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Abstract. We present a static analysis approach for computing a pa-
rametric upper-bound of the amount of memory dynamically allocated
by (Java-like) imperative object-oriented programs. We propose a gene-
ral procedure for synthesizing non-linear formulas (actually polynomials)
which conservatively estimate memory consumption in terms of method’s
parameters. We have implemented the procedure and evaluated it on se-
veral benchmarks. Experimental results produced exact estimations for
most test cases, and quite precise approximations for many of the others.
We also apply our technique to compute usage in the context of scoped
memory and discuss some open issues.

1 Introduction

The embedded and real-time software industry is leading towards the use of
object-oriented programming languages such as Java. This trend brings in new
research challenges.

A particular mechanism that is quite problematic in real-time embedded
contexts is automatic dynamic memory management. One problem is that exe-
cution and response times are extremely difficult to predict in presence of a
garbage collector. There has been significant research work to come up with a
solution to this issue, either by building garbage collectors with real-time perfor-
mance, e.g. [24,25,34,36,1], or by using a scope-based programming paradigm,
e.g. [21,3,20,7]. Another problem is that evaluating quantitative memory re-
quirements becomes inherently hard. Indeed, finding a finite upper bound on
memory consumption is undecidable [22]. This is a major drawback since em-
bedded systems have (in most cases) stringent memory constraints or are critical
applications that cannot run out of memory.
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Eclipse Innovation Grants.



In this paper we propose a novel technique for computing a parametric upper-
bound of the amount of memory dynamically allocated by Java-like imperative
object-oriented programs.

As the major contribution, we present a technique to analyze dynamic alloca-
tions done by a method. Given a method m with parameters p1, . . . , pk we show
an algorithm that computes a parametric non-linear expression over p1, . . . , pk

which over-approximates the amount of memory allocated during its execution.
Roughly speaking, for every allocation statement we find an invariant that

describes the relation between programs variables. Then, the amount of consu-
med memory is based on the number of integer points that satisfy the invariant.
This number is given in a parametric form as a polynomial where unknowns
are method input parameters. Our technique does not require annotating the
program in any form and does produces parametric non-linear upper-bounds on
memory usage. The polynomials are to be evaluated on program (or method)
inputs to obtain the actual bound. For instance, given the following program:

void m1(int k) {

for(i=1;i<=k;i++) {

a = new A();

m2(i);

}

}

void m2(int n) {

for(j=1;j<=n;j++) {

b = new B();

}

}

for m2, our technique computes the expression size(B) · n . That is the amount
of memory allocated if the program starts at m2. However, for m1 our technique
computes the expression size(A) · k + size(B) · ( 1

2k2 + 1
2k) because a program

starting at m1 will also invoke m2 k times and, at each invocation i, the new
statement inside the loop will be executed i times, which gives a total 1+. . .+k =
k.(k+1)

2 instances of B.
Then, we specialize our method for scoped-based memory management, com-

bining the algorithm with some results from pointer and escape analysis. Given
a method m with parameters p1, . . . , pk, we develop two algorithms that com-
pute parametric non-linear expressions over p1, . . . , pk which over-approximate,
respectively, the amount of memory that escapes and is captured by m. These
expressions can be particularly useful in a scoped-memory framework.

These techniques can be used to predict memory allocation, both during
compilation and at runtime. Applications are manyfold, from improvements in
memory management to the generation of parametric memory-allocation certifi-
cates. These specifications would enable application loaders and schedulers (e.g.,
[29]) to make decisions based on available memory resources and the memory-
consumption estimates.
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1.1 Related Work

The problem of dynamic memory estimation has been studied for functional
languages in [26,27,37]. The work in [26] statically infers, by typing derivation
and linear programming, linear expressions that depend on function parameters.
The technique is stated for functional programs running under a special memory
mechanism (free list of cells and explicit deallocation in pattern matching). The
computed expressions are linear constraints on the sizes of various parts of data.
In [27] a variant of ML is proposed together with a type system based on the
notion of sized types [28], such that well typed programs are proven to exe-
cute within the given memory bounds. The technique proposed in [37] consists
on, given a function, constructing a new function that symbolically mimics the
memory allocations of the former. The computed function has to be executed
over a valuation of parameters to obtain a memory bound for that assignment.
The evaluation of the bound function might not terminate, even if the original
program does.

For imperative object-oriented languages, solutions have been proposed in
[22,8]. The technique of [22] manipulates symbolic arithmetic expressions on
unknowns that are not necessarily program variables, but added by the analy-
sis to represent, for instance, loop iterations. The resulting formula has to be
evaluated on an instantiation of the unknowns left to obtain the upper bound.
No benchmarking is available to assess the impact of this technique in practice.
Nevertheless, two points may be made. Since the unknowns may not be pro-
gram inputs, it is not clear how instances are produced. Second, it seems to be
quite over-pessimistic for programs with dynamically created arrays whose size
depends on loop variables. The method proposed in [8,9] relies on a type system
and type annotations, similar to [27]. It does not actually synthesize memory
bounds, but statically checks whether size annotations (Presburger’s formulas)
are verified. It is therefore up to the programmer to state the size constraints,
which are indeed linear.

Our approach combines techniques used for performance analysis [17], cache
analysis [11], data locality [32], worst case execution time analysis [31], and me-
mory optimization [23,38]. To our knowledge, their use to automatically synthe-
size method-centric parametric non-linear over-approximations of memory con-
sumption is novel.

1.2 Motivating Example

In Figure 1 we present the example we will use throughout the paper to illus-
trate our approach. The program creates two arrays: a (bi-dimensional) and e,
whose cells can contain an Integer (new Integer) or an array of Integers (newA
Integer) depending on an expression valued over a loop variable.

Using our technique we could synthesize the following parametric expressions,
representing, for every method, a parametric upper-bounds of the amount of
memory it allocates:
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memAlloc(m0) = size(Integer[]) ·
�1

9
mc3 +

23

6
mc2 + (per(mc, [

29

2
,
71

6
,
25

2
]))mc +

per(mc, [11,
83

9
,
79

9
])
�

+ size(Integer) ·
� 1

3
m2 + 2mc + per(mc, [0,

2

3
,
2

3
)
�

+

+size(Object[]) ·
� 1

2
mc2 +

7

2
mc
�

+ 2 · size(RefO)

memAlloc(m1) = size(Integer[]) ·
� 1

9
k3 +

5

2
k2 + (per(k, [

23

6
,
23

6
,
19

6
])k + (per(k, [9,

77

9
,
70

9
])
�

+

size(Integer) ·
�1

3
k2 +

2

3
k + (per(k, [0, 0,

1

3
]) + size(Object[]) ·

�1

2
k2 +

3

2
k
�

+

size(RefO)

memAlloc(m2) = size(Integer[]) ·
� 1

3
n2 + (per(n, [

16

3
,
14

3
, 4])n + (per(n, [2, 1,

2

3
])
�

+

size(Integer) ·
�2

3
n + (per(n, [0,

1

3
,
2

3
])
�

+ size(Object[]) · n

where for an unknown x and a vector a = [a0, . . . , ak−1] of elements, per(x, a)
denotes the element ai where i = x mod k.

void m0(int mc) {

1: RefO h = new RefO();

2: Object[] a = m1(mc);

3: Object[] e = m2(2*mc,h);

}

Object[] m1(int k) {

1: int i;

2: RefO l = new RefO();

3: Object[] b = newA Object[k];

4: for(i=1;i<=k;i++) {

5: b[i-1] = m2(i,l);

}

6: Object[] c = newA Integer[9];

7: return b;

}

Object[] m2(int n, RefO s) {

1: int j;

2: Object c,d,e;

3: Object[] f = newA Object[n]

4: for(j=1;j<=n;j++) {

5: if(j % 3 == 0) {

6: c = newA Integer[j*2+1];

}

else {

7: c = new Integer(0);

}

8: d = newA Integer[4];

9: f[j-1] = c;

}

10: e = newA Integer[1];

11: s.ref = e;

12: return f;

}

class RefO {

public Object ref;

}

Fig. 1. Motivating example

1.3 Document Structure

In Section 2 we introduce useful definitions, notations, and some already de-
veloped techniques we use. In Section 3, we explain our general method for
calculating the memory consumption. In Section 4 we explore how to compute
invariants and to deal with more complex data structures and algorithms. In
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Section 5 we show our method for scope-based memory management. In section
6 we show the results of applying our technique to some well known benchmarks.
Section 7 we discuss some extensions and future work. Section 8 presents some
conclusions.

2 Preliminaries

2.1 Counting the number of solutions of a set of constraints

Let I be a set of constraints over a set of integer variables V = W ] P where P
represents a set of distinguished variables (called parameters) and W the remai-
ning set of variables appearing in the constraints. C(I, P ) denotes a symbolic
expression over P that provides the number of integer solutions in I for the set
of variables W , assuming that P has fixed values. More precisely:

C(I, P ) = λ~p.( #{ ~w | I [W/~w,P/~p ] } )

There are several techniques that obtain these symbolic expressions [10,17].
Here we will use the technique described in [10], where resulting expressions are
polynomials (called Ehrhart polynomials [15]) whose coefficients are periodic
functions of the parameters. For instance, the following table shows some sets of
linear constraints and their correspoing Ehrhart polynomials:

I W P C(I, P )

{k = mc, 1 ≤ i ≤ k} {k, i} {mc} mc

{k = mc, 1 ≤ i ≤ k, 1 ≤ j ≤ i, j mod 3 = 0} {k, i, j} {mc} 1

6
mc2− 1

6
mc+per(mc, [0, 0,− 1

3
])

{n = 2mc} {n} {mc} 1

where for an unknown x and a vector a = [a0, . . . , ak−1] of elements, per(x, a)
denotes the element ai where i = x mod k.

2.2 Notation for Programs

We define a program as a set {m0,m1, . . .} of methods. A method has a list Pm of
parameters ( ~pm will denote the method arguments when m is called by another
method m′) and a sequence of statements. For simplicity, we will start assuming
that method parameters will be of integer type. We will also assume that there is
no variable name clashing including formal parameters, local and global variable
names. On the other hand, recursion is not allowed and, if present, it should be
eliminated using known program transformations.

Each statement in a program is identified with a control location Label =def

Method × IN (a method and a position inside that method) which uniquely
characterizes the statement via the stm mapping (stm : Label → Statement).

In a few words, the state of a program in run-time is given by the variable
values, a control location and a call stack. The absence of recursion and name
clashing implies that mapping variable names to values is enough to model pro-
gram data (i.e., no environment or data stacks are required).
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2.3 Representing a program state

Memory consumption estimation is essentially a matter of counting the maxi-
mum number of times object creation statements are executed in a program run.
We need to find an abstraction able to conservatively describe program states
and suitable for applying the previously presented counting technique.

To describe a program state we resort to an abstraction where only the
control location and the call stack are of interest. That is, abstract states are
pairs (π, l), denoted as as = π.l, where l = (m,n) ∈ Label is the location of the
statement and π ∈ Label∗ is a path to method m in the call graph.

An invariant for an abstract state as is an assertion over the program va-
riables (local and global) that holds whenever such a state is reached in any
program run.

Given a program starting at method m and an abstract state as = π.l for
such program (i.e. first(π.l) = (m, l′)), Im

as denotes an invariant predicate over
the program variables, for the abstract state as. Then, the pair < as, Im

as > is
a conservative approximation of the possible program states at location l and
stack π in any run starting with an invocation to method m.

The second column of table 1 shows the linear invariants for some abstract
states for a program starting at method m0.

as Im0
as C(Im0

as , Pm0)

m0.1 {mc = mc0} 1

m0.2.m1.2 {k = mc} 1

m0.2.m1.3 {k = mc} 1

m0.2.m1.6 {k = mc} 1

m0.2.m1.5.m2.3 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.2.m1.5.m2.6 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 = 0} 1

6
mc2− 1

6
mc+per(mc, [0, 0,− 1

3
])

m0.2.m1.5.m2.7 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 > 0} 1

3
mc2 +

2

3
mc + per(mc, [0, 0,

1

3
])

m0.2.m1.5.m2.8 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n} 1

2
mc2 +

1

2
mc

m0.2.m1.5.m2.10 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.3.m2.3 {n = 2mc} 1

m0.3.m2.6 {n = 2mc, 1 ≤ j ≤ n, j mod 3 = 0} 2

3
mc + per(mc, [0,− 2

3
,− 1

3
])

m0.3.m2.7 {n = 2mc, 1 ≤ j ≤ n, j mod 3 > 0} 4

3
mc + per(mc, [0,

2

3
,
1

3
])

m0.3.m2.8 {n = 2mc, 1 ≤ j ≤ n} 2mc

m0.3.m2.10 {n = 2mc} 1

Table 1. Some invariants and Ehrhart polynomials for m0
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2.4 Counting the number of visits of an abstract state

As observed, an invariant for an abstract state as constraints the possible data
values of any run configuration that abstracts into as. This, together with the
fact that an abstract state also defines the call stack configuration, implies that
counting the number of integer solutions of such invariant yields an expression
that over-approximates the number of times a concrete state whose abstraction
is as is reached in a run starting from the analyzed method.

In order to increase the precision of computed upper-bound, it is preferable
to obtain invariants that only capture what is required to be known about the
relevant iteration spaces [10] in which the abstract state is involved. Thus, our
strategy is to build invariants that just involve parameters and inductive varia-
bles (inductive invariants). In our setting, a set of inductive variables is a subset
of program variables which cannot all repeat the same value in two different vi-
sits of the abstract state3. Note that, relying on inductive invariants guarantees
soundness. To improve precision, we are particularly interested in finding a small
set of inductive variables4.

The third column of table 1 shows the Ehrhart polynomials that count the
number of solutions for some abstract states for a program starting at method
m0.

3 Synthesizing memory consumption

In this section we present our technique for synthesizing non-linear formulas
(actually polynomials) to conservatively over-estimate memory consumption in
terms of method’ parameters.

Firstly, we show how to adapt the counting technique, previously discussed in
section 2.4, to cope with memory allocations. Secondly, we show how to compute
the total amount of memory allocated by a method.

3.1 Memory allocated by a creation site

We now focus on statements that create new objects (i.e. allocates memory):new
and newA statements. We assume that those statements only create object ins-
tances and constructors are called separately and handled as any other method
call. We denote Creation Site or cs to an abstract state associated to such ope-
rations: cs ∈ { π.l ∈ Label+ | stm(l) ∈ {new Type, newA Type[. . . ] . . . [. . . ]} }.

To compute the amount of memory allocated by a creation site we define the
function S (see below). Given an invariant Im

as for that abstract state as and
method m parameters Pm, it computes the number of visits using the counting
method and multiplies the resulting expression for the size of the allocated ob-
ject. This is true for new statements. Nevertheless, in the case of the creation
3 Actually, we allow repetition of inductive variable values just in the case of a cyclic

behavior of a non-halting run
4 Note that, according to our definition, the set of all variables is an inductive set.
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of arrays (i.e., newA T[e1] . . . [en]), these techniques need to be slightly adapted
considering the fact that an array is a collection of elements of the same type.
In fact, the newAC[e1] . . . [en] statement creates the same number of instances
(and, therefore, allocates the same amount of memory) than n nested loops of
the form:

for( h1 = 1; h1 ≤ e1; h1 + + )
. . .

for( hn = 1; hn ≤ en; hn + + )
newA C[1]

whose iteration space can be described by the invariant
⋃

i=1..n{1 ≤ hi ≤ ei}.
Thus, we define the function S as follows:

S(Im
cs ,Pm, cs) // returns an Expression over P

l = last(cs); // (cs = π.l)
if stm(l)= new T

res:=size(T)·C(Im
cs , Pm);

else if stm(l) = newA(T,e1, . . . , en )

Invarray:= Im
cs ∪

⋃

i=1..n

{1 ≤ hi ≤ ei}
res:=size(T[])·C(Invarray, Pm);

end if;
return res;

where size(T) is a symbolic expression that denotes the size of an object of
type T, and size(T[]) is a symbolic expression that denotes the size of a cell
of an array of type T5. C is the symbolic expression that counts the number of
integer solutions for an invariant as defined in 2.1.

As linear invariants are conservative, therefore S is, in general, an over-
approximation of the allocated memory.

3.2 Memory allocated by a method

Having shown how to compute the memory allocated by a single creation site,
we solve how much memory is allocated by a run starting at method m. Our
technique basically identifies the creation sites reachable from that method, get
the corresponding invariants, compute the amount of memory allocated by each
one and finally yields the sum of them.

Let CSm denotes the set of creation sites reachable from method m (i.e.,
paths π.l where π is a path in the call graph starting from m and stm(l) is a

5 size(T[]) will have the same size for all Object subclasses and it will differ for
arrays of basic types.
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new statement). The creation sites of the example in Fig. 1 are:
CSm0 = { m0.1, m0.2.m1.2, m0.2.m1.3, m0.2.m1.6, m0.2.m1.5.m2.3,

m0.2.m1.5.m2.6, m0.2.m1.5.m2.7, m0.2.m1.5.m2.8, m0.2.m1.5.m2.10,
m0.3.m2.3, m0.3.m2.6, m0.3.m2.7, m0.3.m2.8, m0.3.m2.10 }

CSm1 = { m1.2, m1.3, m1.6, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7, m1.5.m2.8,
m1.5m2.10 }

CSm2 = { m2.3, m2.6, m2.7, m2.8,m2.10 }
Observe that, since we are not dealing with recursive programs, the number

of paths in the call graph and thus the number of abstract states is finite.
Now, the problem of computing a parametric upper-bound of the amount of

memory allocated by a method m can be reduced to: for each cs ∈ CSm, obtain
an invariant, compute the function S and sum the result it yields.

The function computeAlloc computes an expression (in terms of method pa-
rameters) that over-approximates the amount of memory allocated by a selected
set of creations sites:

computeAlloc(m, CS) =
∑

cs ∈ CS

S(Im
cs , Pm, cs) , where CS ⊆ CSm

Given a method m, the symbolic estimator of the memory dynamically allocated
by m is defined as follows:

memAlloc(m) = computeAlloc(m, CSm)

In Table 2 we show the polynomials that over-approximate the memory allo-
cated for (some selected) creation sites reachable from method m0 and the ex-
pression memAlloc(m0).

Using the technique we are able to evaluate the consumption of a program
starting at any method m. For instance, in case of a batch program it would
be reasonable to compute the consumption from the actual main method of the
program since the consumption usually depends on command line arguments
or contextual objects like the size of a referenced file. Nevertheless, computing
consumption for any method would be useful to get different context-independent
consumption specifications at a finer level of granularity. Besides, in cases where
the application model is reactive event-driven and the consumption should be
measured from a dispatched method according to the parameters values conveyed
in the event.

4 Computing invariants

The precision of our technique relies on how precise the abstract state invariants
are. We basically can resort to either programmer provided assertions (“a la”
JML [30]) or the reuse of existing general approaches or Java-oriented techni-
ques [13,12,33,18,16,6]. Note that, these techniques do not directly deal with our
concept of abstract state invariants since obtained invariants are actually local
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cs S(Im0
cs , Pm0)

m0.2.m1.2 size(RefO)

m0.2.m1.6 size(Integer[]) · 9

m0.2.m1.5.m2.3 size(Object[]) · ( 1

2
mc2 +

1

2
mc)

m0.2.m1.5.m2.6 size(Integer[]) · (
1

9
mc3 +

1

2
mc2 + per(mc, [− 1

6
,− 1

6
,− 5

6
])mc +

per(mc, [0,− 4

9
,− 11

9
]))

m0.2.m1.5.m2.7 size(Integer) · ( 1

3
mc2 +

2

3
mc + per(mc, [0, 0,

1

3
])

m0.2.m1.5.m2.8 size(Integer[]) · (2mc2 + 2mc)

m0.3.m2.3 size(Object[]) · 2mc

m0.3.m2.6 size(Integer[]) · ( 4

3
mc2 + per(mc, [2,− 2

3
,
2

3
])mc + per(mc, [0,− 2

3
,− 2

3
]))

m0.3.m2.7 size(Integer) · ( 4

3
mc + per(mc, [0,

2

3
,
1

3
])

m0.3.m2.8 size(Integer[]) · 8mc

memAlloc(m0) size(Integer[]) ·
� 1

9
mc3 +

23

6
mc2 + (per(mc, [

29

2
,
71

6
,
25

2
]))mc +

per(mc, [11,
83

9
,
79

9
])
�

+ size(Integer) ·
� 1

3
m2 + 2mc + per(mc, [0,

2

3
,
2

3
)
�

+

+size(Object[]) ·
� 1

2
mc2 +

7

2
mc
�

+ 2 · size(RefO)

Table 2. Some symbolic expressions of memory allocations and the final result
for m0

to the method where the control location l resides. Thus, for an abstract state
as = π.l we have to take into account the chain of invocations π leading to the
method where l resides. Then, we build an abstract state invariant by generating
the conjunction of the local invariants that hold in the control locations stored
in π and by binding formal and actual parameters (see Table 1 and [4,19]).

On the other hand, when dealing with programs that do not follow classical
iteration patterns (like for loops and while loops with simple conditions) we face
the challenges of finding the inductive variables and generating invariants that
constraint their values. In what follows, we discuss how we deal with a iteration
pattern pervading Java application as the case of looping over collections.

In this language fragment loops are constrained to be of the form:

Iterator it1= collection1.iterator();

while (it1.hasNext() && condition) {

a = (Type)it1.next();

...

}

To support this kind of construct some small adaptations should be addressed:

1. As the counting method deals with integer-valued inductive variables, each
iterator should be associated to a virtual counter. These counters are initia-
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lized when the iterator is created and incremented when the corresponding
iterator.next() is applied. Consequently, loop invariants involving itera-
tors will include a constraint of the form {0 ≤ iterator < collection.size()}

2. In the case of collections, the parameter to be used when computing the inva-
riant is its size 6. However, many integer-valued views are allowed depending
on how precisely a relevant semantical parameter of complexity can be dedu-
ced in each particular case (e.g., the value of the largest integer member of
the collection, the size of the largest collection inside the collection, the num-
ber of objects satisfying a given property, etc.). Those symbolic expressions
are introduced as integer valued variables and assigned the corresponding
value when the method is invoked7. Then, part of the resulting polynomial
would be expressed on those variables if we perform the counting procedure
informing those variables as parameters.

Figure 2 shows a (very simple) implementation of a dynamic array using a list of
fixed sized nodes. The memory allocated by the method addAll depends on the
size of the collection passed as a parameter. The actual allocation takes place in
the method newBlock where a new block of memory is allocated only when the
previous block is full. Our method yields the following invariant for the abstract
state addAll.2.add.3:

IaddAll
addAll.2.add.3.newBlock.1 = {BSIZE = 5, 0≤ it< c.size(), len = it,

len mod BSIZE = 0, how = BSIZE}
and the corresponding allocation expression in terms of the collection size8:

S(IaddAll
addAll.2.add.3.newBlock.1, {c}) = c.size() + (per(c.size(), [0, 4, 3, 2, 1])

5 Applications to scoped-memory

The scoped-memory management is based on the idea of grouping sets of objects
into regions that are associated with the lifetime of a computation unit. Thus, the
objects are collected together when their corresponding computation unit finishes
its execution. In order to infer scope information we use pointer and escape
analysis (e.g., [35,2]). In particular, we assume that, at the method invocation,
a new region is created and it will contain all the objects that are captured by
this method. When it finishes, the region is collected with all its objects. An
implementation of scoped memory following this approach can be found at [20].
6 This is a common trick in diverse disciplines such as complexity theory and category

partition testing
7 Actually, this is not strictly necessary since an invariant checker or invariant infe-

rence engine could be informed declaratively about the property ensured over those
variables using already defined terms as the collection observer size() in JML.

8 The function S will add the constraint { 1 ≤ h1 ≤ how} since the involved creation
site is a newA statement.
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public class ArrayDim {

Vector list; int len;

final static int BSIZE = 5;

public ArrayDim() {

1: list= new Vector();

2: len = 0; }

public void add(Object o) {

1: Object[] block;

2: if (len % BSIZE == 0)

3: block = newBlock(BSIZE);

else

4: block=(Object [])

list.lastElement();

5: block[len % BSIZE] = o;

6: len++;

}

Object[] newBlock(int how) {

1: Object[] block=new Object[how];

2: list.add(block);

3: return block;

}

void addAll(Collection c) {

1: for(Iterator it=c.iterator();

it.hasNext();)

{

2: add(it.next());

}

}

}

Fig. 2. Collection Example

An object escapes a method when its lifetime is longer than the method’
lifetime. So it can not be safely collected when this unit finishes its execution.
Let escape : Method → IP (CreationSite) be the function that given a method
m returns the creation sites ∈ CSm that escape m. That is abstract states
cs = π.l where the object created at l escapes all methods in π [20]. An object
is captured by the method m when it can be safely collected at the end of the
execution of m. Let capture : Method → IP (CreationSite) be the function that
that given a method m returns the creation sites ∈ CSm that are captured by
m. That is abstract states cs = π.l where the object created at l escapes all
methods in π.l except m itself [20]. For instance, for our example in figure 1 we
have:

escape(m0) = {}
escape(m1) = {m1.3, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7}
escape(m2) = {m2.3, m2.6, m2.7, m2.10}

capture(m0) = {m0.2.m1.3, m0.2.m1.5.m2.3, m0.2.m1.5.m2.6, m0.2.m1.5.m2.7,

m0.3.m2.3, m0.3.m2.6, m0.3.m2.7, m0.3.m2.10}
capture(m1) = {m1.5.m2.10, m1.2, m1.6}
capture(m2) = {m2.8}

5.1 Memory that escapes a method

In order to symbolically characterize the amount of memory that escapes a
method, we use the algorithm developed in Section 3, but we restrict the search
to creation sites that escape the method:
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memEscapes(m) = computeAlloc(m, escape(m))

This information can be used to know how much memory the method leaves
allocated in the active regions (the caller region or their parents regions in the call
stack) after its own region is deallocated or to measure the amount of memory
that cannot be collected by a garbage collector after method termination. In
Table 3 we show the invariants and the memory-consumption expressions for
some of the escaping creation sites of m1 and m2. Observe that expressions are
defined only on the method’s parameters.

cs Im1
cs S(Im1

cs , Pm1)

m1.5.m2.6 {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 = 0} size(Integer[]) · (
1

9
.k3 +

1

2
k2 +

per(k, [− 1

6
,− 1

6
,− 5

6
])k+per(k, [0,− 4

9
,− 11

9
]))

m1.5.m2.7 {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 > 0} size(Integer) · ( 1

3
k2 +

2

3
k + per(k, [0, 0,

1

3
])

memEscapes(m1)= size(Integer[]) ·
� 1

9
k3 +

1

2
k2 + (per(k, [

5

6
,
5

6
,
1

6
])).k + per(k, [0,− 4

9
,− 11

9
]))
�

+

size(Integer) ·
�1

3
k2 +

2

3
.k + per(k, [0, 0,

1

3
]))
�

+ size(Object[]) ·
�1

2
k2 +

3

2
k
�

cs Im2
cs S(Im2

cs , Pm2)

m2.6 {1 ≤ j ≤ n, j mod 3 = 0} size(Integer[]) · (
1

3
n2 + per(n, [

4

3
,
2

3
, 0])n +

per(n, [0,−1,− 4

3
]))

m2.7 {1 ≤ j ≤ n, j mod 3 > 0} size(Integer) · ( 2

3
n + per(n, [0,

1

3
,
2

3
])

memEscapes(m2)= size(Integer[]) ·
� 1

3
n2 + (per(n, [

4

3
,
2

3
, 0]))n + per(n, [2, 1,

2

3
)
�

+

size(Integer) ·
�2

3
n + per(n, [0,

1

3
,
2

3
)
�

+ size(Object[]) · n

Table 3. Invariants and polynomials of some escaping creation sites of m1 and
m2

5.2 Memory captured by a method

To compute the expression over-estimating the amount of allocated memory that
is captured by a method, we use the algorithm developed in Section 3, but we
restrict the search to creation sites that are captured by the method:

memCaptured(m) = computeAlloc(m, capture(m))

Table 4 shows the symbolic expression that over-approximates the amount
of memory capture by each method for our example.

Assuming the resulting expression is a symbolic estimator of the size of the
memory region associated to the method’s scope, this information can be used
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m memCaptured(m)

m0 size(Integer[]) ·
�1

9
mc3 +

11

6
mc2 + (per(mc, [

9

2
,
11

6
,
5

2
]))mc +

per(mc, [2,
2

9
,−2

9
])
�
+size(Integer)·

�1

3
mc2+2mc+per(mc, [0,

2

3
,
2

3
])
�
+

size(Object[]) ·
�1

2
mc2 +

7

2
mc
�

+ size(RefO)

m1 size(Integer[]) · (k + 9) + size(RefO)

m2 size(Integer[]) · 4n

Table 4. Symbolic expressions of the memory captured by methods m0, m1 and
m2

to specify the size of the memory region to be allocated at run-time, as requi-
red by the RTSJ [3]. Moreover,it can be used to improve memory management
algorithms.

6 Experiments

We have developed a proof-of-concept tool-suite to experimentally validate our
approach for Java applications. In order to make the result more readable, the
tool computes number of object instances created when running the selected
method, rather than actual memory allocated by the execution of the method9.

The initial set of experiments were carried out on a significant subset of
programs from JOlden [5] and JGrande [14] benchmarks. We selected some in-
teresting methods in terms of the proportion of allocations made by them and
whose invariants were relatively easy to compute. This experimental results are
focused on the allocation estimation (Sect.3) and we are leaving for a near fu-
ture the results of the application of our technique to the scoped memory ma-
nagement(Sect. 5). Although our current prototype does not handle recursion
in general, it is able to deal with some recursive patterns such as tail recursion.
Additional experiments and details about the the tool can be found on [4]. Table
5 shows the calculated polynomials and a comparison between real executions
and estimations obtained by evaluating the polynomials with the corresponding
values of parameters. The last column shows the relative error ((#Obs - Esti-
mation)/Estimation).

The studies showed that the technique was indeed very accurate, actually
yielding exact figures in most benchmarks. In some cases, the over-approximation
was due to the presence of creation sites associated with exceptions (which did
not occur in the real execution), or because the number of instances could not
be expressed as a polynomial. For instance, in the bisort example, the reason of
the over-approximation is that the actual number of instances is always bounded

9 For simplicity we assume that the function size(C)=1 for all type.
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Example:Class.Method #CSm memAlloc Param. #Objs Estimation Err%

mst:
mst:MST.computeMST(g, nv) 1 nv − 1 10 9 9 0,00

20 19 19 0,00
100 99 99 0,00

1000 999 999 0,00
bh:
Tree.createTestData(nb) 23 17nb + 26 10 196 196 0,00

20 366 366 0,00
100 1726 1726 0,00

1000 17026 17026 0,00
bisort: (recursive)
Value.createTree(size,sd) 1 size− 1 10 7 9 22,22

20 15 19 21,1
200 127 199 36,2
64 63 63 0,0

128 127 127 0,0
256 255 255 0,0

power: (recursive)
Root.<init> 14 32622 - 32412 32622 0,64
em3d:
Bigraph.create(nN, nD) 32 6nD · nN + 4nN + 8 (10, 5) 348 348 0,00

(20, 6) 808 808 0,00
(100, 7) 4608 4608 0,00

(1000, 8) 52008 52008 0,00
(*)health: (recursive)

Village.createVillage(l, lab, b, s) 8 11(4l − 1)/3 2 55 ∞ ∞
4 935 ∞ ∞
6 15015 ∞ ∞
8 240295 ∞ ∞

fft:
FFT.test(n) 10 4n + 8 8 38 40 5,00

32 134 136 1,47
256 1030 1032 0,19

1024 4102 4104 0,05
heapsort:
JGFHeapSortBench.JGFinitialise 2 1000001 - 1000001 1000001 0,00
crypt:
JGFCryptBench.JGFinitialise 7 9000113 - 9000113 9000113 0,00
series:
JGFSeriesBench.JGFinitialise 1 20000 - 20000 20000 0,00

Table 5. Comparison between actual executions and estimations

by 2i − 1 being i = dlog2 sizee. Indeed, the estimation was exact for arguments
power of 2. For the (*)health example, it was impossible to find a non-trivial
linear invariant. It actually turns out that memory consumption happens to be
exponential10 (the given result was calculated by hand). For fft, the argument
n was required to be a power of 2 for not to throw an exception.

7 Discussion and Future Work

7.1 Memory required to run a method

Knowing the amount of memory captured by a method is not enough to easily
deduce the amount of memory actually required to run it. Indeed, we must
10 Some JOlden programs not considered here also lead to exponential memory usage
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consider the sizes of the memory regions of all methods it invokes (directly or
indirectly). A possible over-approximation for this is the calculus presented in
Sect. 3. However, it does not leverage on the fact that the there is a scoped-
memory management that garbage collects unused regions. Note that, in this
setting although a method can be potentially invoked several times, it will be
at most one region active per method whose size may change according to the
calling context (the value assigned to its parameters each time it is invoked). In
[4] we present an approach to overestimate the consumption peak of a method.
For the example of figure 1, we synthesize the following symbolic expression that
represents the amount of memory required to run m0:

requiredm0(m0) = size(Integer[]) ·
�1

9
mc3 +

11

6
mc2 + (4 + per(mc, [

9

2
,
11

6
,
5

2
]))mc

+per(mc, [2,
2

9
,−2

9
])
�

+

�
(9 + mc) if mc ≤ 3
4mc if mc > 3

�
+size(Integer) ·

�1

3
mc2 + 2mc + per(mc, [0,

2

3
,
2

3
])
�

+size(Object[]) ·
�1

2
mc2 +

7

2
mc
�

+ 2 · size(RefO)

There are several relevant applications of this estimator, among them: me-
mory consumption certificates, over-estimation of heap usage, scheduling and
dynamic load of application based of memory requirements, etc.

Central to this peak consumption calculation is the overestimation of the
largest size required for a region associated to an invoked method. More precisely,
we define rsizeπ.m

mr
which yields the size of the largest region created by any call

to m following a call path π starting with mr and finishing with an invocation
to m as:

rsize
π.m
mr

=λ ~pmr ¦
�
Maximize memCaptured(m) subject to Imr

π [Pmr / ~pmr]
�

Note that Imr
π has the following sets of free variables: Pm (method m parame-

ters), Pmr (method mr parameters) and W (other variables in the invariant)
while memCaptured(m), the symbolic expression for the memory captured by
m, is only in terms of Pm.

Solving symbolically the maximization problem constitutes an interesting
line of research since it would avoid expensive run-time computations.

7.2 Dealing with recursion

As stated, currently we are not dealing with general recursion. This is probably
the most challenging theoretical obstacle for our method since some basic con-
cepts are rooted in the assumption of finite call chains. However, not supporting
recursion does not constitute a major drawback in many cases since our focus
are embedded applications where recursion is a “rara avis”. Nevertheless, we are
looking for ways of relaxing this limitation like counting the number of possible
stack configurations when recursion is eliminated.
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7.3 Improving method precision

When programs feature if statements with non-linearizable condition or poly-
morphic invocations it is usually the case of having abstract states that, by the
control structure, are mutually exclusive but their invariants have non-empty in-
tersection. This implies that some statement occurrence are counted more than
once by the current technique.

Consider the following example:
0: void test(int n,Object a[]) {

1: for(int i=1;i<=n;i++) {

2: if(t(i))

3: a[i] = new Integer[2*i];

4: else

5: a[i] = new Integer[10];

}

}

If t(i) is abstracted away, the invariants at test.3 and test.5 will be identical:
Itest

test.3 = Itest
test.5 = {1 <= i <= n}

and their corresponding size expressions11:
S(Itest

test.3, n) = n2 + n, S(Itest
test.5, n) = 10n.

The computeAlloc function will sum up these expressions and yield the
expression n2 + 11n . This result, although safe, would be too conservative. For
instance, for n = 6, the estimated memory utilization for test will be 102.
Nevertheless, analyzing the program, is easy to see that the maximum amount
consumed is 62. This corresponds to choosing the creation site test.5 when i is
between 1 and 5 and take the creation site test.3 when i is greater than 5 (see
figure 3).

Fig. 3. Evolution of size functions for the ”test” example

In [4] we show some advances in that direction.

11 To simplify the explanation, we intentionally omit the size(Integer) factor.
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7.4 Handling more complex iteration patterns

It is interesting to note that the idea of iterating a collection could go beyond the
previously stated situations and be generalized also to regard more general cycles
as iterator driven (perhaps supported in a less automatic way). For instance, a
typical fixpoint computation could be understood as iterating a collection whose
size is given by a virtual parameter fixedPointIterations which allows us to
estimate the memory consumption depending on the number of iterations (which
is a number generally unknown and non computable). The polynomial obtained
with our method may serve as a way to predict, before invocation, how many
iterations can be safely supported. As another example, a typical traversal of a
state space done by a modelcheking algorithm could be considered as iterating
a virtual collection that provides the number of states yet to be visited, and
thus, space complexity could be expressed in terms of the size of the state space.
In general, the heuristic used in these cases is to create and iterate a collection
consisting of the range of a variant function.

8 Conclusions

We have developed a technique to synthesize non-linear symbolic estimators of
dynamic memory utilization. We first presented an algorithm for computing the
estimator for a single method. We then specialized it for scope-based memory
management. Our approach resorts to techniques for finding invariants and coun-
ting integer solutions to sets of constraints. We believe that the combination of
such techniques, and in particular, their application to obtain specifications that
predict dynamic memory utilization is interesting and novel. Besides, it is suita-
ble for accurately analyzing memory utilization in the context of loop-intensive
programs. The estimators can be used both at compile time and run-time, for
example, to set up the appropriate parameters required by the RTSJ scoped-
memory API, to over estimate heap usage, to improve memory management
and to accurately determine whether a new programm can be safely dynamica-
lly loaded and scheduled without disturbing the others programs behavior.

We have developed a prototype tool that allowed us to experimentally eva-
luate the accuracy of the method on several Java benchmarks. The results were
very encouraging. We are currently improving the tool in order to thoroughly
test the complete approach (in particular integration with escape analysis) and
make the approximations tighter.

Other aspect to explore is the optimization of our method. Slicing techniques
and techniques to find inductive variables could help in reducing the number of
variables and statements considered when building the invariants. On the other
hand, techniques like [22] can be used to eliminate from our analysis creation
sites that can be statically pre-allocated.
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