s e the lock , wake
up the next one

// XXX: atomic_fetch_add () re turns the va lue
b e f o r e the add

s i ze_t re leased_nr = atomic_fetch_add(&req−>
released_nr , 1) ;

re l eased_nr++;

i f (re l eased_nr == req−>waiters_nr) {
atomic_store(&req−>released_nr , 0) ;
goto wakeupnext ;

}

return ;
wakeupnext :

orwl_loc_wakeup_next (l o c) ;
return ;

}

This way, the abstraction is used to release the acquired lock calling orwl_ww_release()
and it uses atomic operations to count the number of times orwl_release()
has been called with the location’s current item.

It is critical to note that as atomic operations are used atomic_fetch_add()
returns a value that makes the last if statement true only in one thread. The
rest of the code executed after that is safe to execute concurrently between
threads releasing the lock (it is a return statement on all threads except on
one). This observation is key to make sure some common race-conditions do
not happen.

4.3.4.3 Summary

All the critical function for the ORWL implementation, and how they articu-
late between each other, have been explained in detail. This is the proposed
algorithm that, as can be seen, has the following characteristics:

• Uses circular-buffer FIFO queues during the ORWL hot-path

• This implies only waking up threads and moving a pointer to the next
item on the queue are the only operations done on the hot-path

33

• The FIFO queue implementation is not thread safe, as orwl_release()
uses atomic operations to guarantee that only one thread will modify the
structure at a time

• This implies that the FIFO queue implementation doesn’t use synchro-
nization mechanisms and can be implemented in very lightweight fashion
(an array and some pointers operations)

These are the most important changes this new implementation proposes, as it
simplifies a lot the hot-path compared to the current ORWL library (see section
4.6).

4.4 Design decisions
As it was already stated, there are some decisions that are not core to the library
but needed to make it work. This section explains some of those decisions and
the motivation to chose between the options.

torwl uses semaphores as a synchronization primitive internally, as briefly
mentioned. They are used when a user calls to functions like orwl_acquire()
or orwl_release(), that imply waiting or waking up other threads. Some
other mechanism were tried (like condition variables, futex, etc.) but in the end
semaphores were used. Semaphores are efficient and their semantics correlate
naturally with a number of threads to wake up: set the value of the semaphore
to the number of threads waiting. More importantly, semaphores are portable
(part of POSIX Realtime Extension). Nevertheless, this is a key part of the
hot-path and can be revisited in the future.

To easily review this in the future and compare different synchronization
primitives, an abstraction to wake up threads is created. This abstraction allows
to choose the synchronization primitive used at compile time. Right now only
semaphores are supported, but it should be easy to add new primitives. This
way, torwl should be easy to extend to compile with different flags, like use
semaphores or futex as synchronization primitives, and comparisons can easily
be done.

During the initialization phase a fixed-size array is used to accumulate the
arbitrary number of handles. The reason is that a small number of handles are
usually used and a big static array is usually more than enough. If, for some
reason there is no room, it fails with a clear error. This was never hit in practice,
though, and is easy to change to a a bigger array or even to a linked list, to
handle an arbitrary number of handles.

In addition, the initialization phase is not part of the hot-path of an ORWL
computation and, therefore, not being optimized by the proposed changes. All
concurrent calls to request access to locations are serialized, with an obvious
impact in their parallelism and performance. However, this decision can be
revisited later, if needed. The authors, nevertheless, suppose that this won’t
be needed in the near future as usually time the initialization is a very small
percentage of the time used by the ORWL computation.

4.5 Usage and dependencies
The library dependencies are:

34

• C99 compiler with gcc extensions

• make

• the only vendored dependency is P99 as a git-submodule

• POSIX compatibility (POSIX.1, POSIX Real Time Extension)

The P99 dependency is used for atomic operations and to provide the com-
piler with branch prediction information (if a condition is likely or unlikely to
happen). Recent versions of some compilers (like gcc and clang) implement
atomic operations, so the dependency with P99 might be removed. However,
other popular compilers like icc do not implement them yet.

The library is instrumented with the deep instrumentation presented in chap-
ter 3. This instrumentation is key to understand the cpu time inside the torwl
library.

4.6 Main differences with current ORWL library
Differences can be considered in many aspects and this section deals with the
main ones. Some where a side effect of others decisions, but still worth to
mention.

• Algorithms and data structures: the computation hot-path is changed
a lot to require only a few operations. This is expected to have a big
improvement on performance and is achieved using the circular buffer, as
explained in the sections above.

• Compilation and object size: Compilation time is reduced compared to the
current ORWL library. The new library is small in LOC, does not have
many dependencies and the makefiles are really simple yet effective. The
dynamic library size is also reduced considerably, also as a consequence of
the library being implemented from scratch in a simple fashion.

• Debugging: The new orwl library, torwl, has full support to run with
valgrind, gdb and throws clear errors as soon as possible on unexpected
behavior (like trying to acquire two times the same handle). None of
these is true for the current ORWL library. The error checking mecha-
nism that has built-in (and can be enabled/disabled at compile time) is a
consequence of creating a library with debug in mind.

• Portability: torwl compiles with gcc and with most compilers that support
gcc extensions. It worked with no issues using clang and icc on different
platforms (x86, x86-64, Intel Xeon Phi). The current ORWL library tries
to be extremely portable according to POSIX standards and ends up caus-
ing some portability issues. Although with some patches it was possible
to fix the compilation issues found.

• Running a program: torwl creates a binary that can be executed. This
is not the case for the current ORWL library, as it needs a ruby script to
initialize. When trying to run on an Intel Xeon Phi, this script was ported
to bash as ruby was not possible to use in the platform. Removing the

35

http://p99.gforge.inria.fr

need for the initialization script in the current ORWL was evaluated but
not easy to perform.

• No locks added on runtime: the current ORWL library inserts a lock
on the FIFO queue every time an orwl_handle2 handle is processed, and
currently this procedure is fragile when communicating with remote nodes.
As torwl doesn’t do that (it uses a circular-buffer FIFO queue and no
inserts during the computation), it could be avoided if the current ORWL
library adopted torwl ideas.

• API changes: torwl implements most of the ORWL API but not all. It
does not implement some syntax sugar the current ORWL library has, like
ORWL_SECTION macros, or some added responsibilities, like manage thread
creation for the library user, among others. There are several reasons for
this, from reducing responsibilities and scope of the library to keep macros
simple. Most of the reasons, though, have trade-offs and none is obvious,
therefore the decision in most cases is the author personal choice.

36

Chapter 5

Results and experimentation

Previous section introduced techniques, using a custom instrumentation, to
measure performance of the ORWL library and proposed to use different data-
structures during an ORWL computation. This section evaluates the perfor-
mance of such change.

5.1 About the examples used
The proposed changes try to optimize the hot-path of an ORWL computation.
To observe this, several synthetic benchmarks that stress this aspect of the
library are used.

Unfortunately, the dense matrix multiplication algorithm was not possible
to benchmark, because it is written using advanced ORWL functions not (yet)
implemented in torwl. Nevertheless, a real world example (named test-matrix)
is used. This example executes computations more intense on the CPU and
serves as a guide to observe behavior in real world examples.

5.2 Benchmarks
The tests were run on an AMD Opteron Processor 6172 with 24 cores, running
at 2.1 GHz under Linux 4.15 x86-64 and with 32 GB of RAM memory.

Due to time constraints to perform this research, it was not possible to
run these experiments on an Intel Xeon Phi with 240 CPU threads. Some
preparatory test, though, show promising results on synthetic benchmarks.

37

Figure 5.1: Test-matrix wall-clock time while increasing the tasks

The wall-clock time with torwl increase linearly with the number of cores.
Hence, it suggest that adding more cores doesn’t cause any scaling problem. In
addition, preliminary results run on a Xeon Phi with 240 CPU threads show
that the wall-clock time, for several synthetic benchmarks stressing the library,
presents encouraging speedups (50x). These preliminary analyses also suggest
that torwl scales as expected with hundreds of cores.

38

Figure 5.2: CPU time comparison

This figure compares the CPU time used between ORWL and torwl. The
CPU time in the overall computation is always less when running with torwl.
This means that the CPU time in the library is reduced considerably with torwl.

The percentage of CPU time inside the library shows similar results:

Figure 5.3: Percentage of CPU time inside the library

39

The percentage of time spent inside the library is reduced in all the cases.
It is important to note that for the synthetic benchmarks the percentage inside
the library is high because they are designed to stress the library. For the test-
matrix benchmark, as it is a real world example, the percentage spent inside
the library is less. Nevertheless, the percentage is significantly reduced in that
case too.

In fact, the speed-up for the absolute CPU time spent inside the library is:

Figure 5.4: Number of times the absolute CPU time is reduced when using torwl

This figure compares the absolute CPU time spent inside the library, for
both libraries, and shows how many times it is reduced when using torwl. In
other words, it divides de CPU time spent in the current ORWL library by the
CPU time spent in torwl.

The CPU time spent inside the library is reduced by a factor of 7 for the
text-matrix benchmark and up to a factor of 31. Furthermore, all benchmarks
tested are reduced by a factor between 7 and 31.

Therefore, the proposed changes reach their goal of reducing the CPU time
overhead the library adds.

The ideal cpu time is ignored for synthetic benchmarks, it is expected to be
low as they are meant to stress the library. For the test-matrix example the
percentage of ideal CPU time is 73% with ORWL and 75% with torwl. In other
words, it is slightly improved for the test-matrix benchmark.

The wall-clock time for these benchmarks is also relevant:

40

Figure 5.5: Wall-clock time comparison

This shows that the proposed changes always reduce the wall-clock time and
even a ∼ 10% reduction is achieved for the test-matrix benchmark.

Furthermore, the wall-clock time is reduced in a very significant way for the
synthetic benchmarks. This implies that the overhead of using ORWL for small
computations is considerably reduced and expands the scope of ORWL to be
used in such computations. It might even help to alleviate the problem reported
here for ORWL on smaller computations reported here[12].

41

Chapter 6

Conclusions

The Ordered Read Write Locks (ORWL) model is a new paradigm for parallel
programming and this work studies it and its reference implementation in detail.

A custom instrumentation was created to analyze the runtime behavior of
the implementation, that successfully helped to create insights about the com-
ponents that had room for improvements. As a consequence of the runtime
analyses and the study of ORWL, some invariants were noted that motivated
the creation of a new implementation for the ORWL model with different algo-
rithms and data structures.

This new implementation is shown to improve several times the performance
on multi-core architectures, and expands the scope of ORWL to be used in small
computations as well.

42

Bibliography

[1] Austin Group, “Threads,” in The Open Group Base Specifications, A. Josey
et al., Eds. The Open Group, 2013, vol. Issue 7, p. chapter 2.9. [Online].
Available: http://pubs.opengroup.org/onlinepubs/009695399/

[2] M. Aswad, P. W. Trinder, and H.-W. Loidl, “Architecture aware parallel
programming in Glasgow Parallel Haskell (GPH),” in ICCS, ser. Procedia
Computer Science, H. H. Ali, Y. Shi, D. Khazanchi, M. Lees, G. D. van
Albada, J. Dongarra, and P. M. A. Sloot, Eds. Elsevier, pp. 1807-1816

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
Philadelphia, PA, 1994.

[4] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger,
David Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng
Tu, and Stephen Weatherford. Polaris: The next generation in parallelizing
compilers. In Workshop on Languages and Compilers for Parallel Comput-
ing, pages 10–1. Springer-Verlag, Berlin/Heidelberg, 1994.

[5] Juan Manuel Martinez Caamaño, Aravind Sukumaran-Rajam, Artiom
Baloian, Manuel Selva, Philippe Clauss. APOLLO: Automatic specula-
tive POLyhedral Loop Optimizer. IMPACT 2017 - 7th International Work-
shop on Polyhedral Compilation Techniques, Jan 2017, Stockholm, Sweden.
pp.8, 2017. [Online]. Available: https://hal.inria.fr/hal-01533692

[6] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programma-
bility and the Chapel language,” Int. J. High Perform. Comput.
Appl., vol. 21, no. 3, pp. 291-312, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1177/1094342007078442

[7] P.-N. Clauss and J. Gustedt, “Iterative Computations with Ordered Read-
Write Locks,” Journal of Parallel and Distributed Computing, vol. 70,
no. 5, pp. 496-504, 2010. [Online]. Available: http://hal.inria.fr/inria-
00330024/en

[8] Laurent Daverio, Corinne Ancourt, Fabien Coelho, Stéphanie Even,
Serge Guelton, François Irigoin, Pierre Jouvelot, Ronan Keryell, and
Frédérique Silber-Chaussumier. PIPS – An Interprocedural, Exten-
sible, Source-to- Source Compiler Infrastructure for Code Transfor-
mations and Instrumen- tations. Tutorial at PPoPP, Bengalore, In-
dia, January 2010; Tutorial at CGO, Chamonix, France, April 2011.

43

http://pips4u.org/doc/tutorial/tutorial-no-animations.pdf presented by
François Irigoin, Serge Guelton, Ronan Keryell and Frédérique Silber-
Chaussumier.

[9] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: Pro-
gramming the memory hierarchy,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, ser. SC ’06. New York, NY, USA: ACM,
2006. [Online]. Available: http://doi.acm.org/10.1145/1188455.1188543

[10] Paul Feautrier. Some efficient solutions to the affine scheduling problem,
part 1 : one dimensional time. International Journal of Parallel Program-
ming, 21(5):313–348, 1992.

[11] Paul Feautrier. Some efficient solutions to the affine scheduling problem,
part 2 : multidimensional time. International Journal of Parallel Program-
ming, 21(6), 1992.

[12] Jens Gustedt, Stéphane Vialle, Patrick Mercier. Resource Centered Com-
puting delivering high parallel performance. Heterogeneity in Computing
Workshop (HCW 2014), May 2014, Phenix, AZ, United States. IEEE, 2014,
Heterogeneity in Computing Workshop (HCW 2014), workshop of 28th
IEEE International Parallel & Distributed Processing Symposium. [On-
line]. Available: https://hal.inria.fr/hal-00921128

[13] Alexandra Jimborean. Adapting the polytope model for dynamic and spec-
ulative parallelization. Phd thesis, Université de Strasbourg, September
2012.

[14] Uday Kumar Reddy Bondhugula. Effective automatic parallelization and
locality optimization using the polyhedral model. PhD thesis, Ohio State
University, Columbus, OH, USA, 2008. AAI3325799.

[15] F. Mueller and Y. Zhang, “HiDP: A hierarchical data parallel lan-
guage,” in Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), ser. CGO ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 1-11. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2013.6494994

[16] Alexander Schrijver. Theory of linear and integer programming. JohnWiley
& Sons, Inc., New York, NY, USA, 1986.

[17] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe,
Jennifer Anderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary Hall, Mon-
ica Lam, and John Hennessy. The suif compiler system: a parallelizing
and optimizing research compiler. Technical report, Stanford University,
Stanford, CA, USA, 1994.

[18] “OpenMP multi-threaded programming API.” [Online]. Available:
http://www.openmp.org

[19] “Threading building blocks,” Intel Corp. [Online]. Available:
http://software.intel.com/ en-us/intel-tbb

44

[20] NVIDIA CUDA C Programming Guide 9.2,
NVIDIA, August 2018. [Online]. Available:
https://docs.nvidia.com/cuda/archive/9.2/pdf/CUDA_C_Programming_Guide.pdf

[21] Khronos OpenCL Working Group, OpenCL Specification,
Khronos Group, 2018, version 2.2. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf

[22] “The OpenACCTM Application Programming Interface,” OpenACC-
Standard.org, Tech. Rep., Nov. 2018, version 2.7. [Online]. Available:
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf

[23] “Message passing interface.” [Online]. Available: http://www.mpi-
forum.org/docs

45

	Introduction
	The Fort de Mutzig Conundrum
	Multi-cores
	Parallel programming
	About this work and it's organization

	The Ordered Read Write Locks model
	Major concepts
	 Example
	Handles, resources and their FIFO queue
	The initialization phase: important observations
	Main benefits

	Reference library evaluation
	Definitions
	Runtime evaluation
	Measurement strategy
	Instrumentation
	Alternatives considered

	Meassuring per-call CPU time
	Adding instrumentation
	Definitions
	Instrumentation of inline functions
	Instrumentation of non inline functions
	Instrumentation of library internal threads
	Estimate CPU-time spent inside the library
	Requirements from the OS and libc
	Other benefits
	Disadvantages
	Future improvements

	Estimation of waiting time

	Results and interpretation
	Code Analysis

	Proposed design for multi-core architectures
	Definitions
	Why write a new library?
	Proposed changes in algorithms and data structures
	Important observations
	From idea to implementation
	Locations, handles and resources overview
	ORWL hot-path API

	New data-structure for ORWL resources queues
	Critical ORWL functions implementation
	The initialization phase
	The computation phase
	Summary

	Design decisions
	Usage and dependencies
	Main differences with current ORWL library

	Results and experimentation
	About the examples used
	Benchmarks

	Conclusions

