
Static Analysis for Optimizing Big Dataueries

Diego Garbervetsky
Universidad de Buenos Aires, FCEyN, DC

ICC, CONICET. Argentina

Zvonimir Pavlinovic
New York University. USA

Michael Barnett, Madanlan Musuvathi, Todd
Mytkowicz

Microsoft Research. USA

Edgardo Zoppi
Universidad de Buenos Aires, FCEyN, DC

ICC, CONICET. Argentina

ABSTRACT

Query languages for big data analysis provide user extensibility
through a mechanism of user-deined operators (UDOs). These
operators allow programmers to write proprietary functionalities
on top of a relational query skeleton. However, achieving efective
query optimization for such languages is extremely challenging
since the optimizer needs to understand data dependencies induced
by UDOs. SCOPE, the query language from Microsoft, allows for
hand coded declarations of UDO data dependencies. Unfortunately,
most programmers avoid using this facility since writing and main-
taining the declarations is tedious and error-prone. In this work, we
designed and implemented two sound and robust static analyses for
computing UDO data dependencies. The analyses can detect what
columns of an input table are never used or pass-through a UDO
unchanged. This information can be used to signiicantly improve
execution of SCOPE scripts. We evaluate our analyses on thou-
sands of real-world queries and show we can catch many unused
and pass-through columns automatically without relying on any
manually provided declarations.

CCS CONCEPTS

· Information systems→Query optimization; Parallel and dis-
tributed DBMSs; · Software and its engineering→ Automated

static analysis;

KEYWORDS

Static analysis, Query optimization, Big Data, UDOs

ACM Reference format:

Diego Garbervetsky, Zvonimir Pavlinovic, Michael Barnett, MadanlanMusu-
vathi, Todd Mytkowicz, and Edgardo Zoppi. 2017. Static Analysis for Op-
timizing Big Data Queries. In Proceedings of 2017 11th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, Paderborn, Germany, September

4ś8, 2017 (ESEC/FSE’17), 6 pages.
https://doi.org/10.1145/3106237.3117774

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117774

1 INTRODUCTION

Programming big data applications is often done using data pro-
cessing languages that combine relational-style constructs with
imperative user-deined operators. Examples of systems relying
on this paradigm are, for instance, Spark [14], SCOPE [5, 15], and
U-SQL [1]. An important component of such systems are query opti-
mizers that work only over the relational skeleton of a program. The
user-deined operators (UDOs) are opaque and not analyzed during
optimization. Hence, query optimizers often miss opportunities to
signiicantly improve resource savings for big data applications.

The goal of this work is to automatically infer useful information
about UDOs during compile-time that can be used to optimize query
processing. In particular, we focus on big data programs written
in SCOPE, a query processing language developed at Microsoft.
SCOPE scripts receive, analyze, and return tables of data, similar
to SQL. In practice, user-deined operators can operate on tables
that can have several hundreds of columns and be hundreds of GB
large. According to SCOPE team experts, most of the network and
computational resources spent during execution of a SCOPE query
are in fact irrelevant for the query result. For instance, the runtime
will pass all of the table columns to a UDO although the operator
might use only a small fraction of input columns to produce the
output table. This happens since the runtime does not have detailed
knowledge on UDO inner-workings and hence must conservatively
assume that all input columns are used. The techniques we develop
in this work automatically analyze UDOs and provide the query
optimizer with such valuable pieces of information.

We use static analysis techniques to detect speciic column access
patterns induced by a UDO: which columns it reads from and the
dependencies between columns. This information can be used to
drastically optimize query execution:

(1) Columns in input tables not read by a UDO can be pruned away,
i.e., iltered out earlier in the query plan. This can result in less
data transferred between nodes, often measured in hundreds
of GB.

(2) Columns that are passed unmodiied through a UDO are pass-
through columns. The runtime can directly copy values of such
columns from the input table to the output table without ex-
pensive data marshalling through the UDO. Knowledge about
pass-through columns can also help the query optimizer under-
stand the distributed partitioning of the output table.

Additionally, unused and pass-through input columns can be used
to validate user-provided optimization declarations.

932

https://doi.org/10.1145/3106237.3117774
https://doi.org/10.1145/3106237.3117774

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Garbervetsky, Pavlinovic, Barnet, Musuvathi, Mytkowicz, Zoppi

The primary constraint for the analyses we present is total sound-
ness: we cannot produce incorrect result because that can lead to
invalid query results.

The irst static analysis we introduce aims at quickly providing
a conservative approximation of the input columns accessed by
a UDO. The analysis performs a simple, yet efective escape and
constant propagation alike analyses. The second analysis is more
ambitious, but also more costly. It computes precise data and control
dependencies in a UDO and relies on range and points-to analysis.
We require both of the analyses to graciously handle complex .NET
constructs such as loop iterators and closures. In general, we give
great attention to making our analyses sound and robust.

We evaluated our analyses1 on thousands of SCOPE query scripts
that are executed internally at Microsoft on a daily basis. We cor-
roborate that our analyses implementation achieve the expected
robustness and soundness requirement while still being efective.
This work was done as a collaboration between researchers at Mi-
crosoft, University of Buenos Aires, and New York University under
patronage of Microsoft SCOPE product group.

2 BACKGROUND

Before presenting the analyses we prove more information about
the SCOPE language, UDOs, and its ecosystem in general.

2.1 Cosmos

Cosmos is a distributed computing platform developed at Microsoft
for storing and analyzing massive datasets [15]. Designed to run on
large clusters consisting of thousands of commodity servers, Cos-
mos main platform objectives are availability, reliability, scalability,
performance, and reduced cost. The main components of Cosmos
are storage, execution environment, and SCOPE, a high-level pro-
gramming language for big data analytics. We now describe the
last component in more detail as it is the focus of this work.

2.2 SCOPE

SCOPE is the programming language used to write scripts that are
executed in Cosmos. It is primarily a version of SQL with several
extensions. The computation model of SCOPE is deined in terms
of a directed acyclic graph. Data exchanged between nodes in the
graph are in the form of strongly-typed tables. A table comprises a
set of columns, each column containing values of some particular
type. The data in a table is organized as a set of rows: each row has
a ield for every column.

The code that executes within a node is either generated by
the system or is user code, authored in C#, called a user-deined
operator (UDO). A UDO can be any combination of table ilters,
projections, and joins that are either impossible (or diicult) to
express in the SQL-ish subset of the language.

SCOPE API for UDOs: A SCOPE UDO is implemented as a C#
class which subclasses one of three base classes. The simplest, Pro-
cessor, implements a method that takes a row from the input table
as a parameter and returns zero or more rows [15]. A Reducer im-
plements a method that takes a rowset (a set of rows from the input
table that all have the same values in a speciied set of columns) and

1Available at https://github.com/Microsoft/rudder

returns zero or more rows. Finally, a Combiner is like a Reducer,
but receives two rowsets as its input [15].

All three must override a method in their respective base classes
that returns the schema of their output table. This method is exe-
cuted during query compilation. Optionally, the method may also
indicate that column pruning is allowed and to also attach infor-
mation to each (output) column indicating which input columns
that column depends upon. Without this information, the optimizer
must make the conservative assumption that all input columns are
read and that no information is available about which columns the
output table might be partitioned on. Not only do many UDOs fail
to add this optional information, but there is no check to make sure
that any declarations are in fact correct.

UDO Example: Figure 1 shows an illustrative example of a UDO.

1 IEnumerable<Row> Process(RowSet input_rowset, Row output_row,

string[] args) {

2 foreach (Row input_row in input_rowset.Rows) {

3 input_row.CopyTo(output_row);

4 string market = input_row[0].String;

5 output_row[2].Set("FOO" + market);

6 yield return output_row;

7 }}

Figure 1: Example SCOPE UDO

The operator returns an output table that is essentially a copy of
the input table where value of the output column indexed by 2 is
created using the value of the input column indexed by 0. Columns
can either be accessed by integer indices, or more commonly, using
string indices. The above example exhibits a structure common to
almost all real-world UDOs: it is written as an iterator, a C# idiom
for deining a lazy, cooperative state machine that must be polled
for each element in the sequence it returns. There is a foreach loop
iterating over the collection of input rows, code that creates an
output row, and a yield instruction that returns that row.

2.3 UDO Representation

While the source code in Figure 1 is simple, it is compiled into a
much more complicated representation in the resulting bytecode.
Our analysis, as most static analyses, operates on the bytecode, not
the source code. As depicted in Figure 2, the foreach-yield loop is
implemented using a closure class (<Process>_d__d<>3) whose
method ’etEnumerator essentially populates the compiler gener-
ated ields that (1) model the parameters of the original Process
method and ields that (2) represent the state of the loop iteration.

The MoveNext method is a state machine that, depending on
the state, invokes the actual enumerator of the input row set and
performs one iteration, possibly computing an output row. The
analysis on UDOs must be aware of this internal organization, look
for these particular methods, associate the internal ields with the
original method parameters, and simulate the potentially multiple
invocations of MoveNext. Additionally, it must also understand how
SCOPE operations are represented in MSIL.

Both of the analyses we develop in this work take as input a
SCOPE job, a compilation of a SCOPE script. Each job has a set of
processors (UDOs) that, as mentioned earlier, implement Processor,
Reducer, or Combiner APIs. For each UDO in the job, we ind the

933

https://github.com/Microsoft/rudder

Static Analysis for Optimizing Big Data ueries ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

Figure 2: MSIL closure representation of the UDO from Figure 1. Top-left: Process method. Bottom-left: the enumerator gen-

erated for yield return. Right: MoveNextmethod of the enumerator.

corresponding closure class and run our analyses on the MoveNext
method assuming the above closure representation.

3 ACCESSED COLUMNS ANALYSIS

The irst analysis statically analyzes the code of a UDO to overap-
proximate the input columns that are being used by the operator.
Using this information, the SCOPE distributed runtime environ-
ment can ship over the network only the values of inferred columns
instead of values of all of the table columns while executing the
UDO, without compromising the correctness of the results.

3.1 Approach

We decided to design the analysis to be as simple as possible. First,
the analysis is intra-procedural, analyzing method bodies in isola-
tion. Second, the analysis does not distinguish input from output
columns, which would otherwise require potentially detailed alias-
ing information. Lastly, the analysis (soundly) answers that all input
columns are read if the UDO has exceptional control low, which
would otherwise also require more complicated treatment. These
design decisions helped us validate that our analysis is sound with
no exceptions, in contrast to soundy analyses [8].

Clearly, the above mentioned simpliications may make our anal-
ysis not efective. The reason these decisions make sense for com-
puting accessed input columns is based on an empirical observation:
while UDOs can become quite complex in terms of the function-
ality they embody, the way the columns are accessed is typically
straightforward. That is, columns are typically accessed directly by
string or integer indices, as in Figure 1, or by variables that can be
resolved as constants at compile-time.

Figure 3 is a high-level illustration of our analysis. The analysis
takes UDO in previously described MSIL format, performs classical
control low graph transformations and optimizations described
in Section 5, and then proceeds to three core subanalyses: escape
analysis, constant-set propagation, and used columns analysis.

3.2 Escape Analysis

A valid platform assumption is that upon entering the MoveNext
method no other method or object has an access to the input row

Figure 3: Subanalyses chain for inferring input columns

objects. Our analysis irst checks whether this invariant also holds
upon exiting the method via escape subanalysis. To see why this
check is important, consider the following excerpt of code taken
from a real-world SCOPE script.

1 IEnumerable<Row> Process(RowSet input, ...) {

2 ...

3 foreach (Row current in input.Rows) {

4 outputRow[0].Set(this.CreateBondEntity(current));

5 ...

6 outputRow[1].Set(this.RandomCurrentBondEntity());

7 yield return outputRow;

8 }}

The method call on line 4 can potentially save a reference to the
input row current. Since our analysis is intra-procedural, there
is no way of knowing whether some other object has an access
to an input row after line 4. Hence, the method call on line 6 can
potentially read, i.e., access some column of current. Our analysis
would hence miss such accesses which would result in unsoundness.

Escape subanalysis checks if an object of type Row potentially
escapes the method body. That is, escape analysis checks if some
command in the UDO body passes an object of type related to Row

as a parameter to some method call or saves it to some ield. If
so, the analysis claims that a row has escaped and answers that
all table input columns are read. Otherwise, no other object or
method has access to the input rows, i.e., all column accesses are
contained within MoveNext body. Our analysis then proceeds to
the next subanalysis.

3.3 Constant-set Propagation

The next subanalysis closely resembles widely known constant
propagation. In fact, the major point where our subanalysis and

934

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Garbervetsky, Pavlinovic, Barnet, Musuvathi, Mytkowicz, Zoppi

constant propagation difer is in the way they handle join points.
Consider the following code excerpt.

1 if (...) { column = "Age" }

2 else { column = "age" }

Such code fragments are frequent in UDO programs as program-
mers often consult table schemas to make sure they got column
name capitalizations right. After the if-then-else statement, at the
join point, a typical constant propagation implementation would
not consider column variable to be constant. Since our goal is to
actually infer the columns being accessed, we can soundly save
the information that column can take values in the set {"Age",
"age"} instead of saying that column can take on any value. This
is why we called this subanalysis constant-set propagation, since
for each non-reference variable we save the set of constant values
the variable can take. Speaking in terms of abstract interpretation,
we simply perform disjunctive completion of the abstract domain
for constant propagation [6].

3.4 Used Columns Analysis

The last subanalysis we undertake is named used-columns analysis.
In the similar spirit as previous subanalyses, its main characteristic
is simplicity. For each method call on an object of type Row, we
check whether the method being called is known at compile time
and is get_Item, get_Schema, or Reset. Only the mentioned
methods can truly be trusted, in the sense they deinitely do not
access any columns of the calling Row object. Then, we check if for
each Row.get_Item(var), our constant-set propagation inferred a
set of constants for var. If both checks pass, we take the union of
these sets of constants as our overraproximation of accessed input
columns. If either of the checks fail, the analysis answers that all
input columns are being accessed.

The returned set of columns overapproximates both input and
output columns being accessed by a UDO, due to the lack of aliasing
information. Thus, all input columns that are not in this set are not
being used by the UDO. We note that column information for an
input table is available at compile time since SCOPE needs table
schemas for compilation.

4 COMPUTING INPUT/OUTPUT

DEPENDENCIES

The second analysis we introduce is more sophisticated. It com-
putes column input/output relationships induced by the UDO and
pass-through columns. Precise dependency information allows for
more aggressive, but still conservative, optimization of query plans.
Identifying pass-through columns enables signiicant savings in
network/computation bandwidth.

Example: Consider again the UDO presented in Figure 1 and
the input table schema {JobGuid(0), SubmitTime(1)} where integer
index for the column name is given in parentheses. The outcome
of our second analysis looks like:

• Inputs = {JobGuid(0), SubmitTime(1)}
• Outputs = {JobGuid(0), SubmitTime(1), NewColumn(2)}
• Pass-through = {JobGuid(0), SubmitTime(1)}
• OtherDeps = {NewColumn(2)← literal + JobGuid(0)}

Figure 4: Subanalyses chain for dependency analysis

Inputs (resp. Outputs) is the set of input (resp output) columns
observed by the analysis. The indices represent the column index
associated with the column name. Pass-through is the set of output
columns that were computed using one single input column. Oth-
erDeps refers to other dependencies observed by the analysis. In
this case, NewColumn(2) refers to a new column that depends on a
literal ("FOO") and the input column JobGuid.

4.1 Approach

Our solution is inspired by work of Xia et al. [13] that proposes a
data dependency analysis for SCOPE programs using an abstract
interpretation engine Clousot [9]. The analysis computes depen-
dencies over traceables: tables, columns, and row counters. For
each output column of a UDO, the analysis reports traceables upon
which that column depends on.

The hard constraint of having a sound and robust implementa-
tion prevented us from using their work. Clousot makes the op-
timistic assumption that any references that are not must aliases

are distinct. As pointed out in [13], there is no aliasing for the
input tables and the ields in the UDO closure classes. However,
considering objects reachable in method calls forces us to be more
conservative in three ways:

• use a conservative points-to analysis to support a may-alias
and escape analysis

• use range analysis (intervals) and constant propagation for
tracking column indices

• add support for exceptional control low

4.2 Analysis Sketch

Figure 4 shows the analysis sketch. Given a UDO, the analysis irst
makes sure it has a proper representation of the heap efects. There-
fore, we irst compute a points-to graph (PTG), an alias heap ab-
straction explained in more detail shortly, of the closure constructor.
Then, we compute the PTG for the ’etEnumeratormethod (taking
as input the constructor PTG) and inally, the PTG of MoveNext.
This ensures we reach this method with all closure ields properly
initialized and updated. With the proper PTG we can now run
the column analysis to discover columns indices and map column
names to indices and, inally, the dependency analysis.

Points-to analysis. We based our points-to analysis on a well-
known low-sensitive analysis by Salcianu and Rinard [11]. It is
essentially a forward datalow analysis that builds points-to graphs.
A PTG is graph where each node (identiied by a program location)
represents the set of all objects that might be allocated at that
location, and edges stand for potential references between those

935

Static Analysis for Optimizing Big Data ueries ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

objects. Given a PTG, we can determine whether two access paths
(in the form of v , v . f , v . f .д, etc.) may alias by simply traversing
the PTG and checking if they both can reach the same node.

Our points-to analysis can handle complex .NET programs con-
structs such as delegates, lambdas, and predicates (appearing fre-
quently in LINQ queries). It can run intra- and inter-procedurally.
For the sake of performance, we decided to run it intra-procedurally
with some exceptions. We analyze invocations of closure auxiliary
methods and lambda expression appearing in parameters. To handle
collections, we use conservative summaries in the spirit of [3].

Column Analysis. The goal of this analysis is to determine the
set of potential indices (columns) used to access a row. We com-
pute an interval analysis to determine the possible integer values
that a column index may have, which is more sophisticated than
constant-set propagation. In addition, we perform a basic string
analysis to discover columns accessed by name and map them to
their corresponding indices.

4.3 Dependency Analysis

As mentioned earlier, we based the analysis on [13]. Given a UDOu,
the analysis identiies a set of traceables and computes the following
mappings:

• DepVaru (v) - tracks traceables lowing to variables
• DepHeapu (loc (o. f)) - tracks traceables lowing to ields
• DepOutputu (o) - track traceables associated to output columns
• Escu - tracks traceables escaping through a non-pure method
(in the case of inter-procedural analysis)

The analysis is essentially a forward datalow analysis that prop-
agates traceables through variables. Here we show some of the
most interesting rules (→ means propagate):

SCOPE API based row rules: detect and propagate rows.

• a = Rows(b): DepVar (b) → DepVar (a)

• a = Current(b): DepVar (b) → DepVar (a)

SCOPE API based column rules: detect and propagate columns

• a = Item(b,i): let C = { T .colum(i), T ∈ DepVar (b)} →
DepVar (a) (reads column i from b)
• Column.Set(o,b): DepVar (b) → DepOutput (o) (writes col-
umn o)
• Row.Copy(a,o): propagates all traceable input columns from
a into output columns in o (similar to multiple applications of
the previous 2 rules)

Heap rules: propagate traceables from heap locations to variables,
and vice versa. Use points-to analysis to determine heap locations.

• a = b.f: DepHeap (b . f) → DepVar (a)

• a.f = b: DepVar (b) → DepHeap (a. f)

If the method under analysis invokes another method, we check
if the traceables of interest (i.e., input-output rows) can be reachable
from the parameters. If so, in the intra-procedural case we give up
(mark them as escaping) as we cannot tell what the non-analyzed
callee is going to do. In the inter-procedural case, we apply the
analysis on the callee.

Aliasing. We use the points-to graphs for detecting aliasing pairs
(variables and ields) and to resolve method invocations. Also, every
timewe obtain traceables for a variablev wemake sure we also have
the traceable from its aliases. Similarly, for DepHeap (v . f) we use
PTGs nodes for referring to objects. For instance, if PT (v) = {A,B}
the analysis will produce two locations: {A. f ,B. f } for v . f .

4.4 Computing Pass-through Columns

Pass-through analysis is a byproduct of the dependency analysis.
A pass-through column is an output column whose value is taken
directly from one input column.

In order to determine a column is pass-through during the de-
pendency analysis we check that only one input column is used for
its computation and no other value.

5 EVALUATION

We implement our analyses on top of a datalow analysis framework
capable of analyzing .NET programs written in MSIL. We rely on
the analysis framework 2 developed by one of the authors. This
framework provides three address code and SSA representations [2]
of the MSIL, well-known control low and datalow analyses, as
well as a general engine for datalow ixpoint computation.

Our implementation works over the SSA form of MSIL. We irst
utilize existing framework facilities to model implicit MSIL stack
operations with explicit top-of-the-stack variable operations. We
also make use of the classical copy-propagation and live-variables
analyses [2]. We directly implement the escape, constant-set prop-
agation, points-to, range, and dependency analysis on top of the
framework.

We aim at answering following questions: i) what is the ratio
between used and total number of input columns?; ii) how many
pass-through columns are discovered?; iii) are analysis running
times within an acceptable bound?; iv) is the information obtained
by the analyses useful?

We run the analyses on about 4000 real-world SCOPE projects
extracted from Cosmos’ top jobs (in terms of resource usage) ex-
ecuted on 4/30/2016. Table 1 shows the results for both analyses.
There were 1151 UDOs in total3. The analysis times ranged between
100ms to a couple of seconds. We note the our analyses as well
as the underlying framework are not yet fully optimized for per-
formance. We believe a mature implementation would experience
running times measured in few hundred milliseconds. The total
number of columns involved in the UDOs, according to the declared
schemas, were 25014 for input and 24941 for output columns.

The irst analysis is about 6-8 times faster than the second analy-
sis but more imprecise. In many cases it cannot conclude a precise
answer and, for the sake of soundness, abruptly returns that all
columns are potentially used. This imprecision is mainly due to
exceptional control low, escaping rows, untrusted row methods,
and non-constant variables used for column accesses. Nevertheless,
for about 25% of the UDOs the analysis obtained results, discovering
that at least 37% of the columns were not accessed. We feel these
are very good results that justify the simplicity of the analysis.

2Available at http://github.com/edgardozoppi/analysis-net
3We ignore jobs not using UDOs or using only compiled generated UDOs.

936

http://github.com/edgardozoppi/analysis-net

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany Garbervetsky, Pavlinovic, Barnet, Musuvathi, Mytkowicz, Zoppi

Table 1: Statistics for 1151 UDOs from 4000 SCOPE jobs.

UDOs w/ Unused Cols Pass-through
results Inputs Outputs Outputs

Analysis 1 25% 37% N/A
Analysis 2 76% 54% 50% 74%

The second analysis is slower but more precise, as expected, and
handles more UDOs. It discovers that about 50% of the columns are
unused. In addition, it discovers that about 74% of columns are in
fact pass-through. The imprecision mainly comes from dealing with
complex index computation for column accesses, traceable escaping
through method invocations (needs inter-procedural analysis), and
complex data structures like SCOPE maps (see future work).

We could not measure actual query times since we did not have
access to the Cosmos databases, but according to the SCOPE team
experts, a reduction in the number of columns passed to a UDO and
the savings in marshaling induced by pass-through columns can be
drastic. It is important to emphasize that even a small percentage of
resource savings yields huge savings in total as the analyzed scripts
run daily at Microsoft and operate on hundreds of GB of data.

6 RELATED WORK

There are two previous eforts directly related to ourwork. PeriSCOPE
is a static analysis tool that optimizes SCOPE execution plans by an-
alyzing UDOs [7]. The authors present three analyses that compute
UDO information useful for optimizing the query execution. One
of the analysis is in fact used columns analysis. Unfortunately, it is
not clear how general soundness of their algorithm can be argued.
For instance, the authors do not explain how they deal with the
cases where a Row object can escape a method body. In our work,
on the other hand, soundness is an imperative.

As we discussed in Section 4.4, Xia et al. present a static analy-
sis that infers column dependencies in SCOPE UDOs [13]. Their
approach relies on an optimistic must aliasing assumption which
violates our soundness principle. Such assumption could prevent
building diferent sound analyses on top of their infrastructure.

We mention few other related works. Our dependency analysis
closely resembles data and control dependence in compiler opti-
mizations [2, 10]. Also, points-to and alias analysis are a classical
topic in static analysis community [3, 4, 12]. However, these eforts
are orthogonal to the work presented in this paper.

7 CONCLUSIONS

We implemented two static analyses aimed at obtaining unused col-
umn information and input/output dependencies in SCOPE UDOs.
We put a special focus on being sound and robust while design-
ing and implementing the analyses. Our implementation success-
fully analyzed thousands of SCOPE scripts and found many input
columns that are never used and a signiicant amount of pass-
through columns in real-world UDOs. The inferred information can
be used to drastically optimize execution of SCOPE scripts. This
works shows how static analysis techniques can be used to improve
performance of industrial-strength applications.

Lessons learned. One of the most important lessons we learned is
that in an industrial setting it is much more important to be robust
and sound than to be precise. Even the most sophisticated analysis

will not make its way into production if its soundness cannot be
guaranteed and clearly argued. Our recommendation is to start with
the simplest analysis possible. Then if needed, more sophisticated
analysis can be built on top, keeping the same principles in mind.

Another important lesson learned is that static analyses tech-
niques can be successfully applied for real-world programs at large.
The trick behind our success was to incorporate domain speciic
knowledge into the analysis to get sensible results. SCOPE scripts,
while potentially arbitrarily complex, typically follow a simple struc-
ture and manipulate certain data structures in a predictable way.
We believe there are other problem domains where such tailored
static analyses can prove themselves extremely valuable.

Future work. Our next steps are (1) the evaluation of the actual im-
pact of the analyses on execution performance of real-world SCOPE
scripts and (2) implementation of an IDE plugin that automatically
generates data-dependency annotations for the UDOs, thus hinting
the developer where optimizations can be gained and validating her
assumptions. At the same time, we plan to enhance our analyses.
For instance, the analysis for computing input columns accessed
by a UDO can be improved by making it more inter-procedural by
using function inlining. In this way, we can gain more precision
during escape analysis. Likewise, we plan to support other features
of SCOPE such as SCOPE maps, JSON, and other structured column
types that are used in scripts to encode sparse columns.

ACKNOWLEDGMENTS

This work was partially supported by the projects ANPCYT PICT
2013-2341, 2014-1656 and 2015-1718, UBACYT 20020130100384BA,
CONICET PIP 112 201301 00688CO, 112 201501 00931CO.

REFERENCES
[1] U-sql, the new big data language for azure data lake. https://azure.microsoft.com/

en-us/blog/u-sql-the-new-big-data-language-for-azure-data-lake/. Accessed:
2017-05-09.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[3] M. Barnett, M. Fähndrich, F. Logozzo, and D. Garbervetsky. Annotations for
(more) precise points-to analysis. In IWACO, pages 11ś18, 2007.

[4] B. Blanchet. Escape analysis: correctness proof, implementation and experimental
results. In In POPL, pages 25ś37. ACM, 1998.

[5] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou.
Scope: easy and eicient parallel processing of massive data sets. Proceedings of
the VLDB Endowment, 1(2):1265ś1276, 2008.

[6] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of logic
and computation, 2(4):511ś547, 1992.

[7] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou, S. McDirmid, C. Liu, W. Lin, J. Zhou,
and L. Zhou. Spotting code optimizations in data-parallel pipelines through
periscope. In OSDI, pages 121ś133, 2012.

[8] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B. E. Chang,
S. Z. Guyer, U. P. Khedker, A. Mùller, and D. Vardoulakis. In defense of soundiness:
a manifesto. Commun. ACM, 58(2):44ś46, 2015.

[9] F. Logozzo. Clousot: Static contract checking with abstract interpretation. Formal
Veriication of Object-Oriented Software, page 5.

[10] S. S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann,
1997.

[11] A. Sălcianu and M. Rinard. Purity and side efect analysis for java programs. In
In VMCAI, pages 199ś215. Springer, 2005.

[12] B. Steensgaard. Points-to analysis in almost linear time. In In POPL, pages 32ś41.
ACM, 1996.

[13] S. Xia, M. Fähndrich, and F. Logozzo. Inferring datalow properties of user deined
table processors. In SAS, pages 19ś35, 2009.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

[15] J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib. SCOPE: parallel
databases meet mapreduce. VLDB J., 21(5):611ś636, 2012.

937

https://azure.microsoft.com/en-us/blog/u-sql-the-new-big-data-language-for-azure-data-lake/
https://azure.microsoft.com/en-us/blog/u-sql-the-new-big-data-language-for-azure-data-lake/

	Abstract
	1 Introduction
	2 Background
	2.1 Cosmos
	2.2 SCOPE
	2.3 UDO Representation

	3 Accessed Columns Analysis
	3.1 Approach
	3.2 Escape Analysis
	3.3 Constant-set Propagation
	3.4 Used Columns Analysis

	4 Computing Input/Output Dependencies
	4.1 Approach
	4.2 Analysis Sketch
	4.3 Dependency analysis
	4.4 Computing Pass-through Columns

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

