PEST Formal Specification

Guido de Caso Diego Garbervetsky Daniel Gorn
Departamento de Computacin, FCEyN, Universidad de Buenos Aires
{gdecaso, diegog, dgorin}@Qdc.uba.ar

May 7, 2012

1 Introduction

This is the PEST programming language formal specification version 1.1. PEST is an multiprocedural, imperative,
while-style programming language that includes annotations as part of its native syntax.

2 Syntax

We use «a to express types (e.g., integers, arrays) and I' as a typing function that assigns one unique type to each
variable in scope. The set Expf contains the expressions with type « using variables according to T

As basic types, PEST requires the presence of integers and booleans as they are used in annotations and
guards. Note that boolean expressions may quantification, provided it is always bounded (i.e., decidable in
run-time)!. All expressions may also refer to v@pre, the value of the variable v at the beginning of the current
procedure.

We use Sentencer . r as the set of every possible sentence that starts with I" as a typing function and ends
with I’, potentially calling procedures defined in program m. A sentence may not change the typing of any
existing variable, but it may extend the typing functions with new variables that appear in the program.

The PEST sentences are defined according to the rules in Figure 1.

I'(v) =«a e € Expf v ¢ dom(I") e € Expp
v < e € Sentencer ~,r (ASSIGN) local v < e € Sentencer » r{v—a}

(DEF)

s1 € Sentencer ./ Sz € Sentencers

skip € Sentencer,»,r (SKIP) s1 s2 € Sentencer (5EQ)
g € ExpE°° g is quantifier free g € ExpZ ool g is quantifier free
s1 € Sentencer ./ sz € Sentencer inv € Exp?‘ml var € Expf"t s € Sentencer . v

(IF) (WHILE)

if g then s, else s2 fi € Sentencer ~,r while g :?! inv :# var do s od € Sentencer ,r

proc € w
i #j = cpi#cp; pars(proc) =pi,...,pk
L(cpi) = Tproc(pi)
call proc(cpi,...,cpr) € Sentencer,»,r

(CALL)

Figure 1: PEST syntax

PEST programs are defined either as empty or by extending an existing program with a new procedure that
potentially calls procedures in that program. Formally, the program set Prog is the smallest set that satisfies:

(PROG-EMPTY)

0 € Prog

1Note that this does not affect the fact that statically resolving the truth value of a boolean expression is undecidable.

7w € Prog procé¢ w
dom(FPTOC) = {plv"'vpk} Z#J:>p1 #pj
pre, post € BoolExpp
s € Sentencer, . r, 1
7, proc(pi,...,pr) :? pre :! post { s } € Prog

We define the local variables of a given sentence s as the set of variables that are incorporated by s, formally:

(PROG-EXTEND)

locals(s) = dom(I'") \. dom(T")

Note that both procedures and cycles are augmented with annotations such as preconditions, invariants,
variants and postconditions. The following sections make use of these in order to establish a safe notion of
sentence semantics.

3 Operational semantics

A valuation o is a function that maps each variable to a concrete value in its type domain. Valuations can be
updated to reflect that the new value for an already defined variable v is n (noted o{v +— n}), extended to
incorporate a new variable v with an initial value n (noted o{new v + n}) or cropped to forget the value of a
set of variables V' (noted o V).

Valuations can be extended to assign values to expressions if the according rules for each expression type are
provided. We will denote [e], = n to say that the valuation o can assign value n to the expression e. Note that
this is not always possible, for instance e may refer to a variable for which ¢ has no associated value.

Finally, the operational semantics of a PEST sentence s that starts from the valuation ¢ and finishes correctly
rendering a valuation ¢’ is noted ¢ > s > ¢’. The PEST language operational semantics is defined according to
the rules in Figure 2.

el =n O-ASSIGN [o]o = true o b 51 b o' O-1F-T
O'D?)(—@DO’{’U'—)’N,}()) o b if g then s; elseszﬁba’Glocals(sl)(S
[e]lo =n P [9]c =false o >s2 > o o)
o >local v+« e > o{new a+—n} o b if g then s; else s; i > o/ ©locals(sz)
. [9]- = false [inv], = true (o wHILEF)

o >skip > o o > while g :?! inv :# var do sod > o

[9]c = true [inv]e = true [var]s >0
o>sb>o
[var]er < [var]s
cbs > o o bss s o o'©locals(s) > while g :?! inv :# var do s od > o”

o D>s; S2 > o’ (0-5BQ) o > while g :?! inv :# var do s od > o (O-WHILE-T)
def
[pre(proc)], = true p > body(proc) > p’ [[pos/:t(proc)]]p/ = true(()icALL) o(pi)) = o(eps)
def
o > call proc(epi,...,cpr) > o{cpy — p'(p1),...} p(pi@pre) % o(cp;)

Figure 2: PEST operational semantics

Note that sentence semantics may lock if something goes wrong. For instance, if a loop is cycling and at a
given moment the variant function does not decrease, then the semantics is not defined. The same happens if a
called procedure precondition does not hold in the current valuation, a loop invariant is broken, etc.

4 Static semantics

In order to define static semantics we will first introduce the concept of safe expression condition. Given an
expression e, safe(e) is a boolean expression guaranteeing that every valuation o that makes it true can provide
a value for e. For instance, safe(4/y) = y # 0.

p Esafe(e) v (plv=d] Av=elv—=d'])Egq pEsafele) p ANv=elgq

{pyveedq (A {pYlocal v e {q} """
PEg {p} s {r} {r} s {q}
{p} skip {q} ©7" {pysisa{a} 79
true | safe(inv) inv |=safe(g) inv = safe(var)
pEinv invAgEpP p Ewvar >0 p = safe(g)
{p'} varo < var s {q'} pAglEPL {p} si{a} akq
¢ Einv ¢ Evar <varg invA-g g pPAg =P {p2} s2 {2} q2l=4¢
(S-WHILE) (S-1F)

{p} while g :?! inv :# var do s od {q} {p} if g then s; else s fi {¢}
1<i<k plepi— pi] | pre(proc)
Jo1,...,0k (plepi — 0] A post(proc)|p; — cpi, pi@pre — 0;]) = ¢
{p} call proc(cp1,...,cpr) {q¢}

(S-CALL)

Figure 3: PEST static semantics

In general, given a boolean expression e in negated normal form (NNF), we can compute safe as follows:

safe(—e) = safe(e)
safe(e; Aea) = safe(er) A (e3 = safe(ez))
safe(e; Vea) = safe(e;) A (—e; = safe(eq))

In the presence of quantifiers, we can extend this:

safe(Jz.P(x)) = Vuz.safe(P(z))
safe(Vz.P(x)) = Vux.safe(P(z))

We will use by |= b2 to indicate that the boolean expression b; is stronger than the boolean expression bs.
That is, whenever a valuation makes b; true, then it makes by true as well. Notice that in presence of unbounded
quantification this is an undecidable problem.

Sustitution will be noted e; | e — e3 |, meaning the expression that results from changing in e; each occurrence
of eg, putting ez instead. Notice that e and e3 must be of the same type.

We now define the static semantics for a PEST sentence. Instead of operational semantics that act in terms
of valuation updates, static semantics acts by modifying boolean expressions that model many valuations. If p is
a boolean expression that describes the possible valuations before the sentence s, and ¢ is a boolean expression
that describes the possible valuations after s, then {p} s {¢} will be the static semantics of s.

The PEST language static semantics is defined according to the rules in Figure 3.

5 Safe programs

There is a clear correlation between PEST’s operational and static semantics. Using the latter, we can give a
notion of safe program. In what follows, if 7 is a program and p a procedure, then 7, p is the program obtained
by appending p to 7.

Definition 1 (Safe programs). The set SAFE of programs is inductively defined as follows:

(SAFE-EMPTY)

() € SAFE

m € SAFE {pre(p)} body(p) {post(p)}
m,p € SAFE

(SAFE-EXTEND)

Safe programs are the ones that respect their annotations on any run. That is, for each procedure whenever
the precondition holds then the execution flows normally, satisfying every called procedure precondition and loop
invariants, decreasing variants on each cycle and satisfying the postcondition. Formally:

Theorem 1 (Safe programs execute normally).
Let 7 be a safe program and p a procedure in w. Then:

for each valuation o if [pre(p)], = true
then it exists a valuation o' such that o > body(p) > o' and [post(p)]s = true

Proof: By induction in the structure of the derivations {pre(p)} body(p) {post(p)}. See [1].

6 Postcondition Calculus

The static semantics rules of Figure 3 conform an axiomatic system to determine, given p, s and ¢ wether or not
{p} s {q} holds. In some ocassions (such as trying to infer annotations for a procedure definition) it may probe
useful to infer some ¢ such that, for a given p and s {p} s {¢} holds. It is desirable that the obtained ¢ was the
strongest to satisfy the static semantics. For decidability’s sake we will get a ¢ that, hopefully, is strong enough
for our purpouses. We note this calculated postcondition post(s,p) = ¢ and we formally obtain it using the rules
in Figure 4.

p ': Safe(e) ASSIGN
post(v < e,p) =3 (plv =] A Uze[@»—)v'J)(Qf)
p [= safe(e) post(si,p) =7 post(s2, 1) =g
post(local v < e,p) =p A v = e (¥PED post(skip, p) = p(Q’SKIP) post(s1 s2,p) =¢q (@sEQ
p b safe(g) .
post(if g then s else ¢ fi,p) = Cl310ca1s(s) (POSL(S, P A) V Cl3i1ocaisr) (Post(t, p A —g))
true = safe(inv) inv |=safe(g) inv = safe(var)
pEinv invAglEvar >0
post(varg < var s,invAg) =q'
d Einv ¢ Evar <wvarg
post(while g :?! inv :# var do s od, p) = inv A —g T TEE)
1<i<k plepi pi] = pre(pr) (QCALL)
post(call pr(cp1,...,cpk),p) = Jor,....on (Plepi — 0i] A post(pr)|pi: — cpi, pi@pre — o0;])

Figure 4: PEST postcondition calculus
The notation Clzy (b) refers to the existencial closure of the boolean expression b with respect to every variable
in V.
7 Precondition Calculus

Analogously to the previous section, we say that pre(s,q) = p when p is the calculated precondition of s with
respect to the boolean expression g that characterises the state after executing s. The precondition we get will
not necessarily be the weakest one. The formal rules are given in Figure 5.

Revision history

1.1 May 7th, 2012. Added definition for safe.
1.0 October 9th, 2008. Initial release.

References

[1] Guido de Caso. High-level iteration constructs as annotations for automated software verification.
Master’s thesis, Universidad de Buenos Aires, Tutored by Diego Garbervetsky and Daniel Gorin,
http://lafhis.dc.uba.ar/ gdecaso/tesisLicGuidodeCaso.pdf, 2007.

(P-ASSIGN) —— (P-SKIP)

pre(v < e,q) = safe(e) A qlv— e pre(skip, q) = ¢

pre(si,7) =p pre(ss,q) =
pre(s1 s2,q) =p

r
(P-DEF) (P-SEQ)

pre(local v < e, q) = safe(e) A gqlv— €]

pre(if g then s; else s; A, q) = safe(g) A (g Apre(si,q) V —g Apre(sz, q)) @)

true = safe(inv) inv = safe(g) inv = safe(var)
invAgEp p Ewvar>0
post(varg < var s,invAg) =
d Einv ¢ Evar <wvarg invA-glEq
pre(while g :?! inv :# var do s od, q) = inv

(P-WHILE)

1<i<k
pre(call proc(epa, ..., cpr),q) = pre(proc)|p:; — cpi] A
(Ja, ..., ar(post(proc) | p; — ai, pi@pre — cp;| A qlcpi — ail))

(P-CALL)

Figure 5: PEST precondition calculus

