
Science of Computer Programming 167 (2018) 91–113
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

On the semantics and implementation of replicated data types

Fabio Gadducci a, Hernán Melgratti b,c, Christian Roldán b,∗
a Università di Pisa, Dipartimento di Informatica, Pisa, Italy
b Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina
c CONICET-Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2017
Received in revised form 7 May 2018
Accepted 20 June 2018
Available online xxxx

Keywords:
Replicated data types
Specification
Implementation correctness

Replicated data types (rdts) concern the specification and implementation of data
structures handled by replicated data stores, i.e., distributed data stores that maintain
copies of the same data item on multiple devices. A distinctive feature of rdts is that
the behaviour of an operation depends on the state of the replica over which it performs,
and hence, its result may differ from replica to replica. Abstractly, rdts are specified
in terms of two relations, visibility and arbitration. The former establishes whether an
operation observes the effects of the execution of another operation, the latter is a total
order on operations used to resolve conflicts between operations executed concurrently
over different replicas. Traditionally, an operation of an rdt is specified as a function
mapping a visibility and an arbitration into the expected result of the operation. This
paper recasts such standard approaches into a denotational framework in which a data
type is a function mapping visibility into admissible arbitrations. This characterisation
provides a more abstract view of rdts that (i) highlights some implicit assumptions
shared in operational approaches to specification; (ii) accommodates underspecification
and refinement; (iii) enables a direct characterisation of the correct implementations of an
rdt in terms of a simulation relation between the states of a concrete implementation and
of the abstract one determined by the specification.

© 2018 Published by Elsevier B.V.

1. Introduction

Distributed systems replicate their state over different nodes in order to satisfy several non-functional requirements, such
as performance, availability, and reliability. It then becomes crucial to keep a consistent view of the replicated data. However,
this is a challenging task because consistency is in conflict with two common requirements of distributed applications:
availability (every request is eventually executed) and tolerance to network partitions (the system operates even in the
presence of failures that prevent communication among components). In fact, it is impossible for a system to simultaneously
achieve strong Consistency, Availability and Partition tolerance [1]. Since many domains cannot renounce availability or avoid
network partitions, developers need to cope with weaker notions of consistency by allowing, e.g., replicas to (temporarily)
exhibit some discrepancies, as long as they eventually converge to the same state.

This setting challenges the way in which data is specified: states, state transitions and return values should account for
the different views that a data item may simultaneously have. Consider a data type Register: a memory cell that is read
and updated by, respectively, operations rd and wr. In a replicated scenario, the value obtained when reading a register

* Corresponding author.
E-mail addresses: fabio.gadducci@unipi.it (F. Gadducci), hmelgra@dc.uba.ar (H. Melgratti), croldan@dc.uba.ar (C. Roldán).
https://doi.org/10.1016/j.scico.2018.06.003
0167-6423/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.scico.2018.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:fabio.gadducci@unipi.it
mailto:hmelgra@dc.uba.ar
mailto:croldan@dc.uba.ar
https://doi.org/10.1016/j.scico.2018.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.06.003&domain=pdf

92 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
wr(0) wr(1)

rd

(a) V

wr(0)

wr(1)

rd

(b) A1

wr(1)

wr(0)

rd

(c) A2

Fig. 1. A scenario for the replicated data type Register.

after two concurrent updates wr(0) and wr(1) (i.e., updates taking place over different replicas) is affected by the way in
which updates propagate among replicas: the result might be (i) undefined (when the read is performed over a third replica
that has not received any of the updates), (ii) 0, or (iii) 1. Basically, the return value depends on the updates that are seen by
that read operation. Choosing the return value is straightforward if a read sees just one update, less so if a read is performed
over a replica that knows of both updates, since all replicas should consistently pick the same value among the available
ones. A common strategy for registers is that the last-write wins: the last update is chosen when several concurrent updates
are observed. This strategy implicitly assumes that all the events in a system can be arranged in a total order. Several recent
approaches focus on the operational specification of replicated data types [2–9]. Usually, the specification describes the
meaning of an operation in terms of two relations among events: visibility, which explains the causes for each result, and
arbitration, which totally orders events. Consider the visibility relation V in Fig. 1a and the arbitrations A1 and A2 in Fig. 1b
and Fig. 1c, respectively. The meaning of rd is such that rd(V , A1) = 1 and rd(V , A2) = 0. We remark that operational
approaches require specifications to be functional: for every operation, visibility and arbitration, there is exactly one return
value. In this way operational specifications commit to concrete policies for resolving conflicts.

This work aims at putting on firm grounds the operational approaches for rdts by giving them a purely functional
description. In our view, rdts are functions that map visibility graphs (i.e., configurations) into sets of admissible arbitrations,
i.e., all the executions that generate a particular configuration. In this setting, a configuration mapped to an empty set of
admissible arbitrations stands for an unreachable configuration, i.e., a configuration that cannot be explained in terms of
any arbitration. We rely on such an abstract view of rdts to highlight some of the implicit assumptions shared by most
of the operational approaches. In particular, we characterise operational approaches, such as [2,3], as those specifications
that satisfy three properties: besides the evident requirement of being (locally) functional (i.e., deterministic and total), they
must be coherent (i.e., larger states are explained as the composition of smaller ones) and saturated (e.g., an operation that
has not been seen by any other operation can be arbitrated in any position, even before the events that it sees). We show
this inclusion to be strict and discuss some interesting cases that do not fall in this class. Moreover, we show that our
formulation elegantly accounts for underspecification and refinement, which are standard notions in data type specification.

The notion of implementation correctness, which is central to the theory of abstract data types [10–12], relates the ex-
pected behaviour of a family of operations as defined by a specification with the one that is provided by a more concrete
realisation. In a replicated scenario, such concrete realisations consist of several replicas that keep their own local state and
propagate changes asynchronously. On the one hand, we assume that the behaviour of an implementation is given in terms
of two labelled transition systems (ltss): one that describes a single replica and another, which is obtained by composition,
that accounts for the joint behaviour of several replicas. Technically, this is achieved by providing a composition opera-
tor over ltss that reflects the adopted communication model. On the other hand, we note that our specifications have an
implicit operational interpretation, which describes the expected behaviours of a single replica and of the composition of
several replicas. Technically, each specification induces two ltss: one, called one-replica, prescribes the behaviour of a single
replica, and another, called multi-replica, defines the behaviour of multiple replicas. Then, implementation correctness is de-
fined in terms of simulation relations between the ltss associated with an implementation, i.e., a replica or a set of replicas,
with the lts corresponding to the specification, i.e., one-replica or multi-replica. We show that implementation correctness
is preserved under standard parallel composition (synchronous or asynchronous buffered communication). Consequently, in
order to show that an implementation is correct, we only need to show that a single replica is correct. We illustrate the
approach with the implementation of a few well-known rdts.

The paper has the following structure. Section 2 introduces the basic definitions concerning labelled directed acyclic
graphs. Section 3 discusses our functional mechanism for the presentation of Replicated Data Types. Section 4 compares our
proposal with the classical operational one [4]. Section 5 studies the correctness of the replicated data types implementa-
tions with respect to our specifications. Finally, in the closing section we draw some conclusions, discuss related works, and
highlight further developments.

This paper is a revised and extended version of [13]. We enrich our previous work by providing an approach to assess
whether an implementation of an RDT on top of several concurrent replicas is correct (the material in § 5 is completely
new to this paper). In addition, we provide full proofs of already published results.

2. Labelled directed acyclic graphs

In this section we recall the basics of labelled directed acyclic graphs, which are used for our description of replicated
data types. We rely on countable sets E of events e, e′, . . . , e1, . . . and L of labels �, �′, . . . , �1, . . .

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 93
〈wr(0),ok〉 〈wr(1),ok〉
〈rd,0〉
(a) G1

〈wr(0),ok〉 〈wr(1),ok〉

(b) G2

〈wr(0),ok〉
〈rd,0〉

〈wr(1),ok〉
(c) P1

〈wr(0),ok〉
〈rd,0〉

〈wr(1),ok〉
(d) P1

Fig. 2. Two simple ldags and two paths.

Definition 1 (Labelled directed acyclic graph). A Labelled Directed Acyclic Graph (ldag) over a set of labels L is a triple G =
〈EG, ≺G, λG〉 such that EG is a set of events, ≺G ⊆ EG × EG is a binary relation whose transitive closure is a strict partial
order, and λG : EG →L is a labelling function. An ldag G is a path if ≺G is a strict total order.

We write G(L) and P(L) to respectively denote the sets of ldags and paths over L. We use G to range over G(L)

and P to range over P(L). Moreover, we write <P instead of ≺P to make evident that paths are total orders. We say that
P = 〈EP, <P, λP〉 is a path over E if EP = E and write P(E, λ) for {P | P is a path over E and λP = λ}. We usually omit the
subscript G (or P) when referring to the elements of G (of P, respectively) when no confusion arises. We write ε for the
empty ldag, i.e., such that Eε = ∅.

Example 1. Consider the set L = {〈rd, 0〉, 〈rd, 1〉, 〈wr(0), ok〉, 〈wr(1), ok〉} of labels that describe the operations of a 1-bit
register. Each label is a tuple 〈op, rv〉 where op denotes an operation and rv its return value. For homogeneity, we associate
the return value ok to every write operation. Now, consider the ldag over L that is defined as G1 = 〈{e1,e2,e3}, ≺, λ〉 ,
where ≺= {(e1, e3), (e2, e3)} and λ is such that λ(e1) = 〈wr(0), ok〉, λ(e2) = 〈wr(1), ok〉, and λ(e3) = 〈rd,0〉. A graphical
representation of G1 is provided in Fig. 2a. Note that we do not depict the events and just write instead the corresponding
labels when no confusion arises. A representation of the ldag G2 , where ≺G2 is empty, is in Fig. 2b. Neither G1 nor G2 is
a path because they are not total orders. P1 in Fig. 2c is an ldag that is also a path. Hereinafter we use undirected arrows
when depicting paths and avoid drawing transitions that are obtained by transitivity, as shown in Fig. 2d. All ldags in Fig. 2
belong to G(L), but only P1 is in P(L).

2.1. ldag operations

We now present a few operations on ldags that will be used in the following sections. We start by introducing some
notation for binary relations. We write Id for the identity relation over events and � for the reflexive closure ≺ ∪ Id.
Moreover, we will use ≺+ and ≺∗ for respectively the transitive closure of ≺ and �. We write − ≺ e (and similarly − � e,
− ≺+ e, and − ≺∗ e) for the preimage of e, i.e., − ≺ e = {e′| e′ ≺ e}. We use ≺|E for the restriction of ≺ to the elements
in E , i.e. ≺|E = ≺ ∩ (E × E). Analogously, λ|E is the domain restriction of λ to the elements in E . We write E� for the
extension of the set E with a fresh element, i.e., E� = E ∪ {�} such that � ∈ E .

Definition 2 (Restriction and extension). Let G = 〈E, ≺, λ〉 and E ′ ⊆ E . We define

• G|E ′ = 〈E ′, ≺|E ′ , λ|E ′ 〉 as the restriction of G to E ′;
• G�

E ′ = 〈E�, ≺ ∪ (E ′ × {�}), λ[� �→ �]〉 as the extension of G over E ′ with �.

Restriction obviously lifts to sets X of ldags, i.e., X |E = {G|E | G ∈X }. We omit the subscript E ′ in G�
E ′ when E ′ = E .

Example 2. Consider the ldags G1 and G2 depicted in Fig. 2a and Fig. 2b, respectively. Then, G2 = G1|−≺e3
and G1 is

isomorphic (as a graph) to G2〈rd,0〉 . Indeed, G1 can be obtained from G2 by adding a new node labelled by 〈rd, 0〉, in such
a way that the new node is related with every node in G2 via ≺.

The following operator allows for the combination of several paths and plays a central role in our characterisation of
replicated data types.

Definition 3 (Product). Let X = {〈Ei, <i, λi〉}i be a set of paths such that ∀e, i, j.e ∈ Ei ∩ E j implies λi(e) = λ j(e). The
product of X is⊗

X = {Q | Q is a path over
⋃

i

Ei and Q|Ei
∈ X }

Intuitively, the product of paths is analogous to the synchronous product of transition systems, in which common ele-
ments are identified and the remaining ones can be freely interleaved, as long as the original orders are respected.

94 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
〈wr(1),ok〉

〈wr(2),ok〉

〈rd,2〉

⊗ 〈wr(2),ok〉

〈wr(3),ok〉
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈wr(1),ok〉

〈wr(2),ok〉

〈rd,2〉

〈wr(3),ok〉

〈wr(1),ok〉

〈wr(2),ok〉

〈wr(3),ok〉

〈rd,2〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

P1 P2 P3 P4

Fig. 3. Product between two paths.

SCtr

⎛
⎝ 〈inc,ok〉

〈rd,1〉

⎞
⎠ =

⎧⎪⎨
⎪⎩

〈inc,ok〉

〈rd,1〉

〈rd,1〉

〈inc,ok〉

⎫⎪⎬
⎪⎭ SCtr

⎛
⎝ 〈inc,ok〉

〈rd,0〉

⎞
⎠ = ∅

(a) (b)

Fig. 4. Counter specification.

Example 3. Consider the paths P1 and P2 in Fig. 3, which share the event labelled 〈wr(2), ok〉. Their product has two
paths P3 and P4 , each of them contains the elements of P1 and P2 and preserves the relative order of the elements in
the original paths. We remark that the product is empty when the paths have incompatible orders. For instance, P3 and P4
have the same set of elements yet incompatible orders, thus P3 ⊗ P4 = ∅.

It is straightforward to show that ⊗ is associative and commutative. Hence, we freely use ⊗ over sets of sets of paths.

3. Specifications

We introduce our notion of specification and apply it to well-known data types.

Definition 4 (Specification). A specification S is a function S : G(L) → 2P(L) such that S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG) .

A specification S maps an ldag (i.e., a visibility relation) to a set of paths (i.e., its admissible arbitrations). Note that P ∈
S(G) is a path over EG , and hence a total order of the events in G. However, we do not require P to be a topological ordering
of G, i.e., ≺G⊆<P may not hold. Although some specification approaches consider only arbitrations that include visibility [6,
7], our definition accommodates also presentations, such as [3,4], in which arbitrations may not preserve visibility. Since
our approach is independent of this choice, we adopted the most liberal presentation. We also remark that it could be
the case that S(G) = ∅, which means that S forbids the configuration G (more details in Example 4 below). For technical
convenience, we impose S(ε) = {ε} and disallow S(ε) = ∅: a specification cannot forbid the empty configuration, which
denotes the initial state of a data type.

We now illustrate the specification of some well-known replicated data types.

Example 4 (Counter). The data type Counter provides operations for incrementing and reading an integer register with
initial value 0. A read operation returns the number of increments seen by that read. An increment is always successful
and returns the value ok. Formally, we consider the set of labels L = {〈inc, ok〉} ∪ ({rd} × N). Then, the specification of
Counter is given by SCtr defined such that

P ∈ SCtr(G)

iff
∀e ∈ EG.∀k.λ(e) = 〈rd,k〉 implies k= #{e′ | e′ ≺G e and λ(e′) = 〈inc,ok〉}

A visibility graph G has admissible arbitrations (i.e., SCtr(G) = ∅) only when each event e in G labelled by rd has a return
value k that matches the number of increments anteceding e in G. We illustrate two cases for the definition of SCtr in Fig. 4.
While the configuration in Fig. 4a has admissible arbitrations, the one in Fig. 4b has not, because the unique event labelled
by rd returns 0 when it is actually preceded by an observed increment. In other words, an execution is not allowed to
generate such a visibility graph. We remark that SCtr imposes no constraint on the ordering <P . In fact, a path P ∈ SCtr(G)

does not need to be a topological ordering of G as, for instance, the rightmost path in the set of Fig. 4a.

Example 5 (Last-write-wins register). A Register stores a value that can be read and updated. We assume that the initial
value of a register is undefined. Take L = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} ×N ∪ {⊥}) as the set of labels. Then SlwwR gives the
semantics of a register that adopts the last-write-wins strategy.

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 95
P ∈ SlwwR(G)

iff

∀e ∈ EG.

⎧⎨
⎩

λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) = 〈wr(k),ok〉
∀k.λ(e) = 〈rd,k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k),ok〉 and

∀e′′ ≺G e. e′ <P e′′ implies ∀k′.λ(e′′) = 〈wr(k′),ok〉
An ldag G has admissible arbitrations only when each event associated with a read returns a previously written value.

As per the first condition above, a read operation returns the undefined value ⊥ when it does not see any write. By the
second condition, a read e returns a natural number k when it sees an operation e′ that writes the value k. In such case,
any admissible arbitration P must order e′ as the greatest (accordingly to <P) among all the write operations seen by e.

Example 6 (Generic Register). We now define a Generic Register that does not commit to a particular strategy for
resolving conflicts.

P ∈ SgR(G)

iff

∀e ∈ EG.

⎧⎪⎨
⎪⎩

λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) = 〈wr(k),ok〉
∀k.λ(e) = 〈rd,k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k),ok〉 and

∀e′′.∀k′′.λ(e′′) = 〈rd,k′′〉 and − ≺G e = − ≺G e′′ implies k= k′′

As in Example 5, the return value of a read corresponds to a written value seen by that read, but the specification
does not determine which value should be chosen. We require instead that all read operations with the same causes (i.e.,
− ≺G e = − ≺G e′) have the same result. Since this condition has to be satisfied by any admissible configuration G, it
ensures convergence. Requiring convergence seems meaningful since we are identifying some minimal conditions ensuring
the correctness of a specification without making any assumption on the chosen paths. Indeed, convergence can be proved
for what we call deterministic specifications (i.e., specifications in which the return value of each operation is uniquely
determined by the visibility and arbitration relations, as formally characterised in Section 4.1), whose instances are in e.g.
Example 4 and Example 5. Thus, our proposal only apparently disagree with approaches like [3,4], where convergence is
ensured automatically since the specifications they consider are implicitly deterministic (as shown formally in Section 4.2).

3.1. Refinement

Refinement is a standard approach in data type specification, which allows for a hierarchical organisation that goes from
abstract descriptions to concrete implementations. The main benefit of refinement relies on the fact that applications can be
developed and reasoned about in terms of abstract data types, which hide implementation details and leave some freedom
for the implementation. Consider the specification SgR of the Generic Register introduced in Example 6, which only
requires a policy for conflict resolution that ensures convergence. On the contrary, the specification SlwwR in Example 5
explicitly states that concurrent updates must be resolved by adopting the last-write-wins policy. Since the latter policy
ensures convergence, we would like to think about SlwwR as a refinement of SgR . We characterise refinement in our setting
as follows.

Definition 5 (Refinement). Let S1, S2 be specifications. We say that S1 refines S2 and write S1 � S2 if ∀G. S1(G) ⊆ S2(G).

Example 7. It can be easily checked that P ∈ SlwwR(G) implies P ∈ SgR(G) for any G. Consequently, SlwwR is a refinement
of SgR .

Example 8. Consider the data type Set, which provides (among others) the operations add, rem and lookup for respec-
tively adding, removing, and examining the elements within a set. Different alternatives have been proposed in the literature
for resolving conflicts in the presence of concurrent additions and removals of elements (see [14] for a detailed discussion).
We illustrate two possible alternatives by considering the execution scenario depicted in Fig. 5, for P a topological ordering
of G. A reasonable semantics for lookup over G and P would fix the return value S, which should contain all the elements
in the set, as one of the following two values: ∅ or {1}. In fact, under the last-write-wins policy, the specification prescribes
that lookup returns {1} in this scenario. Differently, the strategy of 2P-Set1 establishes that the result is ∅.

The following definition provides a specification for an abstract data type Set that allows (among others) any of the
above policies.

1 In 2P-Set, the addition of elements that have been previously removed has no effect.

96 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
〈add(1),ok〉 〈add(1),ok〉 〈rem(1),ok〉

〈lookup,S〉
(a) G

〈add(1),ok〉

〈rem(1),ok〉

〈add(1),ok〉

〈lookup,S〉
(b) P

Fig. 5. A scenario for the replicated data type Set.

P ∈ SSet(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies Be ⊆ S⊆ Ae and Conve,S

where

Ae = {k | ∃e′ ∈ EG.e′ ≺G e and λ(e′) = 〈add(k),ok〉}
Be = Ae \ {k | ∃e′ ∈ EG.e′ ≺G e and λ(e′) = 〈rem(k),ok〉}
Conve,S = ∀e′∈ EG.∀S′ ∈ 2N.λ(e′) = 〈lookup,S′〉 and − ≺G e = − ≺G e′ implies S= S′

The set Ae contains the elements added to (and possibly removed from) the set seen by e while Be contains those elements
for which e sees no removal. Thus, the condition Be ⊆ S ⊆ Ae states that lookup returns a set that contains at least all
the elements added but not removed (i.e., in Be). However, the return value S may contain elements that have been added
and later removed (the choice is left unspecified). Analogously to the specification of SgR in Example 6, Conve,S ensures
convergence.

Then, a concrete resolution policy such as 2P-Set can be specified as follows

P ∈ S2P-Set(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies S= Be

A different policy, called Or-Set, states that additions win against remove operations. This policy can be defined as
follows

P ∈ SOr-Set(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies S= Ce

where

Ce = {k | ∃e′ ∈ EG.e
′ ≺G e and λ(e′) = 〈add(k),ok〉 and ∀e′′.e′ ≺G e′′ ≺G e implies λ(e′′) = 〈rem(k),ok〉}.

It is immediate to note that S2P-Set is a refinement of SSet . It can be also noticed that Be ⊆ Ce ⊆ Ae . Consequently, SOr-Set is
also a refinement of SSet .

3.2. Classes of specifications

We discuss two properties of specifications. Firstly, we look at specifications for which the behaviour of larger computa-
tions matches that of their prefixes.

Definition 6 (Past-coherent specification). Let S be a specification. We say that S is past-coherent (briefly, coherent) if

∀G. S(G) =
⊗
e∈EG

S(G|−≺∗e)

A past-coherent specification S is such that the arbitrations for any configuration G (i.e., the set of paths S(G)) can be
obtained by composing the arbitrations associated with all its sub-configurations G|−≺∗e .

Example 9. The specifications in Example 4, Example 5 and Example 6 are all coherent, because their definitions are in
terms of restrictions of the ldags. This can be checked by application of Definition 6. Consider e.g. the specification of the
data type Counter in Example 4. Hence, if P ∈ SCtr(G) then

∀e ∈ EG.∀k.λ(e) = 〈rd,k〉 implies k= #{e′ | e′ ≺G e and λ(e′) = 〈inc,ok〉}
Let e ∈ EG and Ge = G|−≺∗e . Clearly the property above holds ∀e ∈ EGe . Thus P|−≺∗e ∈ SCtr(Ge) = SCtr(G|−≺∗e) and

consequently P ∈ ⊗
e∈EG

SCtr(G|−≺∗e).
Conversely, let P ∈ ⊗

e∈EG
SCtr(G|−≺∗e) and e ∈ EG . Then P|−≺∗e ∈ SCtr(Ge), hence if λ(e) = 〈rd, k〉 then k = #{e′ | e′ ≺Ge

e and λ(e′) = 〈inc, ok〉}. By definition of Ge , k = #{e′ | e′ ≺G e and λ(e′) = 〈inc, ok〉} and consequently P ∈ SCtr(G).
Now consider the specification S defined such that the equalities in Fig. 6 hold. S is not coherent because the arbi-

trations for the ldag in Fig. 6b should contain all the interleavings for the paths associated with its sub-configurations, as
depicted in Fig. 6a.

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 97
S (〈rd,0〉) = { 〈rd,0〉 }

S (〈inc,ok〉) = { 〈inc,ok〉 }
S (〈rd,0〉 〈inc,ok〉) =

⎧⎨
⎩

〈rd,0〉

〈inc,ok〉

⎫⎬
⎭

(a) (b)

Fig. 6. A non-coherent specification.

S (〈inc,ok〉) = { 〈inc,ok〉 }

S (〈rd,0〉) = { 〈rd,0〉 }
S

⎛
⎝ 〈rd,0〉

〈inc,ok〉

⎞
⎠ =

⎧⎨
⎩

〈rd,0〉

〈inc,ok〉

⎫⎬
⎭

Fig. 7. A non-saturated specification.

A second class of specifications is concerned with saturation. Intuitively, a saturated specification allows every top ele-
ment on the visibility to be arbitrated in any position. We first introduce the notion of saturation for a path.

Definition 7 (Path saturation). Let P be a path and � a label. We write sat(P, �) for the set of paths obtained by saturating
P with respect to �, defined as follows

sat(P, �) = {Q | Q ∈ P(EP� , λP�) and Q|EP
= P}

A path P that is saturated with a label � generates the set of all paths obtained by placing a new event labelled by � in
any position within P. By analogy, a saturated specification thus extends a computation by adding a new operation that can
be arbitrated in any position.

Definition 8 (Saturated specification). Let S be a specification. We say that S is saturated if

∀〈G,P〉,E, �. P ∈ S(G�
E)

∣∣∣
EG

implies sat(P, �) ⊆ S(G�
E)

Example 10. The specifications in Example 4, Example 5 and Example 6 are all saturated because a new event e can
be arbitrated in any position. In fact, the specifications in Example 4 and Example 6 do not use any information about
arbitration, while the specification in Example 5 constrains arbitrations only for events that are not maximal. Fig. 7 shows a
specification that is not saturated because it does not allow the arbitration of the top event (the one labelled 〈inc, ok〉) as
the first operation in a path. We remark that the specification is coherent although it is not saturated.

4. Replicated data type

In this section we show that our notion of specification can be considered as (and it is actually more general than) a
model for the operational description of rdts proposed in [3,4]. We start by recasting the original definition of rdt (as given
in [4, Def. 4.5]) in terms of ldags. As hinted in the introduction, the meaning of each operation of an rdt is specified in
terms of a context, written C, which is a pair 〈G, P〉 such that P ∈ P(EG, λG). We write C(L) for the set of contexts over L,
and fix a set O of operations and a set V of values. Then, the operational description of rdts in [3,4] can be formulated as
follows.

Definition 9 (Replicated data type). A Replicated Data Type (rdt) is a function F :O ×C(O) → V .

In words, for any visibility graph G and arbitration P, the specification F indicates the result of executing the operation
op over G and P, which is F(op, 〈G, P〉).

Example 11. The data type Counter introduced in Example 4 is formally specified in [3,4] as follows

Fctr(inc, 〈G,P〉) = ok
Fctr(rd, 〈G,P〉) = #{e | e ∈ G and λ(e) = inc}

Given a context 〈G, P〉 in C(O × V), we may check whether the value associated with each operation matches the
definition of a particular rdt. This notion is known as return value consistency [4, Def. 4.8]. In order to relate contexts with
and without return values, we use the following notation: given G ∈ G(O × V), by G ∈ G(O) we denote the ldag obtained
by projecting the labels of G in the obvious way, i.e., by removing the second component of every label.

98 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
〈 〈inc,ok〉 〈inc,ok〉

〈rd,2〉
,

〈inc,ok〉

〈inc,ok〉

〈rd,2〉

〉 〈 〈inc,ok〉 〈inc,ok〉

〈rd,0〉
,

〈inc,ok〉

〈inc,ok〉

〈rd,0〉

〉

(a) Consistent. (b) Non consistent.

Fig. 8. rval consistency for Fctr .

Definition 10 (Return value consistent). Let F be an rdt and 〈G, P〉 ∈ C(O × V) a context. We say that F is Return Value
Consistent (rval) over G and P and write rval(F , G, P) if ∀e ∈ EG.λ(e) = 〈op, v〉 implies F(op, G

∣∣−≺e , P
∣∣−≺e) = v.

Moreover, we define

prval(F,G) = {P | rval(F,G,P)}
Example 12. Consider the rdt Fctr introduced in Example 11. The context in Fig. 8a is rval consistent while the one in
Fig. 8b is not because Fctr requires rd to return the number of inc operations seen by that read, which in this case should
be 2.

The following result states that return value consistent paths are all coherent, in the sense that they match the behaviour
allowed for any shorter configuration.

Lemma 1. Let F be an rdt and G an ldag. Then

prval(F ,G) =
⊗
e∈EG

prval(F , G|−≺∗e).

4.1. Functional specifications

We now focus on the relation between our notion of specification, as introduced in Definition 4, and the operational
description of rdts, as introduced in [3,4] and formalised in Definition 9 in terms of ldags. Specifically, we characterise a
proper subclass of specifications that precisely correspond to rdts.

For this section we restrict our attention to specifications over the set of labels O × V , i.e., S : G(O × V) → 2P(O×V) .

Definition 11 (Total specification). Let S be a specification. We say that S is total if

∀〈G,P〉,E,op. ∃G1, v. G= G1 ∧ P ∈ S((G1)
〈op,v〉
E)

∣∣∣
EG1

Intuitively, a specification is total when every operation of the data type can be performed in any state of the computa-
tion. Formally, this is stated by considering a context 〈G,P〉 as the representation of the state of a computation. We remark
that differently from G and P, whose labels are in O × V , G and P have no information about the return value of the oper-
ations (i.e., their labels are in O). Hence, totality says that it is always possible to take an equivalent representation of the
state (i.e., 〈G1, P1〉 instead of 〈G, P〉) and extend it with an operation op. This is achieved by requiring P ∈ S((G1)

〈op,v〉
E)

∣∣∣
EG1

for some return value v. Thus S((G1)
〈op,v〉
E) is not empty, hence, the specification allows the execution of op over G1 .

We remark that a total specification does not prevent the definition of an operation that admits more than one return
value in certain configurations, i.e., v in Definition 11 does not need to be unique. For instance, consider the Generic
Register in Example 6, where operation rd may return any of the causally-independent, previously written values. Albeit
being total, the specification for rd is not deterministic. On the contrary, a specification is deterministic if an operation
executed over a configuration admits at most one return value, as formally stated below.

Definition 12 (Deterministic specification). Let S be a specification. We say that S is deterministic if

∀G,E,op,v,v′. v = v′ implies S(G〈op,v〉
E)

∣∣∣
EG

∩ S(G〈op,v′〉
E)

∣∣∣∣
EG

= ∅

We say that S is weakly deterministic if the property holds for E = ∅.

A less restrictive notion for determinism could allow the result for an added operation to depend also on the given
admissible path. We say that a specification S is value-deterministic if

∀G,E,op,v,v′. v = v′ ∧ G = ε implies S(G〈op,v〉
E)

∣∣∣
EG

∩ S(G〈op,v′〉
E)

∣∣∣
EG

= ∅
We say that a specification is functional if it is both deterministic and total.

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 99
S

⎛
⎝ 〈inc,ok〉

〈rd,1〉

⎞
⎠ =

⎧⎨
⎩

〈inc,ok〉

〈rd,1〉

⎫⎬
⎭ S

⎛
⎝ 〈inc,fail〉

〈rd,⊥〉

⎞
⎠ =

⎧⎨
⎩

〈inc,fail〉

〈rd,⊥〉

⎫⎬
⎭

(a) (b)

Fig. 9. A value-deterministic and coherent specification.

〈wr(1),ok〉 〈wr(2),ok〉 〈wr(1),ok〉 〈wr(2),ok〉

〈rd,1〉

〈wr(1),ok〉 〈wr(2),ok〉

〈rd,2〉

〈wr(1),ok〉

〈rd,1〉

〈wr(2),ok〉

〈wr(1),ok〉

〈wr(2),ok〉

〈rd,2〉

〈wr(1),ok〉

〈wr(2),ok〉

(a) G. (b) G〈rd,1〉 . (c) G〈rd,2〉 . (d) P1 . (e) P2 . (f) P= P1|EG
= P2|EG

.

Fig. 10. Generic register.

Example 13. Fig. 9 shows a value-deterministic specification. Although a read operation that follows an increment may
return two different values, such a difference is explained by the previous computation: in one case the increment succeeds
while in the other fails. However, the specification is not deterministic because it admits a sequence of operations to be
decorated with different return values.

Example 14. It is straightforward to check that the specifications in Example 4 and Example 5 are deterministic. For Exam-
ple 4 we reason as follows. The case for op= inc follows immediately because the only possible return value is ok. When
op= rd, from the definition of SCtr (Example 4) we conclude that SCtr(G

〈rd,v〉
E) = ∅ only when v = #{e | e ∈ E and λ(e) =

〈inc, ok〉}. Consequently, for any v′ = v, SCtr(G
〈rd,v′〉
E) = ∅ holds, hence, SCtr is deterministic. For Example 5, we can reason

analogously.
On the contrary, the specification of the Generic Register in Example 6 is not even value-deterministic. It suffices

to consider a configuration G with two different written values, as shown in Fig. 10a. Consider now the two extensions
G〈rd,1〉 and G〈rd,2〉 depicted in Fig. 10b and Fig. 10c and the two paths P1 and P2 in Fig. 10d and Fig. 10e. By the definition
of SgR , we can conclude that P1 ∈ SgR(G〈rd,1〉) and P2 ∈ SgR(G〈rd,2〉). The path P in Fig. 10f corresponds to both P1|EG

and
P2|EG

. Consequently, SgR(G〈rd,1〉)
∣∣
EG

∩ SgR(G〈rd,2〉)
∣∣
EG

= ∅.
Similarly, Set in Example 8 is not deterministic.

The lemma below states a simple criterion for determinism.

Lemma 2. Let S be a coherent and deterministic specification. Then

∀G1,G2. G1 = G2 implies G1 = G2 ∨ S(G1) ∩ S(G2) = ∅

So, if two configurations are annotated with the same operations yet with different values, then their admissible paths
are already all different even if we disregard return values.

We then consider a last property that guarantees some sort of additional locality to the notion of coherence.

Definition 13 (Local specification). Let S be a specification. We say that S is local if

∀G,E . ∃G1. ∀op,v. G
∣∣
E = G1 ∧ S(G〈op,v〉

E)

∣∣∣−�� ⊆ S(G1〈op,v〉)

We say that a specification is locally functional if it is both functional and local.
Intuitively, locality states that the admissible paths of an extended configuration are constrained: given a configuration

G, its extension with an operation op with respect to the events E can be explained by the sub-configuration of G that
only contains those events, i.e., G

∣∣
E = G1 . Such behaviour is given by S(G1〈op,v〉).

As a side remark, it is noteworthy that locality has an impact on determinism.

Lemma 3. Let S be a local and weakly deterministic specification. Then it is deterministic.

4.2. Correspondence between rdts and specifications

This section establishes the connection between rdts and specifications. We first introduce a mapping from rdts to
specifications.

100 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
Definition 14 (rdts as specifications). Let F be an rdt. We write S(F) for the specification associated with F , defined as
follows

S(F)(G) = prval(F,G)

Next result shows that rdts correspond to specifications that are coherent, functional and saturated.

Lemma 4. For every rdt F , S(F) is coherent, locally functional, and saturated.

The inverse mapping from specifications to rdts is defined below.

Definition 15 (Specifications as rdts). Let S be a specification. We write F(S) for the rdt associated with S , defined as
follows

F(S)(op,G,P) = v if ∃G1. G= G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

F(S) may not be well-defined for some S , e.g. when S is not deterministic. The following lemma states the conditions
under which F(S) is well-defined.

Lemma 5. For every coherent, functional, and saturated specification S , F(S) is well-defined.

The following two results show that rdts are a particular class of specifications, and hence, provide a fully abstract
characterisation of operational rdts.

Theorem 1. For every coherent, locally functional, and saturated specification S , S = S(F(S)).

Theorem 2. For every rdt F , F = F(S(F)).

The above characterisation implies that there are data types that cannot be specified as operational rdts. Consider e.g.
Generic Register and Set, as introduced respectively in Example 6 and Example 8. As noted in Example 14, they
are not deterministic. Hence, they cannot be translated as rdts. We remark that a non-deterministic specification does not
imply a non-deterministic conflict resolution, but it allows for under-specification.

5. On the correct implementation of replicated data types

The previous section was devoted to the proof of correspondence between the novel notion of specification we intro-
duced and a more standard proposal for modelling replicated data types. In this section we argue that our definition is
flexible enough for reasoning about the correctness of possible implementations, in terms of the classical notion of simu-
lation. More precisely, first we show how a specification naturally gives rise to a labelled transition system (lts). Then, we
consider state-based implementations of replicated data types [3].

5.1. From specifications to labelled transitions systems

We note that specifications have an implicit operational interpretation.

Definition 16 (One-replica lts). Let S be a specification. Then, the abstract one-replica lts TS has pairs 〈G, P〉 as states, pairs
〈op, v〉 as labels, and triples 〈G, P〉 �−→ 〈G′, P′〉 as transitions such that

• 〈G, P〉 is a state whenever P ∈ S(G);
• 〈G, P〉 �−→ 〈G′, P′〉 is a transition whenever G′ = G� and P′∣∣

EG
= P.

A pair 〈G, P〉 such that P ∈ S(G) abstractly represents an admissible computation according to S . Moreover, S allows the
extension of such computation with an event labelled by � whenever the specification allows us to extend G and P with a
fresh event labelled by �.

Our next step is to show that a specification can be equipped with a notion of parallel composition. But first, we need
to consider a suitable kind of morphism.

Definition 17 (Downward closure). Let G = 〈E, ≺, λ〉 be an ldag and E ′ ⊆ E . We say that E ′ is downward closed if

∀e ∈ E ′.− ≺ e ⊆ E ′.

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 101
Definition 18 (Past-reflecting morphisms). An ldag morphism f : G1 → G2 from G1 to G2 is a function f : EG1 → EG2 such
that λG1 = f; λG2 and e ≺G1 e′ implies f(e) ≺G′ f(e′). An injective ldag morphism f : G1 → G2 is past-reflecting if

• f(e) ≺G2 f(e′) implies e ≺G1 e′;
• ⋃

e∈EG1
f(e) is downward closed.

Hence, past-reflecting injective morphisms f : G1 → G2 are uniquely characterised as such by the properties of the image
of EG1 with respect to G2 .

Definition 19 (Compatibility). Let G1 , G2 be two ldags. They are compatible if

• e ∈ EG1 ∩ EG2 implies λ1(e) = λ2(e);
• the injective morphisms Gi → G1 ∪ G2 for i ∈ {1, 2} are past-reflecting.

We write G1 � G2 to denote the union of compatible ldags.

Note that the operation � over ldags is idempotent, associative, and commutative. Also note that if G1 and G2 are
compatible, then the product P1 ⊗ P2 is correctly labelled for any pair P1 ∈ S(G1) and P2 ∈ S(G2) (i.e., events that belongs
to both EG1 and EG2 have the same label) because each path is built out of the set of events (and the corresponding labels)
of the associated ldag. Consequently, we write 〈G1 � . . . � Gn, P〉 for a replicated state consisting of n compatible replicas,
with 〈Gi, P|EGi

〉 denoting the state of the replica i.

Definition 20 (Multi-replica lts). Let S be a coherent specification. Then, the abstract multi-replica lts TS is generated by
the corresponding one-replica lts and the additional rule below.

(comp)

〈G1, P|EG1
〉 �−→ 〈G′

1,P
′
1〉 P′ ∈ P⊗ P′

1

〈G1 � G2,P〉 �−→ 〈G′
1 � G2,P′〉

Rule (comp) describes the computations associated to a replicated state. Whenever a part of a replicated state (denoted
by 〈G1, P|EG1

〉) evolves to 〈G′
1, P

′
1〉 by performing the action �, then the whole system evolves to a state obtained by

composing the part that has not changed (i.e., G2) and the new state 〈G′
1, P

′
1〉.

Indeed, the states corresponding to the union of compatible ldags recalls parallel composition, and the soundness of the
rule with respect to the target is witnessed by the proposition below, ensuring that the transitions of a composite state are
in correspondence with the transitions of its components.

Lemma 6. Let S be a coherent specification, G1 , G2 compatible ldags, and P ∈ S(G1 � G2) a path. If 〈G1, P|EG1
〉 �−→ 〈G′

1, P
′〉 then

P ⊗ P′ ⊆ S(G′
1 � G2).

5.2. Implementing a specification

In this section we address the problem of identifying what a concrete implementation of a replicated data type is.
We consider a setting in which a replicated data type is realised on top of a set of replicas, where each replica keeps
a local version of the data and clients perform read and write operations over replicas. Roughly speaking, each request
made by a client is handled by one of the replicas. In particular, a read request is answered according to the local state
of the replica that handles that request. Analogously, any update operation is executed over the local state of a replica.
The changes are then propagated asynchronously to the remaining replicas, which will update their own states later on.
Since changes are propagated asynchronously and different replicas may be serving concurrent updates, each replica is
responsible for resolving conflicts locally. We will focus on state-based implementation of replicated data types, as opposed
to operation-based implementation [2]. In a state-based implementation, replicas propagate changes by communicating their
own states.

Following the approach in [3], we describe an implementation of a data type in terms of the behaviour of a replica and
we assume that all the replicas of an implementation behave the same. We will also consider ltss as the operational model
of replicas. We then let � (ranged over by σ , σ0, . . .) denote the set of possible states of a replica and for a specification S
we use the following set of operations as labels

AS = L ∪ ({send, rcv} × �) ∪ {τ }

102 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
(read)

k= �s∈Rv(s)

〈r, v〉 rd,k−−−→ 〈r, v〉

(inc)

〈r, v〉 inc,ok−−−−→ 〈r, v[r �→ v(r) + 1]〉

(send)

〈r, v〉 send〈r,v〉−−−−−−→ 〈r, v〉

(rcv)

〈r, v〉 rcv〈r′,v′ 〉−−−−−→ 〈r,max{v, v′}〉

Fig. 11. Implementation of data type Counter.

The set AS of labels is then built-up from the operations of the data type (i.e., the elements in L = O×V), with additionally
two special kinds of operations 〈send, σ 〉 and 〈rcv, σ 〉 that are used by the replicas to synchronise their states and finally
the label τ for internal transitions.

The behaviour of a replica of a specification S is given by an lts CS with labels in AS that is total, i.e., such that
∀σ , op. ∃v. σ op,v−−−→. Totality ensures that all operations in the implementation of a replicated data type are non-blocking,
i.e., a replica is able to perform any operation of the data type at any state.

A complete implementation of a replicated data type is then obtained by putting several replicas in parallel. As a formal
counterpart, we rely on a composition operator that prescribes the way in which different replicas synchronise. Its definition
depends on the chosen communication model (synchronous, asynchronous, broadcast, . . .) and we defer its formal treatment
to § 5.4.

Example 15. We consider the data type Counter in Example 4 and the state-based implementation presented in [3], which
is defined below

• � =R × (R �→N), where R is the set of replicas’ identifiers;
• L = {〈inc, ok〉} ∪ ({rd} ×N) is the set of data type operations;
• → is given by the inference rules in Fig. 11.

The states of a replica are pairs of the form 〈r, v〉, where r is the replica’s id and v is a mapping that keeps track of the
known increments performed over all replicas, i.e., v(r′) is the number of increments performed over the replica r′ .

We now comment on the inference rules in Fig. 11. Rule (read) describes a replica that is handling a client’s request
for reading the counter. In such case, the replica returns the value k, which corresponds to the total number of increments
known from all replicas. This transition does not change the state of the replica. Differently, the state changes when per-
forming an increment, as described by rule (inc). The new state records the fact that r has performed another increment.
The change has only local effect and can be propagated later on, by using rule (send). A replica also updates its local state
when it receives a change propagated by another replica, as described by the rule (rcv). When receiving a message 〈r′, v′〉,
the replica updates its local mapping to max{v, v′}, which is defined as follows

∀s.max{v, v′}(s) = max{v(s), v′(s)}
The natural question is whether the behaviour of the replica in Example 15 correctly implements the specification in

Example 4. We address this problem in two steps: first of all, we show that a single replica is a correct implementation of
the data type (§ 5.3); then, we analyse the combined behaviour of several replicas (§ 5.4).

5.3. Linking a specification with the behaviour of a replica

In this section we provide a criterion to formally prove that the implementation of a replica is correct. More precisely,
the correspondence between the behaviour of a replica and a specification is given as a (weak) simulation relation.

Definition 21 (Implementation correctness). Let S be a specification, TS the one-replica (multi-replica) abstract lts, and
CS an implementation. Then, an implementation relation IS is a relation between the states of CS and TS such that if
(σ , 〈G, P〉) ∈ IS then for any σ ′ , σ ′′ , op and v

1. if σ op,v−−−→ σ ′ then ∃G′, P′ such that 〈G, P〉 op,v−−−→ 〈G′, P′〉 and (σ ′, 〈G′, P′〉) ∈ IS ;

2. if σ rcv,σ ′−−−−−→ σ ′′ then ∃G′, P′, P′′ such that (σ ′, 〈G′, P′〉) ∈ IS and P′′ ∈ P ⊗ P′ and (σ ′′, 〈G � G′, P′′〉) ∈ IS ;

3. if σ send,σ ′−−−−−→ σ then ∃G′, P′ such that (σ ′, 〈G′, P′〉) ∈ IS and G � G′ = G and P ⊗ P′ = {P};
4. if σ τ−→ σ ′ then (σ ′, 〈G, P〉) ∈ IS .

We write ∼o
S for the largest implementation relation with respect to the abstract one-replica lts of the specification S ,

and ∼m for the multi-replica one.
S

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 103
(add)

V′ = V[r �→ V(r) + 1] W′ = W[(k, r) �→ V(r) + 1]
〈r,V,W〉 add(k),ok−−−−−−→ 〈r,V′,W′〉

(rem)

W′ = W[∀s ∈R. (k, s) �→ 0]
〈r,V,W〉 rem(k),ok−−−−−−→ 〈r,V,W′〉

(lookup)

S= {k | ∃s ∈R. W(k, s) > 0}
〈r,V,W〉 lookup,S−−−−−−→ 〈r,V,W〉

(send)

〈r,V,W〉 send〈r,V,W〉−−−−−−−→ 〈r,V,W〉

(receive)

〈r,V,W〉 rcv〈r′,V′,W′ 〉−−−−−−−→ 〈r,max{V,V′}, (V,W) ⊕ (V′,W′)〉

Fig. 12. Implementation of data type OR-Set

Any pair (σ , 〈G, P〉) in the relation IS establishes that the state σ is explained in terms of the visibility G and the
arbitration P, which is admitted by the specification (i.e., P ∈ S(G)). Moreover, there is a close correspondence between
the evolution of σ and 〈G, P〉, which is stated by the items 1–4. Item 1 predicates on the transitions corresponding to
the operations of the data type. Basically, if the replica performs the operation op that produces the result v , then the
specification allows G and P to be extended with the corresponding event, which is captured by the transition 〈G, P〉 op,v−−−→
〈G′, P′〉 formalised in Definition 16 and Definition 20.

Item 2 regards those transitions in which the replica receives updates propagated by other replicas. In a state-based
implementation, the content of a message rcv is a state computed by another replica. For this reason, we require the
received state σ ′ to be related to a configuration admitted by the specification, i.e., (σ ′, 〈G′, P′〉) ∈ IS . Moreover, 〈G′, P′〉
must be consistent with the history already seen by the replica, i.e., the common history in 〈G, P〉 and 〈G′, P′〉 must coincide.
This is established by requiring that the union of the two visibilities, i.e., G � G′ , and the merge of the two paths, i.e.,
P′′ ∈ P ⊗P′ , are defined. Under the above conditions, the state σ ′′ obtained as the combination of σ and σ ′ must correspond
to the combination of 〈G, P〉 and 〈G′, P′〉, i.e., (σ ′′, 〈G � G′, P′′〉) ∈ IS .

Item 3 states that a replica only propagates messages carrying information about its current state. Note that σ ′ may
contain information about some events on the current state. This is formally stated by conditions G �G′ = G and P ⊗P′ = {P}
(and it is going to be useful in § 5.4). Item 4 is self-explanatory.

In the following, we will refer to one-replica or multi-replica correctness of an implementation when the abstract lts

TS in the definition above is one-replica or multi-replica, respectively.

Example 16. We can show that the replica defined in Example 15 is a correct one-replica implementation of the data type
Counter in Example 4 by showing that the following relation satisfies the conditions stated in Definition 21 (proof details
are in Appendix B) with respect to the one-replica abstract lts

I = {(〈r, v〉, 〈G,P〉) | there exists f : EG → R such that ∀r ∈ R.v(r) = #{e | f (e) = r and λ(e) = 〈inc,ok〉} }

Example 17. In this example we show that the optimised OR-set implementation in [3] is correct with respect to the
specification in Example 8. The implementation of a replica is given by

• � =R × (R �→ N) × ((V ×R) �→ N);
• L = {〈add(k), ok〉, 〈rem(k), ok〉 | k ∈ V} ∪ ({lookup} × 2V);
• → is given by the inference rules in Fig. 12.

States are triples 〈r, V, W〉, where r ∈ R is the replica’s id. The mapping V associates each replica with a version number
and means that r is up-to-date with the version V(r′) of the replica r′ . The mapping W indicates for each replica r′ and
element k the newest version of r′ in which the element k has been added, if any (i.e., W(k, r′) = 0 means that k either has
not been added to r′ or it has been added and then deleted). It is assumed that W(k, r) ≤ V(r) for all r and k.

We now discuss the rules in Fig. 12. Rule (add) describes the behaviour of a replica r that handles a request for adding
the element k to the set. In this case, r changes its local state by (i) creating a new version, i.e., the entry V(r) is updated
to V(r) + 1 to reflect that there is a new version for r, and (ii) recording that the element k has been added in the newly
created version of r, i.e., the entry W(k, r) is updated to V(r) + 1. The removal of the element k is described by rule (rem).
In this case, for all s ∈ R, W(k, s) is set to 0 to indicate the elimination of k. When performing a lookup, the replica r
returns the set S of those elements that are present in at least one of the known versions of the replicas (Rule (lookup)).

Rule (send) is straightforward. During synchronisation, which is described in rule (receive), the mappings V and W are
updated with the information in the received message. It is assumed that the received mappings V′ and W′ are consistent,
i.e., W′(k, ri) ≤ V′(ri) for all k. For V, the new state keeps the higher version for each replica, i.e., max{V, V′}. The combination

104 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
(parL)

σ1
�−→ σ ′

1

σ1‖σ2
�−→ σ ′

1‖σ2

(comm)

σ1
send,σ−−−−→ σ ′

1 σ2
rcv,σ−−−−→ σ ′

2
σ1‖σ2

τ−→ σ ′
1‖σ ′

2

Fig. 13. Synchronous communication of replicas (symmetric rules are omitted).

of W and W′ is more involved because it handles the conflicts due to concurrent operations over the same element. There
is a conflict between W and W′ for (k, s) when one mapping indicates that k is present in the replica s and the other does
not, i.e., W(k, s) > 0 and W′(k, s) = 0 or vice versa. In case of a conflict, the mappings V and V′ are used to resolve it. The
operator ⊕ is defined as follows

(V,W) ⊕ (V′,W′)(k, s) =
{
0 IsREM(W,W′,V,k, s) ∨ IsREM(W′,W,V′,k, s)
max{W(k, s),W′(k, s)} otherwise

where IsREM(W, W′, V, k, s) = (W(k, s) = 0 ∧ W′(k, s) ≤ V(s)) is the predicate characterising the fact that k has been removed
from the replica s accordingly to the mappings W, W′ , and V.

We show that a replica is correct with respect to the specification in Example 8 by showing that the following relation
satisfies the conditions in Definition 21

I = {(〈r,V,W〉, 〈G,P〉) | there exists f : EG → R such that
∀k.(∃r ∈ R.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G〈lookup,S〉) = ∅ ∧ k ∈ S)}

Correctness and refinement. It is straightforward to notice that correctness is preserved by refinement, i.e., if S is a refinement
of S ′ and an implementation I is correct with respect to S , then I is correct with respect to S ′ . This follows from the fact
that 〈G, P〉 op,v−−−→ 〈G′, P′〉 in S implies 〈G, P〉 op,v−−−→ 〈G′, P′〉 in S ′ . Consequently, we can conclude that the implementation in
Example 17 is also a correct implementation of the non-deterministic specification of SSet introduced in Example 8.

5.4. On the behaviour of multiple replicas

We now address the problem of showing that the parallel composition of several correct replicas is actually a correct
implementation of a data type. In this section we focus on coherent specifications and start by considering the standard
synchronous communication model, which is defined as follows.

Definition 22 (Synchronous implementation). Let S be a specification and CS an implementation. Then the synchronous ex-
tension Cσ

S of CS is obtained by closing the set of states with a binary operation ‖ and extending the transition relation
with the additional rules in Fig. 13 (where symmetric versions are omitted).

We now want to reach the conclusion that whenever we have an implementation CS that is one-replica correct, then
the synchronous extension Cσ

S is multi-replica correct. The intuition is that the state of the parallel composition of replicas
is described in terms of the configurations associated with each of the components. The following result suffices for our
purposes, since it states that the simulation for a coherent specification is closed under synchronous parallel composition,
and it relies on Lemma 6.

Lemma 7. Let S be a coherent specification, CS an implementation that is one-replica correct, and σ0, σ1 two states of CS . If σi ∼o
S〈Gi, Pi〉 for i ∈ {1, 2}, then σ1‖σ2 ∼m

S 〈G1 � G2, P〉 for any P ∈ P1 ⊗ P2 .

Then, we obtain immediately the desired result.

Proposition 1. Let S be a coherent specification and CS an implementation that is one-replica correct. Then, Cσ
S is multi-replica

correct.

Example 18. The result above allows us to conclude that the implementation consisting of the parallel composition of
replicas behaving as described in Example 15 is correct with respect to the specification of SCtr in Example 4, which
is coherent (see Example 9). Similarly, we can conclude that the parallel composition of several replicas for OR-Set in
Example 17 is a correct implementation.

We remark that different communication models can be accommodated analogously. We may consider the (admittedly
simplistic) asynchronous implementation Cα

S obtained by adding a family of operators |B defined in Fig. 14, where B denotes
a FIFO buffer. Formally, we represent B as a sequence σ1 · . . . ·σn of states and write ε for the empty sequence. Rule (sendL)

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 105
(parL)

σ1
�−→ σ ′

1

σ1 |B σ2
�−→ σ ′

1 |B σ2

(sendL)

σ1
send,σ−−−−→ σ ′

1
σ1 |B σ2

τ−→ σ ′
1 |B·σ σ2

(receiveL)

σ1
rcv,σ−−−−→ σ ′

1
σ1 |σ ·B σ2

τ−→ σ ′
1 |B σ2

Fig. 14. Buffered communication of replicas (symmetric rules are omitted)

says that the state σ sent by a replica is added at the end of the buffer. Symmetrically, rule (receiveL) states that a replica
consumes updates from the beginning of the buffer. Also in this case, we can prove that implementation correctness is
preserved.

Lemma 8. Let S be a coherent specification, CS an implementation that is one-replica correct, and σ0, σ1 two states of CS . If σi ∼o
S〈Gi, Pi〉 for i ∈ {1, 2}, then σ1 |ε σ2 ∼m

S 〈G1 � G2, P〉 for any P ∈ P1 ⊗ P2 .

Proposition 2. Let S be a coherent specification and CS be an implementation that is one-replica correct. Then, Cα
S is multi-replica

correct.

6. Related works

Weak consistency require to deal with conflict resolution [2,14,15] and convergence of replicas [8,16–18]. The design and
implementation of data types that ensure convergence has been a very active area of research, notably, conflict-free and
commutative replicated data type [2,14], which avoid implementing conflict resolution policies.

Different lines of work have addressed the problem of specifying and implementing replicated data types, considering
also those that require policies for conflict resolution [3,17]. The approach in [3] has been addressed in detail in § 4.
We remark that all of their specifications implicitly define a precise strategy to resolve conflicts. On the contrary, our
specifications provide a more abstract view of rdts, which do not commit to a particular strategy for conflict resolution.
Implementation correctness is characterised in [3] in terms of replication-aware simulations. A replication-aware simulation
is defined on top of abstract executions decorated with auxiliary information, such as time-stamps, which is defined ad hoc
for each data type. Global correctness, i.e., the behaviour of several replicas, is derived from some agreement properties that
impose a set of proof obligations that need to be checked. On the contrary, our characterisation of correctness relies on
the abstract states induced by the specification. In our case, checking implementation correctness reduces to standard lts

simulation. Their approach can be instantiated to handle both state-based and operation-based implementations.
A different approach has been proposed in [17] to deal with optimistic replication systems. In this case, a specification

associates an operation and a return value to the set of all possible executions (represented in terms of partial orders)
that explain that particular return value for that operation. Moreover, they allow different operations to be associated with
different partial orders. In this way, they deal with speculative systems. Furthermore, they reduce the problem of verifying
eventual consistency to a model-checking and reachability problem.

A framework combining rdts and transactions has been presented in [6]. As shown in [13], our specification style
enables a categorical presentation of rdts and the development of composition operators. Our results for parallel operators
and implementation correctness suggests a way of dealing with rdt composition.

As far as the verification of (commutative) replicated data types is concerned, a framework in Isabelle/HOL has been
proposed in [19], and other lines of work [8,9] have focused on the related problem of verifying properties of applications
that use replicated data. In the long run, our goal is to exploit tools and techniques from the theory of simulation for
precisely such purposes.

7. Conclusions and future works

We propose a denotational view of replicated data types. While most of the traditional approaches are operational
in flavour [3,6,9], we strived for a specification formalism that could exploit the tools of algebraic specification theory.
More precisely, we associate to each configuration (i.e., visibility) a set of admissible arbitrations. Differently from previous
approaches, our presentation naturally accommodates non-deterministic specifications and enables abstract definitions al-
lowing for different strategies in conflict resolution. Our formulation brings to light some properties held by mainstream
specification formalisms: beside the obvious property of (local) functionality, they satisfy coherence and saturation. A co-
herent specification can neither prescribe an arbitration order between events that are unrelated by visibility nor allow for
additional arbitrations over past events when a configuration is extended (i.e., a new top element is added to visibility). In-
stead, a saturated specification cannot impose any constraint to the arbitration of top events. Note that saturation does not
hold when requiring that admissible arbitrations should be also topological orderings of visibility. Hence, the approaches in
[3,4] generate specifications that are not saturated. We remark that this relation between visibility and arbitration translates
in a quite different property in our setting, and this suggests that consistency models defined as relations between visibility

106 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
and arbitration (e.g., monotonic and causal consistency) could have alternative characterisations. We plan to explore these
connections in future works.

Another question concerns coherence, which prevents a specification from choosing an arbitration order on events that
are unrelated by visibility and forbids, e.g., the definition of strategies that arbitrate first the events coming from a partic-
ular replica. Consequently, it becomes natural to look for those rdts and consistency models that are the counterpart of
non-coherent specifications, still preserving some suitable notion of causality between events. We consider that the weaker
property S(G)|−≺∗e ⊆ S(G|−≺∗e) (that is, no additional arbitration over past events when a configuration is extended) is
a worthwhile alternative, accommodating for many examples that impose less restrictions on the set of admissible paths
(hence, that may allow more freedom to the arbitration).

We proposed an approach for checking that an implementation is correct with respect to a specification. Our char-
acterisation relies on a notion of simulation and enjoys the property of being compositional with respect to standard
communication models. This relieves us from checking that the behaviour of several replicas is correct. Our characteri-
sation focuses only on state-based implementations. We are planning to extend the characterisation to operation-based
implementations.

Acknowledgements

We thank the anonymous reviewers for their careful reading of our paper and their insightful comments. The first author
has been partially supported by CONICET International Cooperation Grant 995/15. The second and third author have been
partially supported by UBACyT project 2014–2017 20020130200092BA and CONICET project PIP 11220130100148CO.

Appendix A. Proof of the results in Section 4

Proof of Lemma 1. Let P ∈ ⊗
e∈EG

prval(F , G|−≺∗e), that is, ∀e ∈ EG. P|−≺∗e ∈ prval(F , G|−≺∗e). By return value consis-
tency (Definition 10), this is equivalent to

∀e ∈ EG. ∀e′ ∈ EG|−≺∗e
. λ(e′) = 〈op′,v′〉 implies F(op′, (G

∣∣−≺∗e)

∣∣∣−≺e′ , (P
∣∣−≺∗e)

∣∣∣−≺e′) = v′

Note that (G
∣∣−≺∗e)

∣∣∣−≺e′ coincides with G
∣∣−≺e′ , and the same for P. Then, the result follows because the formula above

coincides with

∀e ∈ EG. λ(e) = 〈op,v〉 implies F(op, G
∣∣−≺e , P

∣∣−≺e) = v �
Proof of Lemma 2. Consider G1 , G2 such that G1 = G2 and G1 = G2 . We prove that S(G1)∩S(G2) = ∅ follows. Since G1 = G2
there exists an event e such that

G1|−≺+e = G2|−≺+e and λ1(e) = 〈op,v1〉, λ2(e) = 〈op,v2〉 for v1 = v2

Let G = Gi|−≺+e . By determinism, we have that S(Gλ1(e)

−≺e)

∣∣∣∣
EG

∩ S(Gλ2(e)

−≺e)

∣∣∣∣
EG

= ∅, and equivalently that S(G1|−≺∗e)

∣∣∣−≺+e
∩

S(G2|−≺∗e)

∣∣∣−≺+e
= ∅.

Now, assume that there exist Pi ∈ S(Gi) such that P1 = P2 , then by coherence ∀e. Pi|−≺∗e ∈ S(Gi|−≺∗e). Consequently,
∀e. Pi|−≺+e ∈ S(Gi|−≺∗e)

∣∣−≺+e , which contradicts the statement above for e = e. �
Proof of Lemma 13. By locality, for any G and E there exists G1 such that for all op, v, we have G

∣∣
E = G1 ∧

S(G〈op,v〉
E)

∣∣∣−�� ⊆ S(G1〈op,v〉). Consequently, for any op and v = v′ ,

S(G〈op,v〉
E)

∣∣∣−�� ⊆ S(G1〈op,v〉)

S(G〈op,v′〉
E)

∣∣∣∣−��
⊆ S(G1〈op,v′〉)

If S is not deterministic, then for some op and v = v′ we have S(G〈op,v〉
E)

∣∣∣
EG

∩ S(G〈op,v′〉
E)

∣∣∣∣
EG

= ∅. Therefore

S(G〈op,v〉
E)

∣∣∣−�� ∩ S(G〈op,v′〉
E)

∣∣∣∣−��
= ∅ and thus we have S(G1〈op,v〉) ∩ S(G1〈op,v′〉) = ∅, against weakly determinism

for G1 . �

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 107
Proof of Lemma 4. We prove the four properties of S(F).

• Coherent. Immediate by Lemma 1.
• Saturated. We have to prove that

∀〈G,P〉,E, 〈op,v〉. P ∈ S(F)(G〈op,v〉
E)

∣∣∣
EG

implies sat(P, 〈op,v〉) ⊆ S(F)(G〈op,v〉
E)

Since P ∈ S(F)(G〈op,v〉
E)

∣∣∣
EG

, then there is P1 ∈ sat(P, 〈op,v〉) ∩ S(F)(G〈op,v〉
E).

P1 ∈ S(F)(G〈op,v〉
E)

Definition 14≡ P1 ∈ prval(F,G〈op,v〉
E)

Definition 10≡ rval(F,G〈op,v〉
E ,P1)

Definition 10≡ rval(F, G〈op,v〉
E

∣∣∣
EG

, P1|EG
) ∧ F(op, G〈op,v〉

E

∣∣∣−≺� , P1
∣∣−≺�) = v

= rval(F,G,P) ∧ F(op, G
∣∣
E , P1

∣∣
E) = v

Now, for every P2 ∈ sat(P, 〈op,v〉) note that P2
∣∣
E = P1

∣∣
E and, consequently, F(op, G

∣∣
E , P1

∣∣
E) = v holds. Hence,

P2 ∈ S(F)(G〈op,v〉
E) holds and the result follows.

• Total. Let us assume that there exist G, P, E , and op such that

∀G1,v. G= G1 implies P ∈ S(F)((G1)
〈op,v〉
E)

∣∣∣
EG1

(1)

Moreover, without loss of generality we can assume that G is a minimal ldag that satisfies (1), i.e., that for all G′ strictly
contained in G and for all P′ ∈ S(F)(G′) we have

∀E ′,op′. ∃G′
1,v

′. G′ = G′
1 ∧ P′ ∈ S(F)((G′

1)
〈op′,v′〉
E)

∣∣∣∣
EG′

1

Now, let us consider G′ , E ′ , and op′ such that G= (G′)op
′

E ′ and let P′ = P|EG′ . Since we proved that S(F) is saturated
we have

∃〈G′
1,P

′
1〉, v′. G′ = G′

1 ∧ P′ = P′
1 ∧ sat(P′

1, 〈op′,v′〉) ⊆ S(F)((G′
1)

〈op′,v′〉
E ′)

Then, let us take G1 = (G′
1)

〈op′,v′〉
E ′ and P1 ∈ sat(P′

1, 〈op′,v′〉) such that P = P1 and P1 ∈ S(F)(G1). First, note that
G = G1 because G = (G′)op

′
E ′ , G′ = G′

1 , and G1 = (G′
1)

〈op′,v′〉
E ′ . We now show that for each E and op there exists v such

that P1〈op,v〉 ∈ S(F)((G1)
〈op,v〉
E), which is in contradiction with the assumption (1). Given E and op, take v such that

F(op, G1
∣∣
E , P1

∣∣
E) = v (such v exists because of the definition of F). By following the same reasoning as for saturation

we have

P1〈op,v〉 ∈ S(F)((G1)
〈op,v〉
E)

Definition 14≡ P1〈op,v〉 ∈ prval(F, (G1)
〈op,v〉
E)

Definition 10≡ . . .

= rval(F,G1,P1) ∧ F(op, G1
∣∣
E , P1

∣∣
E) = v

Since rval(F , G1, P1) coincides with P1 ∈ S(F)(G1), the result follows.
• Deterministic. Let G, E , op, v1, and v2 such that v1 = v2 and

S(F)(G〈op,v1〉
E)

∣∣∣
EG

∩ S(F)(G〈op,v2〉
E)

∣∣∣
EG

= ∅

Then, there exist paths P1 , P2 such that Pi ∈ S(F)(G〈op,vi〉
E) and P1

∣∣
EG

= P2
∣∣
EG

. By the definition of S(F) (see

Definition 14), the former is equivalent to Pi ∈ prval(F , G〈op,vi〉
E) and then to rval(F , G〈op,vi〉

E , Pi). By return value

consistency (see Definition 10), we have that F(op, G〈op,vi〉
E

∣∣∣−≺� , Pi
∣∣−≺�) = vi , and since G〈op,vi〉

E

∣∣∣−≺� = G|E and
Pi|−≺� = Pi|E , it results in a contradiction.

• Local. For every P such that P ∈ S(F)(G〈op,v〉
E)

∣∣∣−�� there exists P1 ∈ S(F)(G〈op,v〉
E) such that P = P1

∣∣−�� . Then, by

following the same reasoning as for saturation we have

P1 ∈ S(F)(G〈op,v〉
E)

Definition 14≡ P1 ∈ prval(F,G〈op,v〉
E)

Definition 10≡ ∀e ∈ EG. λ(e) = 〈op′,v′〉 implies F(op′, G
∣∣−≺e , P1

∣∣−≺e)= v′ ∧ F(op, G
∣∣ , P

∣∣) = v
E 1 E

108 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
Since F is a function, for every G1 such that G
∣∣
E = G1 the following holds

∀e ∈ EG1 ,op
′.∃v′′.F(op′, G1

∣∣−≺e , P1
∣∣−≺e) = v′′

Consequently, by coherence there exists P2 ∈ S(F)(G1) such that P1
∣∣
EG1

= P2 . Moreover, F(op, G
∣∣
E , P1

∣∣
E) = v and

by saturation this implies that sat(P2, 〈op,v〉) ⊆ S(F)(G1〈op,v〉). Therefore, P ∈ S(G1〈op,v〉). �
Proof of Lemma 5. Since S is total, there exists at least a value for every triple op, G, and P. Let us now assume that there
are more than two values, i.e., that there exist op, Gi , and vi such that

G= G1 = G2 ∧ v1 = v2 ∧ P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

Since S is deterministic and G1 = G2 , two cases may occur by Lemma 2

• G1 = G2 . By hypothesis we have that P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

, hence

S(G1〈op,v1〉)
∣∣∣
EG1

∩ S(G1〈op,v2〉)
∣∣∣
EG1

= ∅

Again by being S deterministic, it follows that v1 = v2.

• S(G1) ∩ S(G2) = ∅. Since S is coherent and saturated and by hypothesis P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

, we have that P ∈ S(Gi),

which leads to a contradiction. �
We state an auxiliary result that will be used in the proof of Theorem 1.

Lemma 9. Let S be a coherent, functional, and saturated specification and 〈G, P〉 a context. If

∀e ∈ EG. λ(e) = 〈op,v〉 implies ∃G1. G
∣∣−≺e = G1 ∧ P

∣∣−≺e ∈ S(G1〈op,v〉)
∣∣∣
EG1

(2)

then ∀e ∈ EG. P|−≺∗e ∈ S(G|−≺∗e).
Moreover, let S be a local and coherent specification. Then, the vice versa holds.

Proof. (⇐) Let e such that λ(e) = 〈op, v〉. By hypothesis P|−≺∗e ∈ S(G|−≺∗e), by coherence P|−≺+e ∈ S(G|−≺+e), and by
locality

∃G1. (G
∣∣−≺+e)

∣∣∣−≺e
= G1 ∧ S((G|−≺+e)

〈op,v〉
−≺e)

∣∣∣−�e
⊆ S(G1〈op,v〉)

This is in turn equivalent to

∃G1. G
∣∣−≺e = G1 ∧ S(G|−≺∗e)

∣∣∣−�e
⊆ S(G1〈op,v〉)

and again by the hypothesis P|−≺∗e ∈ S(G|−≺∗e) the result follows.
(⇒) By contradiction, let us assume that there exist e ∈ EG such that the equation (2) holds but P|−≺∗e ∈ S(G|−≺∗e).

Without loss of generality, assume e is minimal, i.e., for all e′ such that e′ ≺+ e we have

P|−≺∗e′ ∈ S(G|−≺∗e′)

By coherence we have

P|−≺+e ∈ S(G|−≺+e)

Assuming λ(e) = 〈op, v〉, by totality it follows

∃G1,v1. G1 = G
∣∣−≺+e ∧ P

∣∣−≺+e ∈ S((G1)
〈op,v1〉
−≺e)

∣∣∣−≺+e

Now, by saturation and coherence we have that P
∣∣−≺+e ∈ S(G1), thus by determinism G1 = G|−≺+e , so that it holds

∃v1. P
∣∣−≺+e ∈ S((G|−≺+e)

〈op,v1〉
−≺e)

∣∣∣
−≺+e

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 109
Now, by saturation and (2)

∃G2. (G
∣∣−≺+e)

∣∣∣−≺e
= G2 ∧ P

∣∣−≺e ∈ S((G2)〈op,v1〉)
∣∣∣−≺e

However, applying (2) to G tells that

∃G3. G
∣∣−≺e = G3 ∧ P

∣∣−≺e ∈ S((G3)〈op,v〉)
∣∣∣−≺e

and by saturation and determinism (G2)〈op,v1〉 = (G3)〈op,v〉 , so that v = v1.
Thus now we have

P
∣∣−≺+e ∈ S(G|−≺∗e)

∣∣∣−≺+e

and by saturation it holds that

P
∣∣−≺∗e ∈ S(G|−≺∗e)

and since by hypothesis

P|−≺+e ∈ S(G|−≺+e)

we have that

P|−≺∗e ∈ S(G|−≺∗e)

which is in contradiction with the assumptions. �
Proof of Theorem 1. We have to prove that for any G it holds S(G) = S(F(S))(G).

P ∈ S(F(S))(G)
Definition 14≡ P ∈ prval(F(S),G)
Definition 10≡ rval(F(S),G,P)
Definition 10≡ ∀e ∈ EG. λ(e) = 〈op,v〉 implies F(S)(op, G

∣∣−≺e , P
∣∣−≺e) = v

Definition 15≡ ∀e ∈ EG. λ(e) = 〈op,v〉 implies ∃G1. G
∣∣−≺e = G1 ∧ P

∣∣−≺e ∈ S(G1〈op,v〉)
∣∣∣
EG1

Lemma 9≡ ∀e ∈ EG. P|−≺∗e ∈ S(G|−≺∗e)
Definition 3≡ P ∈ ⊗

e∈EG
S(G|−≺∗e)

coh≡ P ∈ S(G) �
Proof of Theorem 2. We prove that F(op,G,P) = F(S(F))(op,G,P) for any 〈G,P〉 and op.

F(S(F))(op,G,P) = v
Definition 15≡ ∃〈G1,P1〉. G= G1 ∧ P= P1 ∧ P1 ∈ S(F)(G〈op,v〉

1)

∣∣∣
EG1

sat⇒ ∃〈G1, P1〉. G1 = G∧ P= P1 ∧ P〈op,v〉
1 ∈ S(F)(G〈op,v〉

1)
Definition 15≡ . . . ∧ P〈op,v〉

1 ∈ prval(F,G〈op,v〉
1)

Definition 10≡ . . . ∧ rval(F,G〈op,v〉
1

,P〈op,v〉
1)

Definition 10≡ . . . ∧ rval(F,G1,P1) ∧F(op, (G1)〈op,v〉
∣∣∣−≺� , (P1)〈op,v〉

∣∣∣−≺�) = v

≡ . . . ∧F(op,G1,P1) = v
⇒ F(op,G,P) = v

Then the result holds, since F and F(S(F)) are total functions. �
Appendix B. Proof of the results in Section 5

Proof of Lemma 6. It follows from the fact that S is coherent. �
Proof of Example 16. By case analysis on the derivation of σ α−→ σ ′ . Consider σ = 〈rj, v〉 and (σ , 〈G, P〉) ∈ I . Consequently,
there exists f : EG →R such that

∀r ∈ R.v(r) = #{e | f (e) = r and λ(e) = 〈inc,ok〉} (3)

110 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
• (read) Hence, σ = 〈rj, v〉 rd,k−−−→ 〈rj, v〉 = σ ′ and k = ∑
r∈R v(r). From (3), k = ∑

r∈R v(r) = #{e | e ∈ EG ∧ λ(e) =
〈inc, ok〉}. Define G′ = G〈rd,k〉 and f ′ : EG′ →R as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
It is immediate to check that

∀r ∈R.v(r) = #{e | f ′(e) = r and λ(e) = 〈inc,ok〉}
Hence,

k=
∑
r∈R

v(r) = #{e | e ∈ EG′ ∧ λ(e) = 〈inc,ok〉}

Consequently, sat(P, 〈rd,k〉) ⊆ SCtr(G′). Then, for any P′ ∈ sat(P, 〈rd,k〉), we have (〈rj, v〉, 〈G〈rd,k〉, P′〉) ∈ I .

• (inc) Then, σ = 〈r j, v〉 inc,ok−−−−−→ 〈r j, v[r j �→ v(rj) + 1]〉 = σ ′ . Take G′ = G〈inc,ok〉 . It is immediate to check that
sat(P, 〈inc,ok〉) ⊆ SCtr(G′). Then, define f ′ : EG′ →R as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Hence, #{e | f ′(e) = r and λ(e) = 〈inc, ok〉} = v(r) for all r = r j , and

#{e | f ′(e) = r j and λ(e) = 〈inc,ok〉} = v(r j) + 1

Consequently, for any P′ ∈ sat(P, 〈inc,ok〉) the following holds

(〈r j, v[r j �→ v(r j) + 1]〉, 〈G〈inc,ok〉,P′〉) ∈ I

• (receive) Then, σ = 〈r, v〉 rcv,〈r′,v′′〉−−−−−−−→ 〈r, v′〉 = σ ′ such that v′ = max{v, v′′}. Define G′ = 〈F , ≺′, λ′〉 and f ′ : EG′ →R such
that ∀r ∈R
– v′′(r) = #{e | f ′(e) = r and λ′(e) = 〈inc, ok〉}
– min{v(r), v′′(r)} = #{e | f (e) = r} ∩ #{e | f ′(e) = r}
– ≺G′ |EG∩EG′ = ≺G|EG∩EG′ ,
– λG′ |EG∩EG′ = λG|EG∩EG′ .

It is immediate to note that there exists P′ such that (〈r′, v′′〉, 〈G′, P′〉) ∈ I . Moreover, G � G′ is defined under the above
conditions and for any P′ ∈ SCtr(G′) we have P ⊗ P′ ⊆ SCtr(G � G′). Hence, it suffices to take P′′ ∈ P ⊗ P′ .
Define f ′′ : EG�G′ →R as

f ′′(e) =
{

f (e) if e ∈ EG

f ′(e) = r j otherwise

From the definition of G′ and f ′′ it follows that for all r ∈ R

#{e | e ∈ EG�G′ and λ(e) = 〈inc,ok〉} = max{v(r), v′′(r)} = v′(r)

Consequently, (〈r, v′〉, 〈G � G′, P′′〉) ∈ I .

• (send) Then, σ = 〈r, v〉 send,〈r,v〉−−−−−−−→ 〈r, v〉 = σ ′ . It follows immediately, because (〈r, v〉, 〈G, P〉) ∈ I holds by hypothesis. �
Proof of Example 17. By case analysis on the applied rule for the derivation of σ α−→ σ ′ . Consider σ = 〈r j, V, W〉 and
(σ , 〈G, P〉) ∈ I . Hence, there exists f : EG →R and

∀k.(∃r.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
〈lookup,S〉) = ∅ ∧ k ∈ S) (4)

• (lookup) Hence, σ lookup,S−−−−−−−→ σ ′ = σ . Define G′ = G〈lookup,S〉 and take f ′ : EG′ →R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Note that

∀k.(∃r.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S)

follows from the definition of SOr-Set and (4). Moreover, we conclude that sat(P, 〈lookup,S〉) ⊆ SOr-Set(G′〈lookup,S〉).
Therefore, (σ ′, 〈G′, P′〉) ∈ I for any P′ ∈ sat(P, 〈lookup,S〉).

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 111
• (add) Then, σ add(k′),ok−−−−−−−→ 〈r j, V[r j �→ V(r j) +1], W[(k′, r j) �→ V(r j) +1]〉 = σ ′ . Define G′ = G〈add(k′),ok〉 and take f ′ : EG′ →
R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Now, we show that the following holds

∀k(∃r.W[(k′, r j) �→ V(r j) + 1](k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S) (5)

For all k = k′ , the condition holds by (4)

W[(k′, r j) �→ V(r j) + 1](k, r) > 0 ⇐⇒ ∃S.SOr-Set(G
〈lookup,S′〉) = ∅ ∧ k ∈ S

Then, for k = k′ it is enough to take r = r j to conclude that the double implication holds.
By the definition of SOr-Set , we have that SOr-Set(G〈lookup,S′〉) = ∅ implies SOr-Set(G

′〈lookup,S∪{k′}〉) = ∅. Addition-
ally, sat(P, 〈add(k),ok〉) ⊆ SOr-Set(G′) because P ∈ SOr-Set(G). Then, for any P′ ∈ sat(P, 〈add(k),ok〉), we have
(σ ′, 〈G′, P′〉) ∈ I .

• (rem) Then, σ
rem(k′),ok−−−−−−−→ 〈r j, V, W′〉 = σ ′ , and ∀s.W′(k′, s) = 0, and ∀s, k′′ = k′.W′(k′′, s) = W(k′′, s). Define G′ =

G〈rem(k′),ok〉 and take f ′ : EG′ →R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
As in the previous case, we conclude that the following holds for all k = k′

∃r.W′(k, r) > 0 ⇐⇒ ∃S.SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S

from (4) and the fact that W′(k′′, r) = W(k′′, r) holds for all k′′ = k′ and r. By SOr-Set , SOr-Set(G
′〈lookup,S〉) = ∅ implies

{k′} ∈ S. Then, the proof is completed by noting that ∀r.W′(k′, r) = 0.
• (send) Then, σ send,σ−−−−−→ σ . It follows because (σ , 〈G, P〉) ∈ I by hypothesis.

• (receive) Then, σ receive〈rk,V′,W′〉−−−−−−−−−−−→ 〈r j, max{V, V′}, (V, W) ⊕ (V′, W′)〉 = σ ′ . Define G′ = 〈EG′ , ≺G′ , λG′ 〉 where
– EG′ = ⊎

r∈R,k∈NFk
r (where � stands for disjoint union) and

Fk
r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ek
r if W′(k, r) = 0 ∧ W′(k, r) ≤ V(r) (i)

Ek
r � {akr } if W′(k, r) = 0 ∧ W′(k, r) > V(r) (ii)

Ek
r � {rkr } if W′(k, r) = 0 ∧ W(k, r) ≤ V′(r) (iii)

∅ if W′(k, r) = 0 ∧ W(k, r) > V′(r) (iv)

where Ek
r = {e | e ∈ EG ∧ f (e) = r ∧ λG(e) = 〈add(k),ok〉}

– λG′ is defined such that

λG′ (e) =
{ 〈add(k),ok〉 if e ∈Fk

r ∧ e = rkr〈rem(k),ok〉 if e = rkr

– ≺G′ defined such that

≺G′ |Fk
r

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≺|Ek
r

if Fk
r = Ek

r

≺|Ek
r

if Fk
r = Ek

r � {akr }
≺|Ek

r
∪ (Ek

r × {rk}) if Fk
r = Ek

r � {rkr }
∅ if Fk

r = ∅
Now we check that (〈rk,V

′,W′〉, 〈G′, P′〉) ∈ I . By definition of SOr-Set in Example 8, we may conclude that
SOr-Set(G

′〈lookup,S′〉) = ∅ whenever

S′ = {k | ∃e′ ∈ EG′ .∃k ∈N.λG′(e′) = 〈add(k),ok〉 and ∀e′′.e′ ≺G′ e′′ implies λG′(e′′) = 〈rem(k),ok 〉}
From the definition of G′ , it is immediate that k ∈ S′ iff ∃r.W′(k, r) > 0 (the cases (i) and (ii) on the definition of
Fk

r apply). Then, for any P′ ∈ SOr-Set(G′), we have (〈rk,V
′,W′〉, 〈G′, P′〉) ∈ I by taking f ′′ : EG′ → R defined such that

f ′′(e) = r if there exists k ∈N s.t. e ∈Fk
r .

Note that G � G′ is well-defined because G′ is defined such that λG′ |EG∩EG′ = λG|EG∩EG′ and ≺G′ |EG∩EG′ = ≺G|EG∩EG′ .
Moreover, P ⊗ P′ = ∅ by the definition of G′ . It remains to prove that (σ ′, 〈G � G′, P′′〉) ∈ I for any P′′ ∈ P ⊗ P′ .

112 F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113
Now define f ′ : EG�G′ →R such that

f ′(e) =
{

f (e) if e ∈ EG

f ′′(e) if e ∈ EG′

Note that f ′ is well-defined because {Fk
r }r∈R,k∈N is a partition of EG′ , and the definition of G′ ensures that Ek

r ∩Fk′
s = ∅

for all k, k′ and r = s. Finally, we show that for all k, the following holds

∃r.(V,W) ⊕ (V′,W′)(k, r) > 0 ⇐⇒ ∃ S. S((G � G′)〈lookup,S〉) = ∅ ∧ k ∈ S

For ⇒), assume that (V, W) ⊕ (V′, W′)(k, r) > 0 for some r. By the definition of ⊕, ¬(IsREM(W, W′, V, k, r) ∨ IsREM(W′, W,

V′, k, r)). Consequently,

¬ ((W(k, r) = 0 ∧ W′(k, r) ≤ V(r)) ∨ (W′(k, r) = 0 ∧ W(k, r) ≤ V′(r)))

By rearranging terms,

(W(k, r) = 0∧ W′(k, r) = 0) ∨ (W(k, r) = 0∧ W(k, r) > V′(r)) ∨
(W′(k, r) > V(r) ∧ W′(k, r) = 0) ∨ (W′(k, r) > V(r) ∧ W(k, r) > V′(r))

We proceed by case analysis:
a) W(k, r) = 0 ∧ W′(k, r) = 0. Since (〈r, V, W〉, 〈G, P〉) ∈ I , W(k, r) > 0 implies ∃ S. SOr-Set(G〈lookup,S〉) = ∅ ∧ k ∈ S. By

the definition of SOr-Set , ∃e′ ∈ EG such that λG(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λG(e′′) = 〈rem(k), ok 〉.
Moreover, since W′(k, r) = 0, the definition of G′ is such that the cases (i) and (ii) in Fkr only apply. Consequently,
∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. Therefore, SOr-Set((G � G′)〈lookup,S〉) = ∅ implies k ∈ S.

b) W(k, r) = 0 ∧ W(k, r) > V′(r). If W′(k, r) = 0, then the proof follows as in the previous case. Otherwise (W′(k, r) = 0),
the only possible case in the definition of Fk

r is (iv) and we reason analogously to the previous case to conclude that
SOr-Set((G � G′)〈lookup,S〉) = ∅ implies k ∈ S.

c) W′(k, r) > V(r) ∧ W′(k, r) = 0. Hence, only the case (ii) in the definition of Fk
r applies. Consequently, for akr it holds

that ∀e′′.akr ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. Therefore, SOr-Set(G〈lookup,S〉) = ∅ implies k ∈ S.
d) W′(k, r) > V(r) ∧ W(k, r) > V′(r). Now note that W′(k, r) > V(r) implies W′(k, r) = 0 and W(k, r) > V′(r) implies

W(k, r) = 0. Then, the proof follows as in case a).
Now, we consider the case in which (V, W) ⊕ (V′, W′)(k, r) = 0 for all r. As before, we conclude that for all r, the following
holds:

(W(k, r) = 0 ∧ W′(k, r) ≤ V(r)) ∨ (W′(k, r) = 0 ∧ W(k, r) ≤ V′(r))
We proceed by case analysis for all r
a) W(k, r) = 0 ∧ W′(k, r) ≤ V(r). From W(k, r) = 0 and (〈r, V, W〉, 〈G, P〉) ∈ I we deduce that there is not e′ ∈ EG such that

λ(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λ(e′′) = 〈rem(k), ok 〉. Moreover, the applicable cases in the definition
of Fk

r are (i), (iii), and (iv). Consequently, there is not e′ ∈ Ek
r ∪Fk

r such that λG�G′ (e′) = 〈add(k), ok〉 and for all e′′
if e′ ≺G�G′ e′′ then λG�G′ (e′′) = 〈rem(k), ok 〉.

b) W′(k, r) = 0 ∧ W(k, r) ≤ V′(r). This case corresponds to (iii) in the definition of Fk
r . Hence, for all e′ ∈ Ek

r ∪ Fk
r such

that λ(e′) = 〈add(k), ok〉 we have that e′ ≺G�G′ rk . Consequently, there is not e′ ∈ Ek
r ∪ Fk

r such that λG�G′ (e′) =
〈add(k), ok〉 and for all e′′ if e′ ≺G�G′ e′′ then λG�G′ (e′′) = 〈rem(k), ok 〉.

Since the above two cases hold for all k and r, we conclude that

∀r.(V,W) ⊕ (V′,W′)(k, r) = 0 ⇒ ∀ S. S((G � G′)〈lookup,S〉) = ∅ ∨ k ∈ S

For ⇐), assume that there exists S and k such that S((G � G′)〈lookup,S〉) = ∅ ∧ k ∈ S. Then, there exists e′ such that
λG�G′ (e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. There are two cases:
a) e′ ∈ EG . By definition of G � G′ , λG(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λG(e′′) = 〈rem(k), ok 〉. Since,

(〈r, V, W〉, 〈G, P〉) ∈ I , then there exists r such that W(k, r) > 0. Consequently, ¬IsREM(W, W′, V, k, r) holds. Since
∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉, we conclude that Fk

r is such that either (i), (ii) or (iv) holds.
For (i) or (ii), note that W′(k, s) = 0 and, hence, ¬IsREM(W′, W, V′, k, r) holds. For (iii), W(k, r) ≤ V′(r) implies
¬IsREM(W′, W, V′, k, r). Consequently, ¬IsREM(W, W′, V, k, r) and ¬IsREM(W′, W, V′, k, r). Hence,

(V,W) ⊕ (V′,W′)(k, r) = max{W(k, r),W′(k, r)}

Since W(k, r) > 0, (V, W) ⊕ (V′, W′)(k, r) > 0 holds.
b) e′ ∈ EG . Then, e′ ∈ EG′ . The only possibility is e′ = akr for some Fk

r (case (ii)). Hence, W′(k, r) = 0 and
W′(k, r) > V(r). The case follows by noting that W′(k, r) = 0 implies ¬IsREM(W′, W, V′, k, r) and W′(k, r) > V(r) implies
¬IsREM(W, W′, V, k, r).

F. Gadducci et al. / Science of Computer Programming 167 (2018) 91–113 113
Now, consider that there exists k such that for all S, if S((G � G′)〈lookup,S〉) = ∅ then k ∈ S. Consequently, for all
e′ ∈ EG�G′ if λG�G′ (e′) = 〈add(k), ok〉 then there exists e′′ such that e′ ≺G�G′ e′′ and λG�G′ (e′′) = 〈rem(k), ok〉. Then,
Fk

r was obtained by using either (i), (iii) or (iv). In case (iii) is used, then W′(k, r) = 0 and W(k, r) ≤ V′(r). Therefore,
IsREM(W′, W, V′, k, r) holds and (V, W) ⊕ (V′, W′)(k, r) = 0. For cases (i) and (iv), we first note that e′′ ∈ EG . Hence, for
all S, if S(G〈lookup,S〉) = ∅ then k ∈ S. Since (〈r, V, W〉, 〈G, P〉) ∈ I , we have W(k, r) = 0 for all r. Additionally, (i) im-
plies W′(k, r) ≤ V(r) and, hence, IsREM(W, W′, V, k, r) holds. Consequently, (V, W) ⊕ (V′, W′)(k, r) = 0. Case (iv) also implies
W′(k, r) = 0. Hence, max{W(k, r), W′(k, r)} = 0 and (V, W) ⊕ (V′, W′)(k, r) = 0.
Therefore, (〈r, max{V, V′}, (W, V) ⊕ (W′, V′)〉, 〈G � G′, P′′〉) ∈ I holds. �

Proof of Lemma 7. We show that the following relation satisfies Definition 21.

I = {(σ1‖σ2, 〈G1 � G2,P〉) | σ1 ∼o
S 〈G1,P1〉 and σ2 ∼o

S 〈G2,P2〉 and P ∈ P1 ⊗ P2}
We proceed by case analysis on the transitions of σ1 ‖ σ2.

• (parL). Since σ1 ∼o
S 〈G1, P1〉, we have that 〈G1, P|EG1

〉 �−→ 〈G′
1, P

′
1〉. Then, the case follows by Lemma 6.

• (comm). Since σ1
send,σ−−−−−→ σ ′

1 and σ1 ∼o
S 〈G1, P1〉, we have (i) σ ′

1 = σ1, (ii) σ ∼o
S 〈G′, P′〉, (iii) G1 � G′ = G1 , and (iv)

P1 ⊗ P′ = P1 . Additionally, σ2
rcv,σ−−−−→ σ ′

2 implies there exist G′′, P′′ such that (v) σ ∼o
S 〈G′′, P′′〉, (vi) P′

2 ∈ P2 ⊗ P′′ and
(vii) σ ′

2 ∼o
S 〈G2 �G′′, P′

2〉. From (ii), (v) and (vii) we conclude that σ ′
2 ∼o

S 〈G2 �G′, P′
2〉. Moreover, G1� (G2 �G′) = G1 �G2

because of (iii). Hence, (σ ′
1 ‖ σ ′

2, 〈G1 � G2, P〉) ∈ I . �
Proof of Prop. 1. It follows as in the previous lemma by showing that ∼m

S is preserved by parallel composition ‖ of
states. �
Proof of Lemma 8. Proof follows analogously to Lemma 7 by showing that the following relation satisfies Definition 21.

I = {(σ1 |B σ2, 〈G1 � G2,P〉) | σ1 ∼o
S 〈G1,P1〉 and σ2 ∼o

S 〈G2,P2〉 and P ∈ P1 ⊗ P2

and ∀σ ∈ B.∃G.(σ ∼o
S 〈G,P〉 and (G1 � G2) � G defined)} �

Proof of Prop. 2. It follows as in the previous lemma by showing that ∼m
S is preserved by parallel composition |B of

states. �
References

[1] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services, SIGACT News 33 (2) (2002) 51–59.
[2] M. Shapiro, N.M. Preguiça, C. Baquero, M. Zawirski, Conflict-free replicated data types, in: X. Défago, F. Petit, V. Villain (Eds.), SSS 2011, in: Lect. Notes

Comput. Sci., vol. 6976, Springer, 2011, pp. 386–400.
[3] S. Burckhardt, A. Gotsman, H. Yang, M. Zawirski, Replicated data types: specification, verification, optimality, in: S. Jagannathan, P. Sewell (Eds.), POPL

2014, ACM, 2014, pp. 271–284.
[4] S. Burckhardt, Principles of eventual consistency, Found. Trends Program. Lang. 1 (1–2) (2014) 1–150.
[5] S. Burckhardt, A. Gotsman, H. Yang, Understanding eventual consistency, Tech. Rep. MSR-TR-2013-39, Microsoft Research, 2013.
[6] A. Gotsman, H. Yang, Composite replicated data types, in: J. Vitek (Ed.), ESOP 2015, in: Lect. Notes Comput. Sci., vol. 9032, Springer, 2015, pp. 585–609.
[7] A. Cerone, G. Bernardi, A. Gotsman, A framework for transactional consistency models with atomic visibility, in: L. Aceto, D. de Frutos-Escrig (Eds.),

CONCUR 2015, in: LIPIcs, vol. 42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015, pp. 58–71.
[8] K.C. Sivaramakrishnan, G. Kaki, S. Jagannathan, Declarative programming over eventually consistent data stores, in: D. Grove, S. Blackburn (Eds.), PLDI

2015, ACM, 2015, pp. 413–424.
[9] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, M. Shapiro, Cause I’m strong enough: reasoning about consistency choices in distributed systems, in:

R. Bodík, R. Majumdar (Eds.), POPL 2016, ACM, 2016, pp. 371–384.
[10] M. Wirsing, Algebraic specification, in: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B), Elsevier, 1990,

pp. 675–788.
[11] J.V. Guttag, E. Horowitz, D.R. Musser, The design of data type specifications, in: R.T. Yeh, C.V. Ramamoorthy (Eds.), ICSE 1976, IEEE Computer Society

Press, 1976, pp. 414–420.
[12] H.-D. Ehrich, On the theory of specification, implementation, and parametrization of abstract data types, J. ACM 29 (1) (1982) 206–227.
[13] F. Gadducci, H.C. Melgratti, C. Roldán, A denotational view of replicated data types, in: J. Jacquet, M. Massink (Eds.), COORDINATION 2017, in: Lect.

Notes Comput. Sci., vol. 10319, Springer, 2017, pp. 138–156.
[14] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, A comprehensive study of convergent and commutative replicated data types, Tech. Rep. RR-7506,

Inria-Centre Paris-Rocquencourt, 2011.
[15] D.B. Terry, M. Theimer, K. Petersen, A.J. Demers, M. Spreitzer, C. Hauser, Managing update conflicts in Bayou, a weakly connected replicated storage

system, in: M.B. Jones (Ed.), SOSP 1995, ACM, 1995, pp. 172–183.
[16] R. Jagadeesan, J. Riely, From sequential specifications to eventual consistency, in: M.M. Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (Eds.), ICALP

2015, in: Lect. Notes Comput. Sci., vol. 9135, Springer, 2015, pp. 247–259.
[17] A. Bouajjani, C. Enea, J. Hamza, Verifying eventual consistency of optimistic replication systems, in: S. Jagannathan, P. Sewell (Eds.), POPL 2014, ACM,

2014, pp. 285–296.
[18] K. von Gleissenthall, A. Rybalchenko, An epistemic perspective on consistency of concurrent computations, in: P.R. D’Argenio, H.C. Melgratti (Eds.),

CONCUR 2013, in: Lect. Notes Comput. Sci., vol. 8052, Springer, 2013, pp. 212–226.
[19] P. Zeller, A. Bieniusa, A. Poetzsch-Heffter, Formal specification and verification of CRDTs, in: E. Ábrahám, C. Palamidessi (Eds.), FORTE 2014, in: Lect.

Notes Comput. Sci., vol. 8461, Springer, 2014, pp. 33–48.

http://refhub.elsevier.com/S0167-6423(18)30242-9/bib434150s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7368617069726F32303131636F6E666C696374s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7368617069726F32303131636F6E666C696374s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib627572636B6861726474323031347265706C696361746564s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib627572636B6861726474323031347265706C696361746564s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib627572636B6861726474323031347072696E6369706C6573s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib627572636B686172647432303133756E6465727374616E64696E67s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib676F74736D616E32303135636F6D706F73697465s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6365726F6E65323031356672616D65776F726Bs1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6365726F6E65323031356672616D65776F726Bs1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7369766172616D616B726973686E616E323031356465636C61726174697665s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7369766172616D616B726973686E616E323031356465636C61726174697665s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib676F74736D616E323031366361757365s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib676F74736D616E323031366361757365s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib77697273696E6731393930616C67656272616963s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib77697273696E6731393930616C67656272616963s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6775747461673139373664657369676Es1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6775747461673139373664657369676Es1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib656872696368313938327468656F7279s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib44424C503A636F6E662F636F6F7264696E6174696F6E2F47616464756363694D523137s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib44424C503A636F6E662F636F6F7264696E6174696F6E2F47616464756363694D523137s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7368617069726F32303131636F6D70726568656E73697665s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7368617069726F32303131636F6D70726568656E73697665s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7465727279313939356D616E6167696E67s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7465727279313939356D616E6167696E67s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6A61676164656573616E3230313573657175656E7469616Cs1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib6A61676164656573616E3230313573657175656E7469616Cs1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib626F75616A6A616E6932303134766572696679696E67s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib626F75616A6A616E6932303134766572696679696E67s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib766F6E323031336570697374656D6963s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib766F6E323031336570697374656D6963s1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7A656C6C657232303134666F726D616Cs1
http://refhub.elsevier.com/S0167-6423(18)30242-9/bib7A656C6C657232303134666F726D616Cs1

	On the semantics and implementation of replicated data types
	1 Introduction
	2 Labelled directed acyclic graphs
	2.1 ldag operations

	3 Speciﬁcations
	3.1 Reﬁnement
	3.2 Classes of speciﬁcations

	4 Replicated data type
	4.1 Functional speciﬁcations
	4.2 Correspondence between rdts and speciﬁcations

	5 On the correct implementation of replicated data types
	5.1 From speciﬁcations to labelled transitions systems
	5.2 Implementing a speciﬁcation
	5.3 Linking a speciﬁcation with the behaviour of a replica
	5.4 On the behaviour of multiple replicas

	6 Related works
	7 Conclusions and future works
	Acknowledgements
	Appendix A Proof of the results in Section 4
	Appendix B Proof of the results in Section 5
	References

