Reducing the number of annotations in a
verification-oriented imperative language

Guido de Caso Diego Garbervetsky Daniel Gorin

Departamento de Computacién,
Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires

APV '09

Introduction Pest High-level iteration constructs Demo Final thoughts

© Introduction

© Pest

© High-level iteration constructs

@ Demo

© Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

Static typing: a successful form of program verification

main() { int main() {
tmp = "hello"; string tmp = "hello";
return foo(tmp); return foo(tmp);

} }

foo(x) { int foo(int x) {
return x"2; return x"2;

} }

Figure: Runtime error Figure: Compile-time error

Introduction Pest High-level iteration constructs Demo Final thoughts

The type system is a core part of a programming language

A type system added to an untyped language at a later stage. ..

...may lead to a rather awkward construction!

Introduction Pest High-level iteration constructs Demo

The type—contract analogy

Static typing

Program verification

Type

Typing rules
Type checking
Type inference

Contract

Semantics

Contract verification
Contract inference

Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

Our long-term goal

A programming language
@ designed from first principles to be automatically verified,
@ inspired on the “type—contract analogy”,

@ combining well-known and new ideas in a coherent way.

Why?

@ We can pick properties we want the language to enforce

@ We can deviate from traditional practices when needed

Introduction Pest High-level iteration constructs Demo Final thoughts

Our tiny first step in that direction...

Pest 1.0

@ Basic while-style language

Pest 1.1
@ More iteration constructs

@ Ints, bools and arrays only . (5o oveas mpiieg)

@ Pre/post inference*

| s;n*(n+1)/2
I 'n = n@pre

s« 20
local /7«1
while 7 < n
MI< iNi< ntlAs=(i—1)*i/2
H#Hn—i+1
do
S«— s+
P—i+1
od

Introduction Pest High-level iteration constructs Demo Final thoughts

Pest static semantics

Example (The while sentence)

true = safe(inv) inv |= safe(g) inv = safe(var)
pEinv invhgkEp p Evar>0
{p'} varg — var s {q¢'}
g Einv ¢ Evar<vary invA-gkEq
{p} while g :?\ inv : # var do s od {q}

(S-WHILE)

Introduction Pest High-level iteration constructs Demo Final thoughts

Pre and postcondition inference

max(a,b,c)
7 true
dla>b=c=a
dla<b=c=0b
I a = alpre A b = bQ@pre max(a,b,c)
{ {
if a> b then if a> b then
c+« a c+« a
else else
c«+— b c«— b
fi fi

} }

Figure: Annotated Pest procedure Figure: Annotations out!

Introduction Pest High-level iteration constructs

OK, but what can | do about loops?

Demo

arraylnc (a[])

local k — 0

while k < |a|
210< kA k< g
71 Vi from 0 to k—1: a[i] = a@pre[i] + 1
21 Y i from k to |a|—1: a[i] = a@pre]i]

F# lal — k

do
alk] < a[k] +1
k— k+1

od

Figure: Pest procedure with a loop

Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

Invariants = Headaches

_-* | wonder what
the invariant is ...

Don't ask me!
It's your loop...

Introduction Pest High-level iteration constructs Demo Final thoughts

A lesson learnt from functional programming

Common recursion pattern Recusion pattern abstracted away

F1l =1l map fun [] =[]
f (xixs) =x+1:f xs map fun (x:xs) =fun x : map fun xs

gl] =Il] f xs =map (+1) xs
g (x:xs) =xkx : g xs g xs =map (Ax —xkx) xs

Introduction Pest High-level iteration constructs Demo

The map iteration pattern

arraylnc (a[])

local k — 0

while k < |a|
210< kAk< |a
20 Vi from 0 to k—1: a[i] = a@pre[i] + 1
2?1 Vi from k to |a|—1: a[i] = a@pre[]
la] — k

do
alk] < alk] +1
k— k+1

od

Figure: While-based array iteration

Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

The map iteration pattern

maplteration(a[])

local k — 0
while k < |a|
210< kAk< |a
71 Vi from 0 to k—1: a[i] = Trans(a@pre[i], i)
21 Vi from k to |a|—1: a[i] = a@pre[]
la] — k
do
alk] < Trans(a[k], k)
k—k+1
od

Figure: The map iteration pattern

Introduction Pest High-level iteration constructs Demo

The map iteration pattern

easyArraylnc(a[])

{
map ein a[..k..] do
e—e+1
od

}

Figure: Array iteration with the map looping construct

Final thoughts

Introduction Pest High-level iteration constructs Demo

The for iteration pattern

sumN(n, s)
7 n>0
I s=nx(n+l) /2
:I' n=n0pre
{

s <0

local 7«1

while 7 < n

P s=((-1)xi/?2

H#HFn—i+1
do

S«— s+

[— 1 +1
od

Figure: While-based sum of first n integers

Final thoughts

Introduction Pest High-level iteration constructs Demo

The for iteration pattern

sumN(n, s)
7 n>0
ds=nx(nt+l) /2
:I' n=n0pre
{
s«—20
for i from1to n
1< iNT< 1l As=(i—1)xi/2
do
S«— s+
od
}

Figure: Sum of first n integers using a classic for

Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

The for iteration pattern

easySumN(n, s)
T s=nx(n+l) /2
I 'n = n@pre
{
s—0
for i from 1 to n do
S— s+
od

Figure: Sum of first n integers using the for looping construct

Introduction Pest High-level iteration constructs Demo

Inferring the invariant of a for-loop

dls=nx(n+tl) /2

Figure: sumN postcondition

1< iNT< n+lAs=(i—1)xi/2

Figure: sumN loop invariant

Final thoughts

Tool demo)

@ Tool is available at http://lafhis.dc.uba.ar/budapest

Introduction Pest High-level iteration constructs Demo Final thoughts

Future work

e Extending the language with ADTs.
@ User defined high-level constructs.

@ Increasing the expressiveness of predicates.

	Introduction
	Pest
	High-level iteration constructs
	Demo
	Final thoughts

