
Reducing the number of annotations in a
verification-oriented imperative language

Guido de Caso Diego Garbervetsky Daniel Gorín

Departamento de Computación,
Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires

APV ’09

Introduction Pest High-level iteration constructs Demo Final thoughts

1 Introduction

2 Pest

3 High-level iteration constructs

4 Demo

5 Final thoughts

Introduction Pest High-level iteration constructs Demo Final thoughts

Static typing: a successful form of program verification

main() {
tmp = "hello";
return foo(tmp);

}

foo(x) {
return x^2;

}

Figure: Runtime error

int main() {
string tmp = "hello";
return foo(tmp);

}

int foo(int x) {
return x^2;

}

Figure: Compile-time error

Introduction Pest High-level iteration constructs Demo Final thoughts

The type system is a core part of a programming language

A type system added to an untyped language at a later stage. . .

. . . may lead to a rather awkward construction!

Introduction Pest High-level iteration constructs Demo Final thoughts

The type–contract analogy

Static typing Program verification
Type Contract
Typing rules Semantics
Type checking Contract verification
Type inference Contract inference

Introduction Pest High-level iteration constructs Demo Final thoughts

Our long-term goal

A programming language
designed from first principles to be automatically verified,
inspired on the “type–contract analogy” ,
combining well-known and new ideas in a coherent way.

Why?
We can pick properties we want the language to enforce
We can deviate from traditional practices when needed

Introduction Pest High-level iteration constructs Demo Final thoughts

Our tiny first step in that direction...

Pest 1.0
Basic while-style language
Ints, bools and arrays only
Pre/post inference∗

Pest 1.1
More iteration constructs
(no invariants required)

Introduction Pest High-level iteration constructs Demo Final thoughts

This is Pest

sumN(n, s)
:? n ≥ 0
:! s = n ∗ (n+1) / 2
:! n = n@pre
{

s ← 0
local i ← 1
while i ≤ n

:? ! 1 ≤ i ∧ i ≤ n+1 ∧ s = (i−1) ∗ i / 2
:# n − i + 1

do
s ← s + i
i ← i + 1

od
}

Introduction Pest High-level iteration constructs Demo Final thoughts

Pest static semantics

Example (The while sentence)

true |= safe(inv) inv |= safe(g) inv |= safe(var)
p |= inv inv ∧ g |= p′ p′ |= var > 0

{p′} var0 ← var s {q′}
q′ |= inv q′ |= var < var0 inv ∧ ¬g |= q
{p} while g :?! inv : # var do s od {q}

(S-WHILE)

Introduction Pest High-level iteration constructs Demo Final thoughts

Pre and postcondition inference

max(a,b,c)
:? true
:! a ≥ b ⇒ c = a
:! a < b ⇒ c = b
:! a = a@pre ∧ b = b@pre
{

if a ≥ b then
c ← a

else
c ← b

fi
}

Figure: Annotated Pest procedure

max(a,b,c)
{

if a ≥ b then
c ← a

else
c ← b

fi
}

Figure: Annotations out!

Introduction Pest High-level iteration constructs Demo Final thoughts

OK, but what can I do about loops?

arrayInc (a[])
{

local k ← 0
while k < |a|

:? ! 0 ≤ k ∧ k ≤ |a|
:? ! ∀ i from 0 to k−1: a[i] = a@pre[i] + 1
:? ! ∀ i from k to |a|−1: a[i] = a@pre[i]
:# |a| − k

do
a[k] ← a[k] + 1
k ← k + 1

od
}

Figure: Pest procedure with a loop

Introduction Pest High-level iteration constructs Demo Final thoughts

Invariants = Headaches

Introduction Pest High-level iteration constructs Demo Final thoughts

A lesson learnt from functional programming

Common recursion pattern

f [] = []
f (x:xs) =x+1 : f xs

g [] = []
g (x:xs) =x∗x : g xs

Recusion pattern abstracted away

map fun [] = []
map fun (x:xs) = fun x : map fun xs

f xs =map (+1) xs
g xs =map (λx →x∗x) xs

Introduction Pest High-level iteration constructs Demo Final thoughts

The map iteration pattern

arrayInc (a[])
{

local k ← 0
while k < |a|

:? ! 0 ≤ k ∧ k ≤ |a|
:? ! ∀ i from 0 to k−1: a[i] = a@pre[i] + 1
:? ! ∀ i from k to |a|−1: a[i] = a@pre[i]
:# |a| − k

do
a[k] ← a[k] + 1
k ← k + 1

od
}

Figure: While-based array iteration

Introduction Pest High-level iteration constructs Demo Final thoughts

The map iteration pattern

mapIteration(a[])
{

local k ← 0
while k < |a|

:? ! 0 ≤ k ∧ k ≤ |a|
:? ! ∀ i from 0 to k−1: a[i] = Trans(a@pre[i] , i)
:? ! ∀ i from k to |a|−1: a[i] = a@pre[i]
:# |a| − k

do
a[k] ← Trans(a[k] , k)
k ← k + 1

od
}

Figure: The map iteration pattern

Introduction Pest High-level iteration constructs Demo Final thoughts

The map iteration pattern

easyArrayInc(a[])
{

map e in a[.. k ..] do
e ← e + 1

od
}

Figure: Array iteration with the map looping construct

Introduction Pest High-level iteration constructs Demo Final thoughts

The for iteration pattern

sumN(n, s)
:? n ≥ 0
:! s = n ∗ (n+1) / 2
:! n=n@pre
{

s ← 0
local i ← 1
while i ≤ n

:? ! s = (i−1) ∗ i / 2
:# n − i + 1

do
s ← s + i
i ← i + 1

od
}

Figure: While-based sum of first n integers

Introduction Pest High-level iteration constructs Demo Final thoughts

The for iteration pattern

sumN(n, s)
:? n ≥ 0
:! s = n ∗ (n+1) / 2
:! n=n@pre
{

s ← 0
for i from 1 to n

:? ! 1 ≤ i ∧ i ≤ n+1 ∧ s = (i−1) ∗ i / 2
do

s ← s + i
od

}

Figure: Sum of first n integers using a classic for

Introduction Pest High-level iteration constructs Demo Final thoughts

The for iteration pattern

easySumN(n, s)
:! s = n ∗ (n+1) / 2
:! n = n@pre
{

s ← 0
for i from 1 to n do

s ← s + i
od

}

Figure: Sum of first n integers using the for looping construct

Introduction Pest High-level iteration constructs Demo Final thoughts

Inferring the invariant of a for-loop

:! s = n ∗ (n+1) / 2

Figure: sumN postcondition

:? ! 1 ≤ i ∧ i ≤ n+1 ∧ s = (i−1) ∗ i / 2

Figure: sumN loop invariant

Introduction Pest High-level iteration constructs Demo Final thoughts

Demo

Tool demo

Tool is available at http://lafhis.dc.uba.ar/budapest

Introduction Pest High-level iteration constructs Demo Final thoughts

Future work

Extending the language with ADTs.
User defined high-level constructs.
Increasing the expressiveness of predicates.

	Introduction
	Pest
	High-level iteration constructs
	Demo
	Final thoughts

