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UNA TÉCNICA DE OFUSCACIÓN BASADA EN UNA MÁQUINA
VIRTUAL

En este trabajo presentamos una ofuscación basada en una máquina virtual. La máquina
virtual es un intérprete de un set arbitrario de instrucciones. El código a ofuscar es
traducido a un programa válido para el intérprete. Esto permite ejecutar el intérprete en
vez del código original. En caso que un atacante realice ingenieŕıa reversa, idealmente,
debeŕıa tener que entender todo el funcionamiento del interprete. En esta tesis evaluamos
nuestra ofuscación con especialistas en ingeneŕıa reversa. Como resultado de la evaluación
encontramos que nuestra ofuscación fue resistente a ataques clásicos pero inútil contra
herramientas del estado del arte. Esto nos permitió desarrollar dos nuevas ofuscaciones
en las que mitigamos las vulnerabilidades encontradas.

Palabras claves: Máquina, Virtual, VM, Virtualización, Ofuscación, Ingeneŕıa, Reversa,
Seguridad.
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1. INTRODUCTION

1.1 Intellectual property & reverse engineering

A company keeps valuable secrets in its products. In the case of software, a program
implements fundamental algorithms, data structures, and protocols. A leak of them can
either be an economical loss or a security breach. For instance, a rival company can steal
critical logic or malicious users can exploit the product.

The user of a binary program can modify it and control the execution environment. In
this way, a user can easily turn into an attacker. We call reverse engineering the process
of extracting secrets of a binary.

Considering the risks of vulnerable intellectual property, we define the problem of our work
as the protection of intellectual property in software. That is countermeasures against
reverse engineering of a binary.

1.2 Countermeasures against reverse engineering

Next we describe a scenario originally written in [4]. It helps us to illustrate possible coun-
termeasures against reverse engineering. Also, we specify which type of countermeasure
is the one focused in our work.

Alice is a software developer and she sells her programs to be downloaded. Bob is a rival
software developer. He wants to know the algorithms and data structures implemented
by Alice. By doing this, he considers he can easily beat Alice in sales.

Bob wants a high level representation of Alice’s secrets. Not necessarily the exact source
code she wrote, but one that conceptualizes her secrets. Bob starts with the binary code
of the application that Alice sells. Also, Bob does not need to reverse-engineer the whole
application but just the sections of interest. On the other hand, Alice does not need to
protect the whole binary but just the sections she considers confidential.

Simply put, it is a two players game. One player tries to avoid an attack and the other
one reverse-engineers the binary.

How can Alice protect her binary? One way is to take legal actions against any reverse
engineering attempt. However, this path can be unaffordable for a small developer.

Then, Alice must consider a technical approach. She makes her binary more resilience to
an attack. The available options to protect Alice’s secrets from Bob are:

• a client-server architecture

• encryption of the binary code

• code obfuscation

1



2 1. Introduction

1.2.1 A client-server architecture

Alice’s business scheme gives the binary with all its secrets to the user. Therefore, the
user has physical access to it and ultimately risking all the intellectual property in the
program.

If the attacker does not have access to the confidential algorithms and data structures,
it becomes impossible to him to know how they work. Following this logic, Alice must
change her program architecture to keep all her secrets safe. Instead of giving the original
binary, she gives a client program and a server performs all business related computations.
The attacker does not have access to Alice’s key algorithms.

A possible drawback could be that Alice may not have enough infrastructure to imple-
ment this solution. Also, the domain problem can be incompatible with the client-server
architecture.

Even if it is feasible, Alice still faces vulnerabilities. The client program is not protected
and can still be subject to reverse engineering. Bob can gain knowledge of the protocol
between the client and the server. Any vulnerability spotted by Bob can lead to serious
issues to Alice. To sum up, we still need to find ways to hamper any reverse engineering
attempt performed by Bob.

1.2.2 Encryption of the binary code

Alice can have the actual binary code encrypted. When the application runs, it decrypts
the original code and executes it. If the decryption is done by software, Bob can intercept
the output of the process. In this way, he has the original and unprotected code.

1.2.3 Obfuscation of the binary code

An obfuscator is a program that has as input a program and as output another one.
The input program is transformed in such a way that the output program is functionally
equivalent but harder to understand by Bob.

The obfuscation cannot guarantee an unbreakable protection against reverse engineering.
Bob still has physical access to the binary code. The intent of the obfuscation is to gain
time before an attacker has got knowledge from the program.

In contrast to a client-server architecture, an obfuscation does not prevent Bob having
Alice’s secrets. It just makes them harder to be understood.

In this work we will address this type of protection in greater depth. We find it more
adoptable than modifying the architecture of a program and stronger than encrypting
it.
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1.3 Related work

Tigress [9] is a free virtualizer for the C language that supports many novel defenses
against both static and dynamic reverse engineering. However, it is not open source and
it only works for the C language. The devirtualization attack [1] can successfully work on
the challenges proposed by Tigress.

There are also other two known virtualizers ([7] and [8]) but neither is open source nor
free.

In addition to the VM obfuscation we also develop two others:

1. lookup tables

2. range divider

The first one is based on the fact that current dynamic symbolic execution techniques
cannot correctly model input dependant memory accesses. This idea is validated in [11].
We extend that idea by folding instructions into arrays.

The second one is based on the ideas in [2]. The idea is leveraged by finding a concrete way
for partitioning the domain of a variable. We also provide benchmarks while [2] provides
none. Also, we explain the usefulness of nesting the obfuscation.

1.4 Contributions

Our work involves the development of the next three obfuscations:

1. the virtual machine

2. the lookup tables

3. the range divider

We implement all of them in LLVM. Therefore, they can be used independently of the
target architecture and the original programming language.

The first one and most important obfuscation in this thesis is evaluated in a reverse
engineering challenge against real reverse engineers. As a result, the obfuscation is resilient
against manual attacks. However, it shows to be vulnerable to state-of-the-art attacks such
as devirtualization techniques [1].

In order to mitigate its flaws, we design two effective obfuscations (lookup tables and range
divider) against [1]. They exploit technical and conceptual problems of dynamic symbolic
execution and concolic execution.

1.5 Structure of the thesis

Our work is divided in ten chapters and one appendix.

1. Chapter 1 contains the motivation, contributions, and structure of the current work.



4 1. Introduction

2. Chapter 2 covers the preliminary concepts to understand the thesis. For example,
we include a preliminary outline of:

(a) a virtual machine obfuscation.

(b) a popular framework that an attacker could use to develop tools against our
work. It provides several program analyses.

(c) a theoretical view of a manual or automatic attack to our protection.

3. Chapter 3 exhaustively describes our VM obfuscation, it is the main protection of
the thesis.

4. Chapter 4 explains the designed challenge to stress the VM obfuscation. We also
mention the fundamental feedback we got to enhance the obfuscation.

5. Chapter 5 defines a complementary obfuscation called lookup tables and in chapter
6 it is evaluated.

6. Similarly in chapter 7, we define the complementary range divider obfuscation. It is
evaluated in chapter 8.

7. Chapter 9 defines the performance benchmark of the VM obfuscation.

8. Chapter 10 mentions possible future work.

9. Lastly, the appendix contains big tables and large source code that was placed there
to ease the reading of this document.



2. BACKGROUND

2.1 A virtual machine obfuscation in a nutshell

A virtual machine obfuscation transforms a function F in the following way:

1. It generates an interpreter (also known as virtual machine) for a custom set of
instructions.

2. It translates F into a semantically equivalent sequence of instructions (also known
as bitcodes) for the interpreter.

3. Replaces the body of F with an invocation to the interpreter to process the newly
created bitcodes.

An interpreter is a function that receives as input a sequence of instructions. Then, it
executes each instruction and updates its state. It behaves similarly as a CPU imple-
mented in software. The interpreter can be implemented as a loop processing an array of
instructions.

2.1.1 An example

We present a function to obfuscate. Then, we show how it is translated to a sequence of
instructions for the interpreter. Also, how the interpreter works and lastly the final form
of the function to obfuscate.

Function to obfuscate

Suppose we have to obfuscate the function in Listing 2.1.

i n t 3 2 t abs ( i n t 3 2 t x ){
i f ( x >= 0)

return x ;
i n t 3 2 t r e s = x ∗ −1;
return r e s ;

}
Listing 2.1: Absolute value function

The interpreter

The obfuscator creates an interpreter. The interpreter is a function that processes a
sequence of instructions (bitcodes).

5



6 2. Background

As we previously said, it has a resemblance of CPU implemented in software. Here, we
show a C/C++ pseudo-code of it.

i n t 3 2 t v i r tua l mach ine ( R e g i s t e r s regs ,
Bi tcodes b i t c ode s ){

ProgramCounter pc ;

while ( b i t c ode s . h a s I n s t r u c t i o n s ( pc ) ){
I n s t r u c t i o n i n s = b i t code s . i n s t r u c t i o n ( pc ) ;

switch ( i n s . getOpcode ( ) ){
case MUL:

i n t 3 2 t mul = reg s . l o a d r e g i s t e r ( i n s . operand ( 0 ) )∗
r eg s . l o a d r e g i s t e r ( i n s . operand ( 1 ) ) ;

r eg s . s t o r e r e g i s t e r ( i n s . operand ( 2 ) , mul ) ;
pc . I n c r e a s e ( i n s . s i z e ( ) ) ;
break ;

case RET:
return r eg s . l o a d r e g i s t e r ( i n s . operand ( 0 ) ) ;

case JUMP COND:
// updates program counter a c c o r d i n g l y
break ;

case GREATER EQUAL:
bool r = reg s . l o a d r e g i s t e r ( i n s . operand ( 0 ) ) >=
regs . l o a d r e g i s t e r ( i n s . operand ( 1 ) ) ;
r eg s . s t o r e r e g i s t e r ( i n s . operand ( 2 ) , r ) ;
pc . I n c r e a s e ( i n s . s i z e ( ) ) ;
break ;

}
}

}
Listing 2.2: A pseudo-code for the interpreter (aka virtual machine).

The interpreter maintains a program counter that dictates which instruction is the next
to process. It also has a set of registers that hold preloaded values as well as intermediate
computations.

It reads the opcode of the next instruction and execute the appropriate routine associated
with it. Then, updates the program counter and repeats the process. The interpreter will
be executed instead of the original code of the obfuscated function.

The sequence of bitcodes for the interpreter

The body of the function to be obfuscated is translated into a sequence of bytes. Those
bytes are the new instructions for the interpreter. They must follow certain encoding,
so the interpreter can process them correctly. The interpreter is tied to a custom set of
instructions.
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In the context of this example, we can suppose the buffer containing the sequence of
instructions is: 0x04030403000100030605020202010000. In Table 2.1, we show how we
interpret each byte. The table must be read per row beginning by the one at the top.
Each row must be read from left to right. The first cell of the table corresponds to the
last hex digit of the buffer’s constant. The second cell corresponds to the penult hex digit
and so on.

opcode register id register id register id size (bytes)

0x00
greater or equal

0x00
operand

0x01
operand

0x02
destination

4

0x02
conditional jump

0x02
boolean condition

0x05
offset true

0x06
offset false

4

0x03
return

0x00 2

0x01
mul

0x00
operand

0x03
operand

0x04
destination

4

0x03
return

0x04 2

Tab. 2.1: Byte interpretation of the buffer containing the bitcodes

Result of the obfuscation

Here, we show a pseudo-code that represents the result of the obfuscation. The original
function’s body is removed and replaced with a invocation to the interpreter. This is the
code an attacker would see.

i n t 3 2 t abs ( i n t 3 2 t x ){
Bitcodes b i t c ode s (0 x040304030001

00030605020202010000) ;
R e g i s t e r s r e g i s t e r s ( 7 ) ;
// s e t i n i t i a l v a l u e s in r e g i s t e r s
// i e : c o n s t a n t s
return v i r tua l mach ine ( r e g i s t e r s , b i t c ode s ) ;

}

Listing 2.3: A pseudo-code for the obfuscated function.
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2.2 LLVM

Fig. 2.1: LLVM

The LLVM Project is a collection of modular and reusable compiler and toolchain tech-
nologies. Among many features, LLVM provides a framework for program analysis and
transformation. The code to be analyzed or transformed is represented in an intermediate
language, called LLVM-IR. That representation is used to communicate between LLVM
components. Those components are frontends and backends. The first ones transform
high level source code into LLVM-IR instructions while the second ones transform the
LLVM-IR into machine code. Like this, different high level languages – as C or Fortran –
can be translated to the LLVM-IR and be optimized using the same infrastructure.

Fig. 2.2: LLVM architecture

In Figure 2.2, there are several frontends. Each of them outputs a program in LLVM-
IR. Then, the implemented optimization is re-used independently of the original high
level language. The compiler optimization outputs a program in LLVM-IR. The different
backends generate the binary for each specific platform.

2.2.1 LLVM pass

A LLVM pass is a transformation or analysis of LLVM-IR code. It has as input and
as output LLVM-IR code, in this way they can be pipelined. In Figure 2.3, we have
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an example of how different LLVM passes pipeline all together. The LLVM optimizer
is responsible of executing LLVM passes. They are also knwon as optimizations. Our
obfuscations are implemented as LLVM passes.

Fig. 2.3: Pipeline of LLVM passes

2.3 Triton: a dynamic binary analysis framework

Triton is a dynamic binary analysis framework. It offers features such as:

• a Dynamic Symbolic Execution engine (DSE).

• a Dynamic Taint Analysis engine.

• a tree semantic representation of the x86 and x86-64 instruction set.

• An interface to interact with a SMT-solver.

• Python bindings for every feature of the framework.

Triton allows its users to develop reverse engineering tools in top of it. In the following
sections, we describe the analyses Triton provides. The explanations shown here are
heavily based on the official wiki of the project.

2.3.1 Static and Dynamic Symbolic Execution

Before explaining Dynamic Symbolic Execution, we briefly introduce the concept of Static
Symbolic Execution.

Static Symbolic Execution analyzes a program without executing it, it is an offline proce-
dure. It processes each program statement and only keeps a symbolic state of the program.
The symbolic state at a certain program point expresses all possible concrete values of vari-
ables up to that point. Those concrete values are the ones generated by every possible
path to the chosen point.

This technique can potentially generate exponential formulas in size because it abstracts
every possible path of a program. It is also unfeasible to automatically determine the



10 2. Background

abstract state of a program after a loop. Working with such big and complex formulas
can exhaust current SMT solvers. Therefore, its usefulness is limited when it comes to
checking properties on those formulas. Usually, the formulas generated by static symbolic
execution are an over approximation of the original program behavior. In this way, they
introduce unexisting traces in order to remain sound.

Consider the following fragment of a program:

Fig. 2.4: Conditional program

The program symbolic state right after the if-else conditional is: (x > 2⇒ y = 2∗x)∧(x ≤
2 ⇒ y = x + 5) ∧ (x = ϕ) . Where ϕ is a formula representing the value of x up to that
point.

The Dynamic Symbolic Execution relaxes the objective of deducing a symbolic state cap-
turing every possible concrete state up to certain point. In order to do so, it performs
an online analysis. It executes the program with a particular input. While the program
executes, exercising a single program path, it generates symbolic states for each executed
program point. Those symbolic states are only representative of all actual traces sharing
the same path constraints (if evaluations/conditional jumps). The advantage is that the
generated formulas (the symbolic states) are simpler and easier to deal with for SMT
solvers.

Consider again the previous example, but now assuming that the chosen input makes x
evaluate to 1. Then, the symbolic state after the if-conditional would only consider that
path constraint. The formula is:(y = 5 + x) ∧ (x = 1) .

Another use is as follow. Suppose you ran your program with a particular input while
performing DSE and gathering all taken path constraints. Then, you can ask an SMT
solver for a new input not satisfying them. That is possible because every time a compare
instruction is executed a formula is available for the operands that are being used. Those
formulas are expressed in terms of the input of the program. We can perform again DSE
with the new input. Repeating the process we can recover multiple paths of the program.
If there are no loops, we could retrieve all program paths. There are several strategies to
perform this procedure and we call it concolic execution.

2.3.2 Dynamic Symbolic Execution (DSE) in Triton

The Dynamic Symbolic Execution engine allows to maintain symbolic states for the reg-
isters and the memory at each execution point. The engine keeps:

• a map for the symbolic states of the registers
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• a map for the symbolic states of the memory

• a set containing symbolic references

During the execution, the table for the registers’s symbolic states is updated according to
the semantic of each instruction.

The table models the mapping 〈rid→ ϕx〉 for every register, where rid uniquely identifies
a register and ϕx identifies only one symbolic expression (formula in integers logic).

Simply put, at each point of the program, every register points to its symbolic expression
that represents the semantic of its last assignment. In Table 2.2, there is an example of
how registers point to symbolic expressions.

Step Register Instruction Set of symbolic expressions

init eax→ nothing none ∅
1 eax→ ϕ1 mov eax, 0 {ϕ1 = 0}
2 eax→ ϕ2 inc eax {ϕ1 = 0, ϕ2 = ϕ1 + 1}
3 eax→ ϕ3 add eax, 5 {ϕ1 = 0, ϕ2 = ϕ1 + 1, ϕ3 = ϕ2 + 5}

Tab. 2.2: Symbolic tracking of eax during execution.

Similarly, the symbolic states of the memory are tracked. It is modeled by the map-
ping 〈addr → ϕx〉. Where addr represents a memory address and ϕx represents the
only reference of a symbolic expression. In Table 2.3, we have an example for memory
addresses.

Step Register Memory Instruction Set of symbolic expressions

1 eax→ ϕ1 no changes mov eax, 0 {ϕ1 = 0}
2 no changes sp→ ϕ2 push eax {ϕ1 = 0, ϕ2 = ϕ1}

. . . . . . . . . . . . . . .

10 ebx→ ϕ3 no changes pop ebx {ϕ1 = 0, ϕ2 = ϕ1, ϕ3 = ϕ2}

Tab. 2.3: Symbolic tracking of registers and memory.

From the previous example, it is possible to deduce that ebx = eax = 0.

What would happen if a register or memory address does not have associated a symbolic
expression when it is used as an operand? Triton creates a symbolic expression of a
constant value. That value is the one that the register or memory address holds in the
actual execution. We call this concretization of a value. In this way, the analysis is capable
of starting at any point of the program.

This is relatable to loading to a register the value in an array of constants. There was no
instruction computing those values, they came from the binary file. Thus, Triton is not
able to have a symbolic expression associated to that memory address. In other words,
Triton does not know how they were built.

In chapter 5, we describe how to use this behavior against Triton.
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2.3.3 Symbolic expressions represented as trees

Triton stores symbolic expressions as trees. The similarity between trees and symbolic
expressions is that both are recursive. That’s that one tree is composed by other sub-trees
and a symbolic expression can also be composed by multiple sub-expressions.

The possible values in a register are not mathematical integers. In terms of a SMT solver,
they are bit-vectors of certain size. The same logic follows for mathematical operations
between registers. The addition between two register cannot be directly mapped to the
addition between two integers. Therefore, when we construct the symbolic expression of
a register we must refer to bit-vector operations. The symbolic expression resembles the
logical terms that a SMT solver uses to build a formula.

Consider the following sequence of instructions processed using DSE:

1 mov al, 1

2 mov cl, 10

3 mov dl, 20

4 xor cl, dl

5 add al, cl

Tab. 2.4: Assembly instructions

After executing instruction #5, the tree of register AL is similar to this:

Fig. 2.5: Tree of register AL after execution of instruction #5

At the leaves of the tree we have bv (bit-vector) nodes. They represent the constant values
of 1, 10 and 20 in bit vectors of 1 byte. A bit vector is represented as a binary tree with
its left child node indicating the value stored and the right child node representing the
size in bits.

Then, the expression constructed by the xor instruction, is represented by the subtree
from bvxor.

At the root of the tree, we have the add operation represented by node bvadd.
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2.3.4 Manipulating a symbolic expression

Consider again example in Table 2.4 and assume we have processed the entire sequence of
instructions.

Suppose you want to find out which possible value in register AL at instruction #1 could
have made the final addition (instruction #5) return 80.

The symbolic expression pictured in Figure 2.5 is a formula in integers logic. It has the
particularity that there is no variable, it is a formula made of constants. Conceptually
speaking, it represents: 1 + (10⊕ 20).

In order to solve our question about register AL, we need to express the original value of
AL as a variable in the previous formula and equal that expression to 80. The formula we
want to solve now is: X + (10⊕ 20) = 80.

Triton offers an interface to manipulate symbolic expressions in such a way you can build
your own equations. Then, you can send the formula to a SMT solver and it will try to
find suitable instantiations for the introduced variables (in our case X).

The formula to be sent to the SMT solver is pictured in Figure 2.6. The original tree
for the result of instruction #5 is changed. It has an X (a symbolic variable) instead
of a constant 1 as the original value of register AL. Also, the tree is appended as a left
child of an equal tree. The right child of the equal tree is the constant 80 expressed in 1
byte.

Fig. 2.6: Query to SMT solver.
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2.3.5 Taint engine

The purpose of the dynamic taint analysis is to keep track of the information flow. The
analysis starts from a source (usually user inputs) up to certain points (ie. conditional in-
structions). Conceptually, the source taints the registers, memory and instructions through
which it flows during execution.

Therefore, this analysis enables the understanding of which region of the memory and
registers are controllable by the user’s input. We can test if an application’s control flow
can be compromise by the user’s input, very useful for security reasons.

The taint analysis has a taint policy which is made of three properties: how a new taint
is introduced, how the taint propagates and how the taint is verified during the execu-
tion.

Taint introduction. It specifies how the taint is introduced. Generally, one considers all
variables (registers, memory and instructions) untainted at the beginning of the analysis.
Then, the taint is introduced when the user’s input is processed. For instance, you can
flag that certain method always returns a tainted value (ie: scanf in C).

Taint propagation rules. It determines when data is tainted. The current data can be
dependant of already tainted data. Suppose that d3 is calculated from data d1 and d2.
Usually, d3 is considered tainted if at least one of d1 or d2 is tainted too.

Taint checking rules. This rule is dependant of the analysis’s user. For instance,
a module that checks for an attack can stop the execution of the program in case the
operand of one jump is tainted.

Triton’s taint engine implements propagation rules independently of any architecture.
Also, it offers an API for the user to define introduction and checking rules.

Taint propagation rules trade-offs

While implementing the rules, a decision must be taken between precision and perfor-
mance. There are three possible choices:

• Over-approximation

• Precise-approximation

• Under-approximation

Triton implements an over-approximation that has the following advantages over precise-
approximation:

• Easier to implement.

• Small runtime overhead.

• Low memory consumption.

An over-approximation is the one that best fits in a bit-level granularity. Suppose the
following scenario:



2.3. Triton: a dynamic binary analysis framework 15

Let r be a register of 16 bits with the configuration [x-x-x—x-xx-x-x]. The x are the bits
controllable by the user and the - are the bits that are not. Assume that this state of
the register is the result of an arithmetic computation. It can change depending of the
concrete values used as user’s input.

The user-controllable bit information cannot be generalized for any other concrete input.
That information is computed based on the very specific concrete value of the current
input.

Although, you can conclude that for any other concrete input that makes the program
take the same path, you can control that register or memory location.

Imagine that you want to know how to change the input in such a way that you obtain a
needed concrete value in a controllable register at a certain point. For instance, you may
want to force the program to take a specific branch.

Even if you spend resources computing a perfect taint analysis, you won’t be closer to
answer your problem. If you compute a sub-approximated analysis you may miss a con-
trollable register.

The valuable information is that taint analysis can tell you if a register or memory location
is controllable and an over-approximation is good enough. You still need to find a way to
find out a formula that expresses the values in that register. If that formula has the user
input as a variable, you can use an SMT solver to find an answer.

Precision with performance costs

An over-approximation can sacrifice precision in exchange of simplicity and performance.
We will follow the next ASM code.

1 mov ax, 0x1122 RAX is untainted

2 mov al, byte ptr [user input] RAX is tainted

3 cmp ah, 0x99 ¿can the user control this statement?

In a over-approximation, the taint engine generates a false positive (AH is tainted when
it should not) for this example. The 7 bits of RAX (RAX[7..0]) are tainted and the rest
are not (RAX[63..8]).

Consider a case where an attacker develops an exploit for an executable. The attacker
intention is to know if a register at a specific execution point can be controllable by him
and what values he can make the register hold.

A taint analysis does not gives a full answer. In order to fix this issue, one can use the
power of the symbolic execution and ask a model (to a SMT solver). This is a much
costly operation. However, the user has the option to decide when to pay the performance
penalty at the sake of precision.

Triton uses symbolic execution to provide precision and over-approximated taint analysis
to know when ask a model to a SMT solver. When the user asks for the model, we
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can precisely know which values can hold a tainted register in terms of the symbolic
variables.

2.4 Devirtualization of a binary

A devirtualization technique reverts the transformation done by a virtual machine obfus-
cation (introduced in Section 2.1).

In a virtualized function we have a buffer containing the virtual instructions for the in-
terpreter. In the binary, the interpreter is in machine language and the buffer contains
plain bytes. Those bytes follow an encoding expected by the interpreter. When the in-
terpreter processes that buffer produces a result equivalent to the one when it was not
virtualized.

In a devirtualization technique, we want to translate the buffer’s bytes into assembly code
again. In that way, we don’t have to rely on an interpreter that processes those bytes. We
can directly dive into the assembly to understand the intent of the obfuscated function.
In the assembly there is no interpreter anymore, we removed a layer of protection.

A devirtualization can be either automatic or manual. Here, we describe both. We
summarize the explanation found in [1].

2.4.1 Manual devirtualization

Typically, this approach implies gathering full knowledge of the virtual architecture and
writing a dissasembler targeting it. The dissasembler takes as input the interpreter’s
buffer (containing virtual instructions) and outputs assembly code equivalent to the one
in the buffer (there is no interpreter anymore). The reverser should invest time in reverse
engineering the virtual machine. The difficulty of this task is dependant of the reverser
expertise.

In order to write a dissasembler for the virtual architecture, the reverse must be able
to:

• Identify which parts of a program are virtualized.

• Identify each component of the VM (virtual handlers, virtual program counter, etc).

• Establish correspondance between handlers and their opcodes (to understand their
semantics). Also, understand where their operands are stored (virtual registers).

• Understand how the virtual program counter is increased.

Based on all this knowledge one can know the semantics of each instruction in the buffer
and how they are parsed by the VM. Thus, it is possible to write a dissasembler for this
particular architecture.

However, this task can be time consuming and very subject to the reverser expertise. How
to solve each previous step is not trivial and there is no general way to address it.
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2.4.2 Automatic devirtualization

The following is a summarization of the work in [1].

Intuition

Consider the case in which you have a binary and its virtualized version. You run them
both for a particular input and keep track of the assembly instructions executed. Let T
be a trace of the non virtualized binary and Tvm the virtualized trace version.

What would be the difference for the same input between T and Tvm? In Tvm you have
assembly instructions exercising the interpreter’s machinery (we call virtual machine and
interpreter indistinctly), for instance increasing the virtual program counter. In T there is
no counterpart for them, because that was not part of the original behavior. Although, T
and Tvm have counterparts for assembly instructions that are part of the result. Imagine
the binary is computing factorial, in both traces you must have assembly instructions
doing a multiplication somehow. Also, the multiplication is used to compute the result in
both cases.

Intuitively, if in Tvm we can tell which assembly instructions are only there as the virtual
machine’s machinery, we could filter them out and obtain a new trace in which the virtual
machine obfuscation is removed. This only holds to reconstruct one path of the original
program. If we cover all possible paths, we are able to reconstruct the whole program
without any protection. This is feasible for programs in which there are a finite number
of paths (ie: hashes).

Example

Consider the code fragment in Listing 2.4. SECRET is a function that is virtualized in our
executable. Integer k1 and k2 have intermediate computations that are used to calculate
the returned value.

Suppose we get a trace of SECRET under some input i. Let Table 2.5 be such trace.
In Table 2.5 we should have assembly instructions, however we will express each item
conceptually for clarity reasons. That’s one item in the table can be composed by many
assembly instructions. Also, assume the trace is related to the processing of the k1 addition
(one virtual machine execution cycle).

Instructions in items 1,2,3,4, and 6 are related to the virtual machine implementation.
Neither of them affect or are part of the returned value by SECRET. Oppositely item 5
is part of the result and it is dictated by the original code.

The VM’s handler corresponding to the ADD instruction not necessarily performs an
add instructions (at assembly level), because it can be also obfuscated. However, the
obfuscation does not alter the fact that instructions of item 5 compose the returned value
of SECRET. In addition, instructions of item 5 have as operands values dependant of the
SECRET’s input.
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int SECRET( int input ){
// . . .
int k1 = prev comp 1 + prev comp 2 ;
int k2 = prev comp 3 + prev comp 4 ;
// . . .

}
Listing 2.4: Partial code of original program P

Tab. 2.5

item number conceptual trace item source

1 reading opcode inst VM’s machinery
2 jump to handler inst VM’s machinery
3 reading operand inst VM’s machinery
4 reading operand inst VM’s machinery
5 add inst original code semantic
6 update vpc inst VM’s machinery

Overview

The main steps in the devirtualization method are (illustrated in Figure 2.7):

• Step 0: Identify input.

• Step 1: On a trace, isolate pertinent instructions using a dynamic taint analysis.

• Step 2: Build a symbolic representation of these tainted instructions.

• Step 3: Perform a path coverage analysis to reach new tainted paths.

• Step 4: Reconstruct a program from the resulting traces and compile it to obtain
a devirtualized version of the original code.

Fig. 2.7: Schematized Approach

This process heavily relies on Triton (previously introduced) and its analyses. Next is a
description of each step:
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Step 1 - Dynamic Taint Analysis

The first step aims at separating those instructions which are part of the virtual machine
internal process from those which are part of the original program behavior. In order to
do that, we taint every input of the virtualized function.

Running a first execution with an input generated by a random seed, we get as a result a
subtrace of tainted instructions. We call these instructions: pertinent instructions. They
represent all interactions with the inputs of the program, as non-tainted instructions have
always the same effect on the original program behavior. At this step, the original program
behaviors are represented by the subtrace of pertinent instructions.

But this subtrace cannot be directly executed, because some values are missing, typically
the initial values of registers.

Step 2 - A Symbolic Representation

The second step abstracts the pertinent instruction subtrace in terms of a symbolic ex-
pression for two goals: (1) prepare DSE exploration, (2) recompile the expression to obtain
an executable trace. In symbolic expressions, all tainted values are symbolized while all
un-tainted values are concretized. In other words, our symbolic expressions do not con-
tain any operation related to the virtual machine processing (the machinery itself does
not depend on the user) but only operations related to the original program.

Step 3 - Path Coverage

At this step we are able to devirtualize one path. To reconstruct the whole program
behavior, we successively devirtualize reachable tainted paths. To do so, we perform path
coverage [6] on tainted branches with DSE. At the end, we get as a result a path tree
which represents the different paths of the original program (Figure 2.8). Path tree is
obtained by introducing if-then-else construction from two traces t1 and t2 with a same
prefix followed by a condition C in t1 and ¬C in t2.
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Fig. 2.8: Path tree

Step 4 - Generate a New Binary Version

At this step we have all the information to reconstruct a new binary code: (1) a symbolic
representation of each path; (2) a path tree combining all reachable paths. In order to
produce a binary code we transform our symbolic path tree into the LLVM IR to obtain
a LLVM Abstract Tree (Fig. 2.7) and compile it. In particular we benefit from all LLVM
(code level) optimizations to partially rebuild a simplified Control Flow Graph (Figure 2.9).
Note that moving on LLVM allows us to compile the devirtualized program to another
architecture. For instance, it is possible to devirtualize a x86 function and compile it to
an ARM architecture.

Fig. 2.9: A reconstructed CFG
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2.5 IDA Disassembler

IDA Disassembler is a professional tool used for reverse engineering and debugging of
binaries. Here, we briefly introduce its main functionality that is disassembling a binary.
Simply put, it translates machine code into assembly language.

We show how it works for a simple binary. It is the absolute value function shown in
Listing 2.1.

We are going to show how IDA works for the following tasks:

• Disassembling the binary

• Reconstructing the control flow graph of the binary.

Also, we show the same results for the obfuscated version of Listing 2.1.

2.5.1 An example: a non-obfuscated binary

We compile the code in Listing 2.1 with no optimization. The reason is that we just want
to focus on the features of IDA. The reconstructed control flow graph is in Figure 2.10.
The image has 3 marks that are mentioned next.

In mark (1), we move the input to a variable in the stack. Then, in (2) we compare that
value against 0. In (3), we perform a jump if the input value is lower than 0.

The red arrow indicates the jump target if the condition evaluates to false. In that basic
block, we just move the value to one register and then again to another stack variable.
Lastly, in the final basic block we move the input value to the eax register. This path of
the program is redundant because we compiled it without optimizations.

The green arrow indicates the jump target when the input is lower than zero. In mark [4]
we perform the multiplication to -1. Then, after a series of move instructions we place the
result in eax.
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Fig. 2.10: Assembly code and control flow reconstructed by IDA

2.5.2 An example: an obfuscated binary

Here, we show the control flow and assembly code for the same original source code but
obfuscated with the virtual machine.
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Fig. 2.11: Assembly code and control flow reconstructed by IDA

In Figure 2.11 we have the disassembling of an obfuscated binary. It is the same absolute
value function of the previous section, but this time is protected with the virtual machine
obfuscation.

The original code is gone and instead we only recover the execution loop of the interpreter
(aka virtual machine). The loop is shown by the green arrow. It processes each instruction
and then indirectly jumps to the correct handler for the instruction’s type. We call handler
to the routine that updates the virtual machine’s state accordingly to the instruction’s
semantic.



24 2. Background



3. THE VIRTUAL MACHINE OBFUSCATION

3.1 What is a VM?

In the context of our obfuscation, the VM can be thought as an interpreter of a custom
set of instructions. Those instructions are called bitcodes. In addition, the interpreter has
a set of registers and also access to a memory address space.

Optionally, the VM can also be thought as a CPU implemented in software. From this
perspective we can derive it has a virtual architecture and organization.

When the VM starts it reads the first bitcode, then it executes the routine associated
with the type of the instruction. The routine has the logic to update the VM’s state
accordingly to the instruction’s semantic. Lastly, the program counter increases (it points
to the buffer containing the bitcodes). The process repeats until a return bitcode is
reached. The instruction processing loop is called the execution cycle of the VM.

3.1.1 Example

Consider the VM starts the execution on the following bitcode sequence (Table 3.1):

bitcode semantic

add r2, r1, r0 destination register is r2 and operands are r1 and r0
store r3, r2 memory address in r3 is updated by r2’s value

Tab. 3.1: Example of a bitcodes sequence

Based on the PC (program counter), the VM reads the add bitcode. The instruction
indicates that r2’s value becomes the addition between the value in r1 and r0. The handler
is in charge of updating the VM state as intended. The process is repeated until the halt
bitcode is reached.

After processing the first bitcode the state of the VM is illustrated in Fig. 3.1

25
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Fig. 3.1: The VM after processing the first bitcode

The executed steps are highlighted in blue:

1. Read the next bitcode

2. Execute the handler for the bitcode

3. Update the VM’s state

3.2 Architecture of the VM

3.2.1 Instruction layout

The virtual machine processes instructions (bitcodes) from a buffer. Those instructions
are encoded following a specific layout. In other words, its the format the virtual machine
expects them to be.

Every instruction has a fixed size determined by the type of operation it is performing.
The first field you read from an instruction is the type of it, that is its opcode. Always,
there is one byte allocated for it. Then, you have one field per each register used as
operand. Those fields hold register ids and they have two bytes assigned. The number
of operands per instruction type is fixed. There is no instruction type with a variable
number of operands.



3.2. Architecture of the VM 27

type field size

operation id 1 byte
register id 2 bytes

Tab. 3.2: Size of fields

3.2.2 Registers

Each register is a 64 bits value uniquely identified. Since a register id is 2 bytes there can
be at most 65536 registers allocated.

Fig. 3.2: Layout of an instruction

3.2.3 Specification of bitcodes

In this subsection, we describe the intended effect of each operation.

An essential aspect of the VM is that only supports bitcodes for integer numbers. Floating
point number operations are not available. We focus our work on hash algorithms, where
usually only integers are used.

In order to express the semantic of each operation, we require notations for certain con-
cepts. We define them in Tables 3.3 and 3.4. Finally, we define each bitcode’s semantic in
Table 3.5.

notation assignment’s left side

ri the entire register i is the destination (all 64 bits)

ri[rk] least significant rk bits of register i are the destination

∗ri[rk] a store of rk bytes from the memory address indicated by the value of register i

Tab. 3.3: Semantics for expressions in the left side of an assignment
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notation assignment’s right side

ri value in register i

ri[rk] least significant rk bits from the value in register i

∗ri[rk] a load of rk bytes from the memory address indicated by the value of register i

u clean(ri, rj) extracts the least significant 64− rj bits from ri and zero extends them to 64 bits

s clean(ri, rj) extracts the least significant 64− rj bits from ri and sign extends them to 64 bits

Tab. 3.4: Semantics for expressions in assignments

bitcode semantic

add ri rj rk ri := rj + rk
sub ri rj rk ri := rj − rk

udiv ri rj rk rq ri := u clean(rj , rq)÷unsigned u clean(rk, rq)

sdiv ri rj rk rq ri := s clean(rj , rq)÷signed s clean(rk, rq)

urem ri rj rk rq ri := u clean(rj , rq)%unsignedu clean(rk, rq)

srem ri rj rk rq ri := s clean(rj , rq)%signeds clean(rk, rq)

shl ri rj rk rq ri := rj � u clean(rk, rq)

lshr ri rj rk rq ri := u clean(rj , rq)�logical u clean(rk, rq)

ashr ri rj rk rq ri := s clean(rj , rq)�arithmetic u clean(rk, rq)

and ri rj rk ri := rj ∧ rk
or ri rj rk ri := rj ‖ rk
xor ri rj rk ri := rj ⊕ rk
conditional

branch ri rj rk
pc := ri ? rj : rk

unconditonal
branch ri

pc := ri

load ri rj rk ri[rk] := ∗rj [rk]

store ri rj rk ∗ri[rk] := rj [rk]

equals ri rj rk ri := rj = rk
not equals ri rj rk ri := rj 6= rk
>unsigned ri rj rk rq ri := u clean(rj , rq) >unsigned u clean(rk, rq)

... ...

≥signed ri rj rk rq ri := s clean(rj , rq) ≥signed s clean(rk, rq)

gep ri rj rk rq rq := rjxrk + ri
ret

zext ri rj rk rj := u clean(ri, rk)

sext ri rj rk rj := s clean(ri, rk)

move ri rj ri := rj
call ri rj ... rk invoke ri with arguments rj ... rk

Tab. 3.5: Semantic of each supported instruction
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3.3 Organization of the VM

In this section, we discuss internal aspects of the VM. We explain how particular types
of instructions are handled by the VM. Also, how LLVM influenced in the design of the
VM.

3.3.1 What is a handler?

A handler is a function of the VM and it is invoked in order to process an instruction.
The handler updates the state of the VM accordingly to the semantic of the processed
instruction. Thus, there is one handler per each bitcode type.

The tasks a handler carries out are:

• to read the instruction’s operands (they are register ids)

• to load the values of the necessary registers

• to perform the particularities of the instruction type

• to increase the VM’s program counter accordingly to the size of the read instruction

• to indicate if the execution of the VM must continue

An example

In Listing 3.1 there is a high level representation of an add instruction handler. This
procedure is executed every time an add instruction must be processed. In other words,
when the virtual machine’s program counter points to an instruction of this type.

When a program is obfuscated the handler and the rest of the virtual machine is created
programatically using LLVM. That’s why we show a high level example. The actual code
is generated as LLVM-IR instructions.

1 bool add handler ( I n s t r u c t i o n ins , R e g i s t e r s r eg s ){
2 r e g i s t e r i d r e g i d 0 = i n s . get operand ( 0 ) ;
3 r e g i s t e r i d r e g i d 1 = i n s . get operand ( 1 ) ;
4 r e g i s t e r i d r e g i d 2 = i n s . get operand ( 2 ) ;
5
6 u i n t 6 4 t r e g i s t e r v a l u e 0 = r s . l o a d r e g ( r e g i d 0 ) ;
7 u i n t 6 4 t r e g i s t e r v a l u e 1 = r s . l o a d r e g ( r e g i d 1 ) ;
8
9 u i n t 6 4 t computed value = r e g i s t e r v a l u e 0 + r e g i s t e r v a l u e 1 ;

10 r eg s . s t o r e r e g i s t e r ( r e g i d 2 , computed value ) ;
11
12 program counter += s izeof ( r e g i s t e r i d )∗3 ;
13
14 // add hand ler does not f i n i s h the e x e c u t i o n
15 // vm ’ s c y c l e must cont inue u n t i l a re turn i s found
16 return t rue ;
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17 }
Listing 3.1: High level representation of the add handler

• In lines 2, 3 and 4, we read the instruction’s operands (they are register ids)

• In lines 6 and 7, we load the values of the necessary registers

• In lines 9 and 10, we perform the particularities of the instruction type

• In line 12, we increase the VM’s program counter accordingly to the size of the read
instruction

• In line 16, we indicate if the execution of the VM must continue

3.3.2 Call instructions

A call instruction has as operands:

• a pointer to a function

• each function’s parameter as an operand

For sake of simplicity, we decided to create one call bitcode type per each signature spotted
during the translation step. In this way, we do not require any signature information or
the number of arguments. The bitcode type is already associated to a signature during
the translation step.

Example

Consider that in our program we have two functions with the following signature:

• void foo(int a)

• void bar(bool a)

Then, we have a function F that is being obfuscated by the virtual machine. In it, we can
find two calls one to foo and another to bar.

In F ’s bitcodes, we find two instructions corresponding to the calls to foo and bar. They
both are different bitcode’s type. In Table 3.6, we have the VM’s bitcodes for the function
calls. Although there are two calls, they are translated to two different bitcode types
(callint and callbool).

bitcode type register id (function pointer) register id (operand)

callint ri rj
callbool rk rl

Tab. 3.6: Bitcodes for call instructions
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3.3.3 Load & Store instructions

A load instruction’s operands are:

• a register id for the loaded value

• a register id for the address to be read

• a register id for the size of bytes to be read

The last operand allows us to have only one handler to manage every possible load.

The handler is easily implemented by using the memcpy function from the C standard
library. Instead, we could have chosen to implement it as a loop.

In contrast, if there were no field for the size of bytes, we would be forced to have one load
bitcode for fixed sizes. They could be more efficient since they have a direct correspondence
in LLVM and possibly they can be better optimized. Although concerning development,
it requires more time to be implemented.

Same reasoning and decisions are behind the store bitcode.

3.3.4 Ret instructions

The ret bitcode has one operand:

• the register id where the result is

If the obfuscated function is void, the instruction operand should be 0. We are forced to
place a register id even if it is void because our instruction set must have a fixed number
of operands. Alternatively, we could have implemented two types of ret (one with a result
and one without it).

3.3.5 Size sensitive instructions

The VM is only capable of handling integers. The implementation for most instructions is
the same regardless of the signess of the operands. When this is not the case, two versions
of the instruction are provided (signed/unsigned operand implementations).

As we previously explained, every register id corresponds to a register. The register always
has 64 bits allocated for its value. Therefore, it can store a smaller value than its maximum
capacity. If we always use the 64 bits to compute an instruction, we could end up with a
wrong result. Consider the next concrete example.

Example

Consider the case where the VM obfuscates the pseudo-code in Listing 3.2. The pseudo-
code does a signed division between two 1-byte variables. In the comments, we can see
the two complement representation of the constants (considering they are stored in 1-byte
variables). The last comment is the bitcode the VM processes in order to perform the
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shown division. The first operand is r0 and it is where the result is going to be stored.
The second operand is r1 and represents the numerator of the division, while the third
operand r2 is the divisor. The last operand r3 indicates how many bits in r1 and r2 must
be cleaned. All registers represent a 64 bits value, but they could be storing a smaller
value. In this example, r1 and r2 are storing 1-byte constant and there is an unused space
of 7 bytes in each register.

// s i g ned d i v i s i o n executed in the VM

i n t 8 t A = 30 ; // 00 01 11 10
i n t 8 t B = −5; // 11 11 10 11

i n t 8 t C = A / B;

// b i t c o d e : s d i v r0 , r1 , r2 , r3

Listing 3.2: Division to be executed in the VM

In Table 3.7 we have the state of the registers before processing sdiv bitcode.

register id byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

r1 x7 x6 x5 x4 x3 x2 x1 000111102
r2 y7 y6 y5 y4 y3 y2 y1 111110112

Tab. 3.7: State of the registers just before processing the division

If the VM performs the division between r1 and r2, it uses the 64 bits in each register.
We cannot make any assumption about the bits that are not meant to be part of the
calculation. The reuse of registers during one execution of the VM can generate trash
bits. A 12 or 02 as the highest bit of r1 or r2 can make a misleading interpretation of
the sign and thus computing an incorrect value. The VM must perform the division only
between the least eight significant bits in r1 and r2.

That is when r3 comes into play. It is used to sign extend the specific bits in order to
compute the division correctly. The values used for the arithmetic operation are the ones
in Table 3.8.

The values in r1 and r2 remain unchanged after the execution of the bitcode. They still
are the ones in Table 3.7.

The result of the division is stored in r0. At the end the division is performed between 64
bits values. In this way, the size of the result has the same size.

register id byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

r1 0x0016 0x0016 0x0016 0x0016 0x0016 0x0016 0x0016 000111102
r2 0xFF16 0xFF16 0xFF16 0xFF16 0xFF16 0xFF16 0xFF16 111110112

Tab. 3.8: Signed extended values to 64 bits for the division
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3.4 The obfuscated function

Here, we explain how a function is transformed after the obfuscation is applied. The trans-
formation erases the original body of the function and creates a new one such that:

• has a buffer with the bitcodes to be processed by the virtual machine

• has an array with pointers to the virtual machine’s handlers functions

• allocates and initializes the initial value for the virtual machine’s registers

• a call to the execution loop of the interpreter

In this way, if an attacker tries to reverse engineer the binary he must understand how the
virtual machine works. The original body of the function is completely removed.

Example

The new body is built using LLVM. There is no high level code involved.

The Listings 3.3 and 3.4 show the transformation’s changes in a pseudo-code perspective.
The first one is a function to be obfuscated while the second one is the result of the
obfuscation.

void t o p s e c r e t ( ){
u i n t 8 t ∗ p = 0xABCD;
u i n t 8 t a = 50 ;
u i n t 8 t b = 25 ;

u i n t 8 t sum = a + b ;
∗p = sum ;

}
Listing 3.3: Function to be virtualized

void o b f u s c a t e d t o p s e c r e t ( ){

// a l l o c space f o r 4 r e g i s t e r s
R e g i s t e r s reg = Al locReg i s t e rSpace ( 4 ) ;
// s e t i n i t i a l c o n t e x t o f the VM
reg . s e t r e g i s t e r (0 , 5 0 ) ;
reg . s e t r e g i s t e r (1 , 2 5 ) ;
reg . s e t r e g i s t e r (3 , 0x0 . . ) ;

Handler hand le r s = { add handler , s t o r e h a n d l e r } ;
b i t code b i t code s = VM INSTRUCTIONS AS BYTES;

e x e c u t i o n c y c l e ( reg , handlers , b i t c ode s ) ;
}

Listing 3.4: Function after obfuscation
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3.4.1 What is the initial context of the registers?

The initial context are the values not computed by the VM. Those are values that must
be present at the start of the execution. A list of values that are considered part of the
initial context is next:

• Constants

• Function’s arguments

The translation step is where LLVM-IR instructions are translated into bitcodes of the
virtual machine. It is there when we track which constants or arguments are used. Once
this step is finished, we have identified all values of the initial context.

In LLVM-IR the stack space is modeled by a special instruction (alloca). That instruction
returns a pointer of a specific type. The address corresponds to a position in the current
stack frame. There is no counterpart for it in the virtual machine. Those instructions
are not virtualized and they are considered part of the initial context. In other words,
they are executed before the virtual machine starts and its results are assigned to specific
registers.

3.5 Implementation details

3.5.1 How to mark a function to be obfuscated

To identify the functions to be obfuscated, we marked them by assigning them to a special
code section. The attribute is persistent at the LLVM-IR. Listing 3.5 shows an example
of how it is used.

#define OBFUSCATE a t t r i b u t e ( ( s e c t i o n ( ”VM” ) ) )
void OBFUSCATE foo ( ){

// . . .
}

Listing 3.5: Attributes are used to indicate which function obfuscate

3.5.2 Bitcode generation from LLVM-IR

LLVM provides a Visitor class to traverse the instructions in a function. There is one
function per instruction type that can be overriden. There we write the translation logic
for each instruction type.

How do we translate the operands in a LLVM instruction to a virtual machine’s register?
The operand in a LLVM instruction is called LLVM Value and it can be a register or a
constant. LLVM instructions are in single static assignment form, that guarantees that
one register is only assigned the result of one instruction. We implemented a Register
Allocator that maps LLVM Values to VM’s registers. Our implementation uses a naive
algorithm in which there is one to one mapping between LLVM Values and VM’s registers.
The major drawback of this decision is that there can be a high amount of LLVM registers
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because they are in single static assignment form. We leave as future work to implement
a better Register Allocator algorithm.

Example

In Listing 3.6 we have the translation routine for the add instruction.

1. Each LLVM Value gets a VM register id.

2. The VM instruction is created with the assigned register ids.

void vis i tAdd ( BinaryOperator &I ) {
r e g i s t e r i d reg = LLVMValueToVMReg(&I ) ; // r e s u l t o f the ope ra t i on
r e g i s t e r i d op0 = LLVMValueToVMReg( I . getOperand ( 0 ) ) ;
r e g i s t e r i d op1 = LLVMValueToVMReg( I . getOperand ( 1 ) ) ;

I n s t& i n s t = vmBasicBlock−>C re a t e In s t r uc t i on (ADD) ;

i n s t . AddOperand ( reg ) ;
i n s t . AddOperand ( op0 ) ;
i n s t . AddOperand ( op1 ) ;

}
Listing 3.6: Translation of a LLVM instruction to a VM bitcode

3.5.3 Building VM handlers using LLVM

We already introduced VM handlers. Here, we describe how they are built during compi-
lation time.

All handlers share a common behaviour. The task they perform can be summarize as
follows:

1. Read the register ids in the instruction being processed.

2. Load the needed values from the register ids.

3. Perform the handler specific computations.

4. Update the value of the virtual program counter.

In order to avoid code repetition, we design a hierarchy of classes. The base class is called
HandlerBuilder, it has the logic to build the necessary code for the tasks shared between
different handlers. Then, each specialization only needs to implement the specific task
they must perform.

Example

Listing 3.7 is an example of one HandlerBuilder. Remember that the snippet represents a
way to build code by using LLVM. That is, the shown code is not the handler itself. In-
stead, it is the builder that during compilation time generates the intended handler.
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void BinaryOperatorHandlerBui lder : : H a nd l e rS p ec i f i c ( ){
Value∗ r e g i s t e r I d 0 = insParser−>GetOperand ( 0 ) ;
Value∗ r e g i s t e r V a l u e 1 =

insParse r−>GetValueInRegister Id ( insParser−>GetOperand ( 1 ) ) ;
Value∗ r e g i s t e r V a l u e 2 =

insParse r−>GetValueInRegister Id ( insParser−>GetOperand ( 2 ) ) ;
Value∗ binop = binop =

bui lde r−>CreateAdd ( r eg i s t e rVa lue1 , r e g i s t e r V a l u e 2 ) ;
r e g i s t e r S t o r e B u i l d e r−>s e t ( r e g i s t e r I d 0 , binop ) ;
readOperands = 3 ;

}
Listing 3.7: Example of a handler builder

3.6 A parametric obfuscation

If an attacker success to understand how the virtual machine works, the whole protection
becomes useless. That’s why our obfuscation is parametric. The goal is to generate a
different virtual machine each time the obfuscation is applied. Therefore, an attacker’s
previous knowledge becomes useless. We consider this approach is mainly useful against
manual reverse engineering.

3.6.1 Opcodes randomization

Every VM bitcode has an id that indicates the type of instruction. It is used to select the
correct handler and then process it.

The idea is to randomize those ids but keeping the same number and type of bitcodes. In
this way, if an attacker previously reverse engineered the semantic meaning of each bitcode
id, he or she will have to re-do all the work.

3.6.2 Instruction merging

Every bitcode has its handler, with the logic to process it correctly. The VM instruction set
architecture (ISA) is composed by bitcodes each having a straightforward meaning.

This option aims to:

• change the number of operations

• create a new bitcode with a non-straightforward meaning

It is achieved by combining consecutive VM bitcodes into a new one. The choice of which
bitcode pattern combine is arbitrary. Thus, leading to a not clear meaning for the new
bitcode.

The new bitcode’s operands are the operands of the former bitcodes. The total number
of new operands is equal to the sum of all the previous operands.
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A new handler is automatically created based on each particular handler of every bitcode
in the pattern to be merged.

When the new bitcode is processed, it updates the VM’s state in the same way as it is
processing all bitcodes of the pattern individually.
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4. CHALLENGING THE VM OBFUSCATION

As part of our work, we prepared a challenge to face real reverse engineers. In this chapter,
we describe it and explain each type of attack and their level of success. The results were
crucial to show vulnerabilities and countermeasure them.

Listing 4.1 is a simplified version of it. The challenge is composed by:

• A non cryptographically-strong hash function (it can be easily inversed): Mur-
murHash32

• An arbitrary selected key (seed)

• A magic number, the result of applying the hash on the selected key.

The objective for the reverse engineers was to find any key that leads to the same magic
number. In other words, to find an input that makes the function evaluate to true. The
hash function is inlined and the whole function in Listing ?? runs inside the VM.

#define MAGIC NUMBER 0123456789

bool OBFUSCATE l e v e l 0 (char const∗ key ){

i f ( hash ( key ) == MAGIC NUMBER)
return t rue ;

return f a l s e ;
}

Listing 4.1: Challenge’s pseudo-code

The challenge had a time limit of 8 hours. Three reverse engineers participated and three
types of attacks are performed. The attacks are summarized in Table 4.1.

Attack Tool Result

Traditional attack IDA Disassembler
Challenge unresolved.

Only identifies parts of the VM.

Alternative attack #1
Triton’s analysis:

DSE & Taint Analysis
Challenge solved.

Finds one key.

Alternative attack #2 Devirtualization technique
Generates a new binary

without the VM obfuscation.

Tab. 4.1: Summary of attacks
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4.1 Traditional attack

Fig. 4.1: IDA Disassembler

Two reverse engineers participated in the challenge. They used IDA Disassembler to
inspect and to debug the binary. They couldn’t solve the challenge. Although, they could
identify parts of the VM.

4.2 Alternative attack #1

Fig. 4.2: Triton: A dynamic binary analysis framework

The attacker used Triton in order to build a script. The approach consisted in:

1. Running the challenge binary with a random input.

2. Tainting the input and manually analyzing the trace of tainted instructions.

3. Finding an assembly cmp instruction close to arithmetic instructions.

4. Retrieving a logical formula of the hash computation in terms of the input (using
Dynamic Symbolic Execution).

5. Querying an SMT solver to find instantiations of the input in the formula such that
the hash’s formula equals the magic number.

The attacker correctly assumed that the virtual machine for any input at some execution
point compared the computed hash against the magic number. Also, he correctly assumed
that the comparison was ultimately done by an assembly cmp instruction.

The benefit of doing Dynamic Taint Analysis was to filter out all assembly instructions
not having as an operand the input or a value dependent of it. In this way, we could
remove the machinery of the virtual machine. The assembly cmp instruction was tainted
because it had as an operand the hash that was computed by using the input.

If the attacker can retrieve a formula of the computed hash with the user input as a
variable, he can use an SMT solver to find instantiations of the variable such that the
hash equals the magic number. Logically speaking, the problem is reduced to find an
instantiation of x such that hash(x) equals the magic number.
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The attacker did do all of the above by using the Dynamic Symbolic Execution provided
by Triton.

In this way, the attacker solved the entire challenge without having to deal with the virtual
machine’s implementation.

4.3 Alternative attack #2

The attacker used a devirtualization technique[1]. It is explained in Section 2.4.2. He
successfully managed to create a new binary that no longer had the virtual machine
obfuscation. The new binary behaved the same regarding inputs and outputs.

In [1] the steps are summarized as follows:

1. Identify input.

2. On a trace, isolate pertinent instructions using a dynamic taint analysis.

3. Build a symbolic representation of these tainted instructions.

4. Perform a path coverage analysis to reach new tainted paths.

5. Reconstruct a program from the resulting traces and compile it to obtain a devirtu-
alized version of the original code.

Step 0 was the only one done manually. Every other step did not require any human
intervention.

The implementation of the technique can be found in [10]. It is built on top of Triton and
other libraries. This attack is based on the fact that the virtual machine obfuscation is
vulnerable to Taint Analysis and Symbolic Execution.

4.4 Conclusions

The frustrated manual attempt (the traditional attack) of reverse engineering validated
our hypothesis. That is, the virtual machine obfuscation is resilient against manual at-
tacks.

The alternative attacks #1 and #2 are examples of the flaws in our obfuscation. The
obfuscation shows no resilience against dynamic program analysis such as taint analysis
and dynamic symbolic execution.

Also, they expose the need of previously obfuscate the program to be virtualized because
it is possible to remove the VM obfuscation. In this way, even after the devirtualization,
the code is still protected.

In the next chapters, we present complementary obfuscations to countermeasure dynamic
program analysis.
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5. THE LOOKUP TABLES OBFUSCATION

In this chapter, we present one of the two developed countermeasures against dynamic
symbolic execution. It has been particularly tested against Triton’s DSE. However, [11]
claims that our reasoning works against a wider range of tools.

The obfuscation replaces instructions with memory load instructions, taking advantage
of the DSE memory modelling. The resulting symbolic representation of the program
becomes useless for reasoning.

The lookup table obfuscation is implemented independently of the VM obfuscation. The
idea is first to protect the code with this obfuscation and then virtualize it. In this way,
we get the best of both worlds. Symbolic execution on a virtualized binary is no longer
possible and the attacker requires to manually intervene.

5.1 Lookup tables

We call a lookup table an array generated during compilation time such that:

• it encodes a particular instruction (later we extend the concept to set of instructions)

• if it is indexed by the instruction’s parameters, it returns the result of the instruction

5.1.1 A high level example of the transformation

Fig. 5.1: On the left is the non obfuscated code and on the right the obfuscated one

In Figure 5.1 we have the result of our obfuscation. At execution time, the and instruc-
tion is no longer visible. Instead, a memory load is performed. The and table array is
generated during compilation time and embedded into the binary.

5.2 Advantages

The advantages of this obfuscation are:

• hiding the obfuscated instruction behind a load access.

• depending on the scenario, the reverse engineer may need to understand how the
constants are generated.
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• DSE does not generates a faithful representation of the obfuscated instruction (ex-
plained later).

5.3 Drawbacks

The drawbacks on the obfuscation are two:

• the size of the generated array

• an easy to understand relationship between the array’s constants and the parameters
used to index it.

5.3.1 Size of the generated array

As you may expect, the size grows exponentially in terms of the instruction’s parameter
size. In the following table, we calculate the size for the and table in terms of parameter’s
sizes.

operand’s size (bits) array’s size

32 36893488 terabytes

16 4,3 gigabytes

8 32,8 kilobytes

4 64 bytes

2 2 bytes

Tab. 5.1: Size of the array for different parameter’s sizes

In practical terms, the array for 8 byte operands or lower is feasible.

5.3.2 Straightforward constants

The second issue is the resilience of the obfuscation. For example, the array generated in
Figure 5.1 could be considered trivial. The and table can be easily understood because
it is a very simple operation.

5.4 Addressing unfeasible lookup tables in terms of size

In the context of our work, we only obfuscate no carry operations. Specifically, and , xor
and or operations.

Assume we have an operation op to be obfuscated. Consider a and b the operands and c
the result. Also, consider that a, b and c have the same size and it is a power of two. We
denote the size of the operands and the result as size.
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We can use multiple times the same operation but for smaller operands to compute the
original op. The operation is ops with operands as, bs. The result is cs. We denote the
size of the operands as sizes and it is a divisor of size.

The idea is to take the first sizes bits of a and b, and perform the result with ops. In this
way, we get the first sizes bits of c. Then, we proceed to take the next sizes bits of a
and b. We compute ops between them, and we get the next sizes bits of c. The process is
repeated until we get all bits of c by calculating multiple times ops with chunks of a and
b.

Finally, we replace every use of ops by an access to the lookup table of ops. In this way,
we are using a smaller table to compute the operation between bigger operands.

5.4.1 A high level example

In the example, we compute the 8-bit version of the and with a lookup table for 4-bit
operands. Similarly, the example could be about computing the 32-bit version of the
and .

In Figure 5.1 we have the instruction to obfuscate. It is the and operation between
operands b and c.

In Figure 5.2 we show how to compute the original and using chunks of 4-bit values.

Finally, in Figure 5.3 we replace uses of the and with a lookup table indexing.

void f oo ( u i n t 8 t b , u i n t 8 t c ){
// . . .
u i n t 8 t a = b & c ; // i n s t r u c t i o n to o b f u s c a t e
// . . .

}
Listing 5.1: Original code

void f oo ( u i n t 8 t b , u i n t 8 t c ){
// . . .

u i n t 8 t a0 = g e t f i r s t f o u r b i t s (b) & g e t f i r s t f o u r b i t s ( c ) ;
u i n t 8 t a1 = g e t s e c o n d f o u r b i t s (b) & g e t s e c o n d f o u r b i t s ( c ) ;

u i n t 8 t a = ( a1 << 4) | a0 ;

// . . .
}

Listing 5.2: Instruction replaced by two uses of the same operation between smaller operands

void f oo ( u i n t 8 t b , u i n t 8 t c ){
// . . .

u i n t 8 t a0 = a n d t a b l e 4 b i t s [ g e t f i r s t f o u r b i t s (b ) ]
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[ g e t f i r s t f o u r b i t s ( c ) ] ;
u i n t 8 t a1 = a n d t a b l e 4 b i t s [ g e t s e c o n d f o u r b i t s (b ) ]

[ g e t s e c o n d f o u r b i t s ( c ) ] ;

u i n t 8 t a = ( a1 << 4) | a0 ;

// . . .

// note : a n d t a b l e 4 b i t s i s expec ted
// to be on ly indexed by i n t e g e r s
// in the domain o f 4 b i t s i n t e g e r s
// ( a l t h o u g h they are s t o r e d in a b y t e )

}
Listing 5.3: Replace operations between smaller operands with multiple lookup table accesses

5.5 Strengthening the constants

In this section, we explain how to create harder to reverse lookup tables. The idea is to
increase the effort to deduce which operations build those constants. Again, we restrict
our scope to no carry operations. Specifically, and , xor and or operations.

5.5.1 User chains

In LLVM, the users of an instruction i are all other instructions that use the result of i
as an operand.

We generalize that concept and define the user chain term. Intuitively, they are instruc-
tions (computations) that use the result of another instruction belonging to the chain as
an operand

More precisely, a user chain is a set of operations such that:

1. It has a only one initial operation. Neither of the initial operation’s operands are a
result of another operation in the user chain.

2. Every other operation in the user chain has at least one operand computed by
another operation in the user chain.

Additionally, we call user chain’s parameters a set of operands such that:

1. The operands are not computed by another operation in the user chain.

Lastly, we call user chain’s final operation one operation such that:

1. It belongs to the user chain.

2. The result of it is not used by any other operation in the user chain.

Therefore, we can conclude that fixing the user chain’s parameters with concrete values
we determine the value of the user chain’s final operation.
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The operands not present in the user chain’s parameters are a result of another operation
in the user chain. The operands in the user chain’s parameters are assigned a fixed
value.

A high level example

User chains are considered at LLVM-IR level. However, we present a high level perspective
of one of them. Remember that LLVM-IR is in SSA form. In the example, we mimic an
SSA code.

Fig. 5.2: Example of a user chain

The user chain is composed of the operations u0, u1 and u2. Consider that:

• u0 is the only initial operation

– its operands are not in the user chain

– u0 is used as an operand in the user chain

• u1 and u2 each have at least one of their operands in the user chain

• u2 is the final operation because it is not used as an operand in the user chain

• b, c and d are parameters of the user chain because they are not calculated by any
operation in the user chain

5.5.2 Folding a user chain into a lookup table

In the scope of this work we only consider user chains made of and , xor and or opera-
tions.

The idea is to create a lookup table of a reasonable size given a user chain. Then, replace
all uses of the user chain’s final operation with indexes into the lookup tables (as explained
in 5.3.2). The indexing is done with the user chain’s parameters because they determine
the value of the final operation (explained in Section 5.5.1). Lastly, we remove the user
chain from the code. If any of the user chain’s operations are used as an operand, we
copy and insert them just before each use.

The size of the lookup table associated to it is expressed in terms of:

• the number of parameters: params

• the size of a parameter in bits: size(param) (they all have the same size)

• the number of values in a parameter: 2size(param)



48 5. The lookup tables obfuscation

• the number of different parameter combinations: params ∗ 2size(param)

• the allocated space in bits for each array cell: alloc (it equals size(params) because
there is no carry)

Then, the lookup table’s size equals: params∗2size(param)∗alloc
2

Because of the symmetry property of bitwise operations, we can reduce the size of the
table by storing only half of it. Also, consider that an alloc value not multiple of 8 bits
creates constants not aligned in memory. That would require more operations to fetch
each value.

An example

Consider the user chain in 5.2. The user chain uses 32-bit values. However, we know we
can use the 4-bit version to compute it. For the alloc value, we use 1 byte. In this way,
our constants are aligned in memory.

The lookup table’s size for the 4-bit version is computed in the following way:

• the number of parameters: params = 3

• the size of a parameter in bits: size(param) = 4 bits (they all have the same size)

• the number of values in a parameter: 2size(param) = 16

• the number of different parameter combinations: params ∗ 2size(param) = 64

• the allocated space in bits for each array cell: alloc = 8bits (it equals size(params)
because there is no carry)

Then, the lookup table’s size equals: params ∗ 2size(param) ∗ alloc = 3 ∗ 16 ∗ 8 = 192 bits
= 24 bytes. However, since the table is symmetric, we only really need half of it.

A partial view of the lookup table is in 5.2. The indexes are b, c and d and the only value
stored in the array is u2.

indexes/parameters

b c d u2

0x09 0x07 0x09 0x09

0x09 0x07 0x0a 0x0b

0x09 0x07 0x0b 0x0b

0x09 0x07 0x0c 0x0d

0x09 0x07 0x0d 0x0d

Tab. 5.2: Partial view of the lookup table (generated at compilation time)
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In this section, we set up two experiments. The first one illustrates how Triton’s symbolic
expressions are not enough to reason about the target program [11]. Also, we consider
possible workarounds an attacker could use. Even though such workarounds exist, they
are non-scalable.

The second one tests the resilience against the devirtualization method [1] over a set of hash
functions. The implementation of the technique is on top of Triton’s framework.

6.1 Limitations of symbolic expressions

Consider the code in Figure 6.1. We want Triton to find a possible input to reach the
winning message. The input to print the winning message is the number two.

Fig. 6.1: Example of how to have a misleading symbolic expression

Note that the array is indexed with the user’s input. In Dynamic Symbolic Execution, the
input is considered a Symbolic Variable. The Symbolic Variable is used to build formulas
resembling how concrete values of the current execution path are logically built. A formula
holding a Symbolic Variable is only valid for all concrete inputs sharing the taken path
constraints up to that point. Then, a SMT solver can reason with the formula and finding
possible concrete values for the Symbolic Variable to make a query hold true.

We run the example with an initial seed (ie: one) and Triton runs at the same time
performing DSE. At the assembly address where h is computed, we ask Triton to get the
symbolic expression of h. Then, we make a formula such that h’s symbolic expression
equals twelve. Triton’s answer is that there is no possible solution. However, we know
that to be false.

The symbolic expression built for h is the one in Figure 6.2. In it, we can see that the
formulas are building a constant value. At any given point, there is no Symbolic Variable
involved. This behaviour is a consequence of two implementation characteristics of Triton’s
DSE:

1. If the loaded value from memory was not calculated during the execution of Triton’s
DSE, then the symbolic expression for it is a constant symbolic expression.
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The constant in the array is not computed during the execution, therefore Triton associates
a constant symbolic expression for each value in the array.

2. Triton only builds formulas using integer logic and a memory address can only be
linked to a single symbolic expression at any point of the execution.

This point limits the behaviour of Triton when loading an address calculated in terms of
the input, like the one in our current example. Triton searches the symbolic expression
linked to the concrete address being loaded, and links the destination address or register
to the retrieved symbolic expression.

In the case of h, this behaviour links it only to one symbolic expression because of point
(2) and to a constant because of point (1).

Basically, Triton maps h to the symbolic expression referenced from the concrete address
of id[1] (in our running example, x is one).

Lookup tables introduce the same issues if they are indexed by values computed in terms of
the input. An indexation into them corresponds to a input dependant memory load.

Therefore, lookup tables exploit point (1) because they are calculated in compilation time.
Also, they exploit point (2) if they are indexed by values related to the input.

Fig. 6.2: Symbolic expression for h (concrete input: 1)

6.1.1 Workaround in the devirtualization implementation

Recall that [1] implementation (available in [10]) is built on top of Triton and it uses its
Dynamic Symbolic Execution. In Section 6.1, we described the limitations that DSE can
face against input dependant memory accesses.

[10] is aware of Triton’s limitations and implements a workaround. Although, it is not
enough. Briefly, it can be summarized like this:

• Before processing a memory access it checks if the address is in terms of the input
(a.k.a symbolized)

• If it is symbolized, then it issues a query to the SMT solver. The query asks for:

– An input that drives the execution to the exact same point.

– Generates a different concrete address than the current one.

The main issue of this approach is that it does not constraint the size of the input. Thus,
leading into a non scalable number of inputs as solutions for the query.

The fundamental aspect of the technique [1] is to generate inputs to explore each path
of the program. Using DSE it implements concolic execution. An exponential number of
inputs to explore new paths can make the tool timeout.
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6.2 Effectiveness against the devirtualization technique

In this section, we report the resilience of the lookup table obfuscation against devirtual-
ization attacks using technique [1].

6.2.1 Lookup tables obfuscation

We obfuscate the hash functions with the lookup table obfuscation. Then, we try to
devirtualize the obfuscated binaries. The results are displayed in Table 6.1

hash timeout inputs to explore explored inputs

adler yes 16315 4

cityhash yes 92542 11

fnv1a yes 398343 98

jenkins yes 418181 20

siphash yes 8415 1

spookyhash yes 185092 22

superfasthash yes 348805 36

md5 yes - -

Tab. 6.1: Devirtualization technique results on hashes obfuscated with lookup tables

In all cases, the devirtualization technique timeouts. After the timeout, it reports the
number of inputs pending to be explored. Also, how many of them were explored before
timing out.

6.2.2 Lookup tables obfuscation and virtualization

We also test the resilience of the lookup tables and the virtual machine together. In
this scenario, we first apply the lookup tables on one hash and then virtualize the whole
algorithm.

In Table 6.2 we report the results. The devirtualization technique fails again and in some
cases it crashes.



52 6. Challenging the lookup tables obfuscation

hash timeout inputs to explore explored inputs

adler crash - -

cityhash yes 137303 91

fnv1a yes 230718 233

jenkins crash - -

siphash crash - -

spookyhash yes 200980 88

superfasthash crash - -

md5 crash - -

Tab. 6.2: Devirtualization technique results on hashes obfuscated with lookup tables and virtual-
ized

6.3 Performance of the obfuscation

In order to be complete, we report the performance of the hashes. In one case, we obfuscate
them just with the lookup tables. In the second one, we obfuscate with the lookup table
and then we virtualize it. We follow the same experiment setup as in Section 9.2.1.

6.3.1 Baseline

As a baseline, we report the running time of the binaries when they are not obfuscated.
The measurements are in Table 11.6.

6.3.2 Lookup tables

The Table 11.7 in the Appendix has the average running time for the obfuscated hashes.

Here, we show a comparison between the non obfuscated binaries and the obfuscated ones.
Table 6.3 expresses the overhead incurred by the obfuscation. For instance, the md5 hash
when obfuscated with the lookup tables it is 1,33 times slower in average than the non
obfuscated version.

lookup tables overhead
obfuscated running time / non obfucasted running time

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 1,33 1,95 1,79 3,19 3,37 4,91 5,65 10,86

median 1,34 1,95 1,78 3,19 3,37 4,89 5,65 10,86

stddev 1,21 0,77 1,23 6,1 4,2 14,57 4,58 32,4

Tab. 6.3: Lookup table overhead in hash functions
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Range divider increases the number of possible paths in a program, such that every new
path is important for preserving the semantics. Since they are feasible paths, a concolic
execution on the programs requires to do more work. Mainly, because it needs to generate
concrete input to explore all feasible paths of the target program. A SMT solver generates
the new input. That is why this obfuscation increases the running time of the conocolic
execution. Also, if the SMT solver is not able to find a solution, the exploration is
incomplete. Therefore, any type of analysis becomes incomplete.

The devirtualization technique [1] uses a concolic execution in order to generate its result.
Because of it, we find range divider an effective technique to countermeasure a devirtual-
ization attempt or any tool based on a concolic execution.

7.1 The transformation

The core concept behind the obfuscation is to split the domain of a computation in our
program. The steps can be summarized as:

1. Select a partial computation

2. Partition its domain

3. In each case, recompute it

In order to be effective, we require to select an input dependant computation. Also, we
require it to be used as part of the final computation. Otherwise, a backward slicing
algorithm could remove the protection.

In the context of this work, we partition the domain by using the modulo operation with
a fixed constant. In each case of the modulo, we re compute the value. However, this idea
is generalizable to any way of partition the domain of a value.

It is important to obfuscate again each case of the modulo. We make an attacker think
we are not just recomputing a value.

7.2 A high level example

Here, we show a high level example of the obfuscation. In the Listing 7.1 we have the
original function. After obfuscating, the code is the one in Listing 7.2. The code is
presented in C/C++. However, the obfuscation is implemented at LLVM-IR level.

u i n t 3 2 t add ( u i n t 3 2 t x , u i n t 3 2 t y ) {
u i n t 3 2 t r e s = x + y ;
return r e s ;
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}
Listing 7.1: Non obfuscated function

u i n t 3 2 t add ( u i n t 3 2 t x , u i n t 3 2 t y ){
u i n t 3 2 t r e s = 0 ;

u i n t 3 2 t c = 3 ;
u i n t 3 2 t r = x % c ;

// x mod c = r <=> e x i s t s m such t h a t x = c∗m+r

i f ( r == 0){
u i n t 3 2 t m recomputed = (x−0)/c ;
u i n t 3 2 t x recomputed = m recomputed∗c + 0 ;
r e s = x recomputed + y ;

} else i f ( r == 1){
u i n t 3 2 t m recomputed = (x−1)/c ;
u i n t 3 2 t x recomputed = m recomputed∗c + 1 ;
r e s = x recomputed + y ;

} else i f ( r == 2){
u i n t 3 2 t m recomputed = (x−2)/c ;
u i n t 3 2 t x recomputed = m recomputed∗c + 2 ;
r e s = x recomputed + y ;

}

return r e s ;
}

Listing 7.2: Function obfuscated with range divider

In Listing 7.2, we replace the original addition between x and y with a chain of ifs depend-
ing on the value of x%c. The domain of x is divided in three cases, each corresponding
to every possible value of x%c. In every case, we recompute x using the definition of the
remainder. Then, the intended addition is performed between x and y. It is important to
note that the transformation is not removed by the compiler.

7.3 Nested application

One advantage that this obfuscation provides is the fact that it can be nested.

In Listing 7.2 we could apply again the obfuscation on the operand y in each case. Fol-
lowing this logic, the number of paths is increased exponentially.

Similarly, if we decide to transform a computation inside a loop we can have a similar
effect.

The drawback is a bigger executable however, the addition is still done in O(1). But the
advantage outweighs the disadvantage. An attacker requires to issue more queries to an
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SMT solver, which is by far more expensive. The number of queries is at least the number
of new feasible paths.
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8. CHALLENGING THE RANGE DIVIDER OBFUSCATION

In this chapter, we setup two experiments. The first one shows the effectiveness of our
obfuscation against the devirtualization technique. The second one shows the performance
penalty of the obfuscation.

8.1 Effectiveness against the devirtualization technique

In this section, we report the resilience of the range divider obfuscation against devirtual-
ization attacks using technique [1].

8.1.1 Range divider obfuscation

hash timeout inputs to explore explored inputs

adler yes 132878 272

cityhash yes 37092 49

fnv1a yes 110065 245

jenkins yes 124591 258

siphash yes 27153 54

spookyhash yes 28715 57

superfasthash yes 123581 249

md5 yes 129912 266

Tab. 8.1: Range divider’s resilience against devirtualization

8.1.2 Range divider obfuscation and virtualization

hash timeout inputs to explore explored inputs

adler yes 116262 236

cityhash yes 35594 47

fnv1a yes 108119 240

jenkins yes 111772 233

siphash yes 25663 51

spookyhash yes 28715 57

superfasthash yes 113150 235

md5 yes - -

Tab. 8.2: Range divider and virtualization resilience against devirtualization
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8.2 Performance of the obfuscation

In order to be complete, we report the performance of the hashes. In one case, we obfuscate
them just with the range divider. In the second one, we obfuscate with the range divider
and then we virtualize it. We follow the same experiment setup as in Section 9.2.1.

8.2.1 Baseline

As a baseline, we report the running time of the binaries when they are not obfuscated.
The measurements are in Table 11.9.

8.2.2 Range Dividers

In the Appendix, the Table 11.8 has the average running time for the obfuscated hashes.

Here, we show a comparison between the non obfuscated binaries and the obfuscated ones.
The Table 8.3 expresses the overhead incurred by the obfuscation. For instance, the md5
hash when obfuscated with the range divider it is 2,27 times slower in average than the
non-obfuscated version.

range divider overhead
obfuscated running time / non obfuscated running time

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 2,27 1,86 2,04 1,94 2,88 3,59 2,90 4,00

median 2,27 1,85 2,03 1,96 2,91 3,56 2,91 4,00

stddev 0,88 2,05 1,62 0,97 2,41 4,52 0,27 0,48

Tab. 8.3: Range divider overhead in hash functions
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We expect the obfuscation to increase the execution time. In the development of this
work, the performance is not an objective to achieve. However, in order to be complete,
we report the obfuscation performance in different scenarios.

As we stated before, the obfuscation is not meant to be applied in an entire program. The
programmer must carefully select which section of code is convenient to obfuscate. He or
she has to keep in mind the performance and security trade-offs.

9.1 An image encoder

In this scenario, we obfuscate one part of an image compressor. We consider it a real
scenario because it could be a proprietary compression algorithm to protect.

The project is called imagezero [12]. It’s a small project in C++, whose core is a compres-
sion algorithm. In this evaluation, we obfuscate the compression routine in its entirety.
However, a developer with a deeper understanding of the algorithm could reduce more the
scope of the virtualization. Probably, improving the overall performance.

The function to obfuscate is called encodeImagePixels presented in Listing 11.1. Two
loops traverse all pixels of the image. The function encodePixel runs on every pixel. In
this benchmark, we inlined everything inside the encodeImagePixels. Lastly, we virtualize
the entire code in encodeImagePixels.

9.1.1 Experiment setup

As inputs we select two images corresponding to the two possible dimensions of a 4K
image. The resolutions are:

• 3840 x 2160

• 4096 x 2160

The obfuscated and non-obfuscated version of the function are run 30 times. We use
the google-benchmark library to perform the microbenchmarking of the desired function.
Note that the rest of the execution of the program is not part of our measurements. We
report:

• average of the benchmarked time

• median of the benchmarked time

• standard deviation of benchmarked time

The results are in the appendix section in Table 11.1.
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In addition, we use the perf tool. It allows us to collect information regarding CPU
statistics. We are interested in the number of:

• instructions

• cycles

• branches

• branch-misses

• cache-references

• cache-misses

In the appendix section perf reports are shown in Tables 11.2 11.3 11.4.

9.1.2 Results

The obfuscation overhead is draw in Table 9.1. The table indicates the ratio between
the obfuscated running times and the non obfuscated ones. For instance, the average
obfuscated execution time for the 3840x2160 resolution is 97,76 times slower than the
non-obfuscated.

resolution average median std dev

3840x2160 97,76 97,72 1,09

4096x2160 109,91 109,84 0,65

Tab. 9.1: Virtualization overhead

The first conclusions are:

• As expected, the virtual machine overhead is high.

• In terms of absolute values, the execution time is still feasible (see Table 11.1).

• Real time (streaming) application of the algorithm becomes unfeasible.

9.1.3 A CPU perspective

obfuscation overhead
resolution cache-references cache-misses instructions cycles branches branch-misses
3840x2160 2,38 1,08 81,35 80,20 426,38 82,07
4096x2160 1,86 1,29 87,36 92,26 513,97 119,19

Tab. 9.2: Obfuscation overhead

In Table 9.2 we summarize statistics gathered by perf. A value in the table is the ra-
tio between the obfuscated measurement and the non obfuscated measurement. For in-
stance, cache-references in the obfuscated version is 2,38 times the non obfuscated mea-
surement.



9.1. An image encoder 61

Based on these values we can hypothesize how the VM impacts on the CPU performance.
We explain each parameter and also propose possible solutions.

cache-refrences & cache-misses

The virtual machine registers are 64 bits. Every time a handler is executed, it loads the
content of the necessary virtual registers. The size of the loaded value is always 64 bits,
even if the stored value is smaller. We believe this can be an overhead for the cache
because we can fill faster every cache line.

A possible solution could be having different sizes for registers. In this way, there is less
wasted space and therefore a more efficient use of the cache.

In addition, we have to consider branches in the program to be obfuscated. They become
bitcodes of the VM and the VM handler updates an index (virtual program counter) into
the bitcodes’s buffer. However, this behaviour could lead to cache-misses because we could
index into a neither recently accessed or near memory address.

instructions

The VM intrinsically has an impact on the number of executed instructions. The ob-
fuscated section of code is not directly executed by the CPU. In order to execute one
VM bitcode, we have to execute one time the VM execution cycle and the associated
handler.

We believe this issue is hard to tackle. The number of executed instructions by the CPU
can be seized by:

• reducing the number of bitcodes to execute

• reducing the code in each handler

The virtualized code is already optimized by LLVM. There is a one to one relationship
between bitcodes and LLVM-IR. Therefore the only option is merging multiple LLVM-IR
instructions into a single bitcode. In this way we reduce the number of bitcodes but we
increase the complexity of the associated handler.

cycles & branches & branch-misses

The VM execution cycle has two assembly branches associated with it:

• a branch instruction to the handler of the decoded bitcode

• a branch to repeat the execution cycle

Every bitcode is processed by the execution cycle. We could be introducing branch-misses
in order to process a bitcode and therefore having a big impact on the performance. We
consider that possible solutions are similar to the ones described to reduce the number of
executed instructions.
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9.2 Hash algorithms

We also benchmarked the VM obfuscation on hash algorithms. The intent of the VM
obfuscation is to obfuscate short sections of cryptography code. We test the following
hash functions:

• md5

• adler

• jenkins

• siphash

• superfasthash

• fnv1a

• spookyhash

• cityhash

They are simple C implementations and are originally selected in [1]. As we previously
stated, the scope of this work is not focused on performance. However, we report it to be
complete.

9.2.1 Experiment setup

All hash implementation do not have input dependent loops. All loops are fixed to the
size of the input. The size is fixed and therefore the value of the input does not change
the number of executed instructions.

In the experiment, we fix the input and run each hash 30 times. Then we calculate:

• average of the benchmarked time

• median of the benchmarked time

• standard deviation of benchmarked time

We use google benchmark, it allows us to measure very short execution of code. Raw
results are in the appendix 11.5. Next we draw conclusions from the results.

9.2.2 Results

The running time penalty of the obfuscation is draw in Table 9.3. It describes how many
times the obfuscation is slower than the non obfuscated version. For example, md5 is
25,59 times slower on average when virtualized.
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obfuscated measurements divided non obfuscated measurements

hash average (times) median (times) std dev. (times)

md5 22,59 22,53 15,54

adler 7,83 7,83 6,38

jenkins 14,04 14,04 17,31

siphash 24,57 24,67 51,18

superfasthash 15,64 15,64 21,88

spookyhash 7,16 7,16 3,51

cityhash64 9,24 9,24 2,86

fnv1a 11,29 11,29 14,95

Tab. 9.3: obfuscated measurements diveded non obfuscated measurements

Fig. 9.1

As expected, there is a performance impact. The user of the obfuscations should choose
carefully which parts of his algorithm to obfuscate. In this scenario, is not possible to
run perf. The short execution time of the hashes makes it impossible to gather faith-
fully information about the CPU. Basically, because the tool samples CPU stats between
intervals.

We leave this as a future work, to investigate the reasons of the performance penalty.
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9.3 Testing correctness

In order to check the correctness of the obfuscation, we used the hash functions from the
previous section. We fixed a seed and generated random inputs, then we compared the
results of the obfuscated version and the non obfuscated one.

We selected 64 bits inputs for the hash functions. We choose:

• all integers between [0, 1000)

• 1000 random samples from [0, 0xFFFF)

• 1000 random samples from [0xFFFF, 0xFFFFFFFF)

• 1000 random samples from [0xFFFFFFFF, 0xFFFFFFFFFFFFFFFF)

In [1], the devirtualized binaries are tested in the same way and under the same set of
hash functions.



10. FUTURE WORK

Next we list aspects we find interesting to keep working on:

1. Improve the performance of the VM. We could have variable register sizes. We may
take better advantage of the cache.

2. Support floating point instructions in the VM.

3. Extend lookup tables and user chains to instructions with carry bit.

4. Find alternative implementations of the range divider. Currently it is only imple-
mented considering the remainder of an integer.

5. Implement different strategies to break symbolic execution and taint analysis. For
instance, we could make the data flow of a program go through a socket or file. This
could possibly break the instrumentation of a dynamic analysis.

65



66 10. Future work



11. APPENDIX

11.1 Source of the image encoder

#ifndef IZ ENCODER H
#define IZ ENCODER H 1

#include <c s t r i n g>

#include ” i z p . h”

namespace IZ {

#define encodePixe l ( p r e d i c t o r ) \
{ \

Pixe l<> pix , pp ; \
\

pix . readFrom (p ) ; \
pp . p r e d i c t (p , bpp , bpr , p r e d i c t o r : : p r e d i c t ) ; \
pix −= pp ; \
pix . forwardTransform ( ) ; \
p += bpp ; \
pix . toUnsigned ( ) ; \

\
int nl = pix . numBits ( ) ; \
cx = ( cx << CONTEXT BITS) + nl ; \
th i s−>w r i t e B i t s ( dBits [ cx & bitMask (2 ∗ CONTEXT BITS) ]

, dCount [ cx & bitMask (2 ∗ CONTEXT BITS ) ] ) ; \
pix . w r i t e B i t s (∗ th i s , n l ) ; \

}

#define OBFUSCATE a t t r i b u t e ( ( s e c t i o n ( ”VM” ) ) )

template <
int bpp = 3 ,
typename Pred i c to r = Predictor3avgplane <>,
typename Code = U32

>
c l a s s ImageEncoder : pub l i c BitEncoder<Code>
{
pub l i c :

ImageEncoder ( ) {
memcpy( dBits , s t a t i c d B i t s , s izeof ( dBits ) ) ;
memcpy( dCount , stat icdCount , s izeof ( dCount ) ) ;
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}

void a t t r i b u t e ( ( a l w a y s i n l i n e ) ) e n c o d e P i x e l p r e d i c t o r 0 ( const
unsigned char ∗&p , const int bpr , unsigned int& cx ){

Pixe l<> pix , pp ;

pix . readFrom (p ) ;
pp . p r e d i c t (p , bpp , bpr , Pred ictor0 <>:: p r e d i c t ) ;
p ix −= pp ;
pix . forwardTransform ( ) ;
p += bpp ;
pix . toUnsigned ( ) ;

int nl = pix . numBits ( ) ;
cx = ( cx << CONTEXT BITS) + nl ;
th i s−>w r i t e B i t s ( dBits [ cx & bitMask (2 ∗ CONTEXT BITS) ]

, dCount [ cx & bitMask (2 ∗ CONTEXT BITS ) ] ) ;
p ix . w r i t e B i t s (∗ th i s , n l ) ;

}

void a t t r i b u t e ( ( a l w a y s i n l i n e ) ) encodeP ixe l p r ed i c t o r1x ( const
unsigned char ∗&p , const int bpr , unsigned int& cx ){

Pixe l<> pix , pp ;

pix . readFrom (p ) ;
pp . p r e d i c t (p , bpp , bpr , Predictor1x <>:: p r e d i c t ) ;
p ix −= pp ;
pix . forwardTransform ( ) ;
p += bpp ;
pix . toUnsigned ( ) ;

int nl = pix . numBits ( ) ;
cx = ( cx << CONTEXT BITS) + nl ;
th i s−>w r i t e B i t s ( dBits [ cx & bitMask (2 ∗ CONTEXT BITS) ]

, dCount [ cx & bitMask (2 ∗ CONTEXT BITS ) ] ) ;
p ix . w r i t e B i t s (∗ th i s , n l ) ;

}

void a t t r i b u t e ( ( a l w a y s i n l i n e ) ) encodeP ixe l p r ed i c t o r1y ( const
unsigned char ∗&p , const int bpr , unsigned int& cx ){

Pixe l<> pix , pp ;

pix . readFrom (p ) ;
pp . p r e d i c t (p , bpp , bpr , Predictor1y <>:: p r e d i c t ) ;
p ix −= pp ;
pix . forwardTransform ( ) ;
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p += bpp ;
pix . toUnsigned ( ) ;

int nl = pix . numBits ( ) ;
cx = ( cx << CONTEXT BITS) + nl ;
th i s−>w r i t e B i t s ( dBits [ cx & bitMask (2 ∗ CONTEXT BITS) ]

, dCount [ cx & bitMask (2 ∗ CONTEXT BITS ) ] ) ;
p ix . w r i t e B i t s (∗ th i s , n l ) ;

}

void a t t r i b u t e ( ( a l w a y s i n l i n e ) ) e n c o d e P i x e l p r e d i c t o r ( const
unsigned char ∗&p , const int bpr , unsigned int& cx ){

Pixe l<> pix , pp ;

pix . readFrom (p ) ;
pp . p r e d i c t (p , bpp , bpr , Pred i c to r : : p r e d i c t ) ;
p ix −= pp ;
pix . forwardTransform ( ) ;
p += bpp ;
pix . toUnsigned ( ) ;

int nl = pix . numBits ( ) ;
cx = ( cx << CONTEXT BITS) + nl ;
th i s−>w r i t e B i t s ( dBits [ cx & bitMask (2 ∗ CONTEXT BITS) ]

, dCount [ cx & bitMask (2 ∗ CONTEXT BITS ) ] ) ;
p ix . w r i t e B i t s (∗ th i s , n l ) ;

}

void OBFUSCATE a t t r i b u t e ( ( n o i n l i n e ) ) encodeImagePixe ls
( const Image<> &im) {

const int bpr = im . samplesPerLine ( ) ;
const unsigned char ∗p = im . data ( ) ;
int s i z e = im . width ( ) ∗ im . he ight ( ) ;
const unsigned char ∗pend = p + bpp ∗ s i z e ;
unsigned int cx = (7 << CONTEXT BITS) + 7 ;

/∗ f i r s t p i x e l in f i r s t l i n e ∗/
e n c o d e P i x e l p r e d i c t o r 0 (p , bpr , cx ) ;
/∗ remaining p i x e l s in f i r s t l i n e ∗/
const unsigned char ∗ end l i n e = p + bpr − bpp ;
while (p != end l i n e ) {

encodeP ixe l p r ed i c t o r1x (p , bpr , cx ) ;
}
while (p != pend ) {

/∗ f i r s t p i x e l in remaining l i n e s ∗/
// encodePixe l ( Predic tor1y <>);
encodeP ixe l p r ed i c t o r1y (p , bpr , cx ) ;
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/∗ remaining p i x e l s in remaining l i n e s ∗/
const unsigned char ∗ end l i n e = p + bpr − bpp ;
while (p != end l i n e ) {

e n c o d e P i x e l p r e d i c t o r (p , bpr , cx ) ;
}

}
}

void encodeImageSize ( const Image<> &im) {
int w = im . width ( ) − 1 ;
int h = im . he ight ( ) − 1 ;
int b = : : numBits (w | h ) ;
th i s−>w r i t e B i t s (b , 4 ) ;
th i s−>w r i t e B i t s (w, b ) ;
th i s−>w r i t e B i t s (h , b ) ;
th i s−>f lushCache ( ) ;

}

p r i v a t e :
unsigned int dBits [ 1 << (2 ∗ CONTEXT BITS ) ] ;
unsigned int dCount [ 1 << (2 ∗ CONTEXT BITS ) ] ;

} ;

} // namespace IZ

#endif

Listing 11.1: Obfuscated source code

11.2 Image encoder results

# iterations = 30
obfuscated version non obfuscated version

resolution average (ms) median (ms) std dev (ms) average (ms) median (ms) std dev (ms)
3840x2160 10460 10456 117 107 107 2,56
4096x2160 11211 11204 66,1 102 102 2,53

Tab. 11.1: Microbenchmarking results

obfuscated version non obfuscated version

resolution cache-references cache-misses cache-references cache-misses

3840x2160 8605460 2892391 3614262 2680232

4096x2160 5891487 2771769 3154874 2145943

Tab. 11.2: Perf report: cache-references and cache-misses



11.3. Hash results 71

obfuscated version non obfuscated version

resolution instructions cycles instructions cycles

3840x2160 71741719611 35864779685 881881503 447183455

4096x2160 75564437028 37708451058 864986710 408708259

Tab. 11.3: Perf report: instruction and cycles

obfuscated version non obfuscated version

resolution branches branch-misses branches branch-misses

3840x2160 14091199991 155225271 33047784 1891247

4096x2160 14832384167 162730319 28858258 1365328

Tab. 11.4: Perf report: branches and branch-misses

11.3 Hash results

#iterations = 30
obfuscated binary non obfuscated binary

hash average (ns) median (ns) std dev. (ns) average (ns) median (ns) std dev. (ns)
md5 36896 36972 258 1633 1641 16,6
adler 517 517 1,36 66 66 0,213

jenkins 466 466 1,35 33,2 33,2 0,078
siphash 1661 1665 13 67,6 67,5 0,254

superfasthash 316 316 0,633 20,2 20,2 0,029
spookyhash 461 461 0,703 64,4 64,4 0,2
cityhash64 158 158 0,258 17,1 17,1 0,09

fnv1a 175 175 0,344 15,5 15,5 0,023

Tab. 11.5: Microbenchmarking results

11.4 Lookup tables

#iterations = 30
no obfuscation

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 449 11,8 7,48 12,5 3,71 1,86 4,12 1,86

median 449 11,8 7,48 12,5 3,71 1,86 4,12 1,86

stddev 5,37 0,129 0,047 0,03 0,01 0,007 0,012 0,005

Tab. 11.6: Microbenchmarking results: baseline
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#iterations = 30
lookup tables

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 597 23 13,4 39,9 12,5 9,13 23,3 20,2

median 601 23 13,3 39,9 12,5 9,1 23,3 20,2

stddev 6,51 0,1 0,058 0,183 0,042 0,102 0,055 0,162

Tab. 11.7: Microbenchmarking results: lookup tables

11.5 Range divider

#iterations = 30
range divider

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 901 19,9 19,9 22,3 18,3 16,1 16,8 16,9

median 900 19,8 19,8 22,3 18,3 16 16,8 16,9

stddev 4,62 0,305 0,164 0,211 0,32 0,244 0,026 0,031

Tab. 11.8: Microbenchmarking results: range divider

#iterations = 30
no obfuscation

hashes md5 adler jenkins siphash superfasthash fnv1a spookyhash cityhash

mean 397 10,7 9,74 11,5 6,36 4,48 5,8 4,23

median 397 10,7 9,73 11,4 6,29 4,5 5,78 4,22

stddev 5,24 0,149 0,101 0,218 0,133 0,054 0,096 0,065

Tab. 11.9: Microbenchmarking results: no obfuscation
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