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Replicated data types (rdts) concern the specification and implementation of data 
structures handled by replicated data stores, i.e., distributed data stores that maintain 
copies of the same data item on multiple devices. A distinctive feature of rdts is that 
the behaviour of an operation depends on the state of the replica over which it performs, 
and hence, its result may differ from replica to replica. Abstractly, rdts are specified 
in terms of two relations, visibility and arbitration. The former establishes whether an 
operation observes the effects of the execution of another operation, the latter is a total 
order on operations used to resolve conflicts between operations executed concurrently 
over different replicas. Traditionally, an operation of an rdt is specified as a function 
mapping a visibility and an arbitration into the expected result of the operation. This 
paper recasts such standard approaches into a denotational framework in which a data 
type is a function mapping visibility into admissible arbitrations. This characterisation 
provides a more abstract view of rdts that (i) highlights some implicit assumptions 
shared in operational approaches to specification; (ii) accommodates underspecification 
and refinement; (iii) enables a direct characterisation of the correct implementations of an
rdt in terms of a simulation relation between the states of a concrete implementation and 
of the abstract one determined by the specification.

© 2018 Published by Elsevier B.V.

1. Introduction

Distributed systems replicate their state over different nodes in order to satisfy several non-functional requirements, such 
as performance, availability, and reliability. It then becomes crucial to keep a consistent view of the replicated data. However, 
this is a challenging task because consistency is in conflict with two common requirements of distributed applications: 
availability (every request is eventually executed) and tolerance to network partitions (the system operates even in the 
presence of failures that prevent communication among components). In fact, it is impossible for a system to simultaneously 
achieve strong Consistency, Availability and Partition tolerance [1]. Since many domains cannot renounce availability or avoid 
network partitions, developers need to cope with weaker notions of consistency by allowing, e.g., replicas to (temporarily) 
exhibit some discrepancies, as long as they eventually converge to the same state.

This setting challenges the way in which data is specified: states, state transitions and return values should account for 
the different views that a data item may simultaneously have. Consider a data type Register: a memory cell that is read 
and updated by, respectively, operations rd and wr. In a replicated scenario, the value obtained when reading a register 
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Fig. 1. A scenario for the replicated data type Register.

after two concurrent updates wr(0) and wr(1) (i.e., updates taking place over different replicas) is affected by the way in 
which updates propagate among replicas: the result might be (i) undefined (when the read is performed over a third replica 
that has not received any of the updates), (ii) 0, or (iii) 1. Basically, the return value depends on the updates that are seen by 
that read operation. Choosing the return value is straightforward if a read sees just one update, less so if a read is performed 
over a replica that knows of both updates, since all replicas should consistently pick the same value among the available 
ones. A common strategy for registers is that the last-write wins: the last update is chosen when several concurrent updates 
are observed. This strategy implicitly assumes that all the events in a system can be arranged in a total order. Several recent 
approaches focus on the operational specification of replicated data types [2–9]. Usually, the specification describes the 
meaning of an operation in terms of two relations among events: visibility, which explains the causes for each result, and 
arbitration, which totally orders events. Consider the visibility relation V in Fig. 1a and the arbitrations A1 and A2 in Fig. 1b 
and Fig. 1c, respectively. The meaning of rd is such that rd(V , A1) = 1 and rd(V , A2) = 0. We remark that operational 
approaches require specifications to be functional: for every operation, visibility and arbitration, there is exactly one return 
value. In this way operational specifications commit to concrete policies for resolving conflicts.

This work aims at putting on firm grounds the operational approaches for rdts by giving them a purely functional 
description. In our view, rdts are functions that map visibility graphs (i.e., configurations) into sets of admissible arbitrations, 
i.e., all the executions that generate a particular configuration. In this setting, a configuration mapped to an empty set of 
admissible arbitrations stands for an unreachable configuration, i.e., a configuration that cannot be explained in terms of 
any arbitration. We rely on such an abstract view of rdts to highlight some of the implicit assumptions shared by most 
of the operational approaches. In particular, we characterise operational approaches, such as [2,3], as those specifications 
that satisfy three properties: besides the evident requirement of being (locally) functional (i.e., deterministic and total), they 
must be coherent (i.e., larger states are explained as the composition of smaller ones) and saturated (e.g., an operation that 
has not been seen by any other operation can be arbitrated in any position, even before the events that it sees). We show 
this inclusion to be strict and discuss some interesting cases that do not fall in this class. Moreover, we show that our 
formulation elegantly accounts for underspecification and refinement, which are standard notions in data type specification.

The notion of implementation correctness, which is central to the theory of abstract data types [10–12], relates the ex-
pected behaviour of a family of operations as defined by a specification with the one that is provided by a more concrete 
realisation. In a replicated scenario, such concrete realisations consist of several replicas that keep their own local state and 
propagate changes asynchronously. On the one hand, we assume that the behaviour of an implementation is given in terms 
of two labelled transition systems (ltss): one that describes a single replica and another, which is obtained by composition, 
that accounts for the joint behaviour of several replicas. Technically, this is achieved by providing a composition opera-
tor over ltss that reflects the adopted communication model. On the other hand, we note that our specifications have an 
implicit operational interpretation, which describes the expected behaviours of a single replica and of the composition of 
several replicas. Technically, each specification induces two ltss: one, called one-replica, prescribes the behaviour of a single 
replica, and another, called multi-replica, defines the behaviour of multiple replicas. Then, implementation correctness is de-
fined in terms of simulation relations between the ltss associated with an implementation, i.e., a replica or a set of replicas, 
with the lts corresponding to the specification, i.e., one-replica or multi-replica. We show that implementation correctness 
is preserved under standard parallel composition (synchronous or asynchronous buffered communication). Consequently, in 
order to show that an implementation is correct, we only need to show that a single replica is correct. We illustrate the 
approach with the implementation of a few well-known rdts.

The paper has the following structure. Section 2 introduces the basic definitions concerning labelled directed acyclic 
graphs. Section 3 discusses our functional mechanism for the presentation of Replicated Data Types. Section 4 compares our 
proposal with the classical operational one [4]. Section 5 studies the correctness of the replicated data types implementa-
tions with respect to our specifications. Finally, in the closing section we draw some conclusions, discuss related works, and 
highlight further developments.

This paper is a revised and extended version of [13]. We enrich our previous work by providing an approach to assess 
whether an implementation of an RDT on top of several concurrent replicas is correct (the material in § 5 is completely 
new to this paper). In addition, we provide full proofs of already published results.

2. Labelled directed acyclic graphs

In this section we recall the basics of labelled directed acyclic graphs, which are used for our description of replicated 
data types. We rely on countable sets E of events e, e′, . . . , e1, . . . and L of labels �, �′, . . . , �1, . . .
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Fig. 2. Two simple ldags and two paths.

Definition 1 (Labelled directed acyclic graph). A Labelled Directed Acyclic Graph (ldag) over a set of labels L is a triple G =
〈EG, ≺G, λG〉 such that EG is a set of events, ≺G ⊆ EG × EG is a binary relation whose transitive closure is a strict partial 
order, and λG : EG →L is a labelling function. An ldag G is a path if ≺G is a strict total order.

We write G(L) and P(L) to respectively denote the sets of ldags and paths over L. We use G to range over G(L)

and P to range over P(L). Moreover, we write <P instead of ≺P to make evident that paths are total orders. We say that 
P = 〈EP, <P, λP〉 is a path over E if EP = E and write P(E, λ) for {P | P is a path over E and λP = λ}. We usually omit the 
subscript G (or P) when referring to the elements of G (of P, respectively) when no confusion arises. We write ε for the 
empty ldag, i.e., such that Eε = ∅.

Example 1. Consider the set L = {〈rd, 0〉, 〈rd, 1〉, 〈wr(0), ok〉, 〈wr(1), ok〉} of labels that describe the operations of a 1-bit 
register. Each label is a tuple 〈op, rv〉 where op denotes an operation and rv its return value. For homogeneity, we associate 
the return value ok to every write operation. Now, consider the ldag over L that is defined as G1 = 〈{e1,e2,e3}, ≺, λ〉 , 
where ≺= {(e1, e3), (e2, e3)} and λ is such that λ(e1) = 〈wr(0), ok〉, λ(e2) = 〈wr(1), ok〉, and λ(e3) = 〈rd,0〉. A graphical 
representation of G1 is provided in Fig. 2a. Note that we do not depict the events and just write instead the corresponding 
labels when no confusion arises. A representation of the ldag G2 , where ≺G2 is empty, is in Fig. 2b. Neither G1 nor G2 is 
a path because they are not total orders. P1 in Fig. 2c is an ldag that is also a path. Hereinafter we use undirected arrows 
when depicting paths and avoid drawing transitions that are obtained by transitivity, as shown in Fig. 2d. All ldags in Fig. 2
belong to G(L), but only P1 is in P(L).

2.1. ldag operations

We now present a few operations on ldags that will be used in the following sections. We start by introducing some 
notation for binary relations. We write Id for the identity relation over events and � for the reflexive closure ≺ ∪ Id. 
Moreover, we will use ≺+ and ≺∗ for respectively the transitive closure of ≺ and �. We write − ≺ e (and similarly − � e, 
− ≺+ e, and − ≺∗ e) for the preimage of e, i.e., − ≺ e = {e′| e′ ≺ e}. We use ≺|E for the restriction of ≺ to the elements 
in E , i.e. ≺|E = ≺ ∩ (E × E). Analogously, λ|E is the domain restriction of λ to the elements in E . We write E� for the 
extension of the set E with a fresh element, i.e., E� = E ∪ {�} such that � ∈ E .

Definition 2 (Restriction and extension). Let G = 〈E, ≺, λ〉 and E ′ ⊆ E . We define

• G|E ′ = 〈E ′, ≺|E ′ , λ|E ′ 〉 as the restriction of G to E ′;
• G�

E ′ = 〈E�, ≺ ∪ (E ′ × {�}), λ[� �→ �]〉 as the extension of G over E ′ with �.

Restriction obviously lifts to sets X of ldags, i.e., X |E = {G|E | G ∈X }. We omit the subscript E ′ in G�
E ′ when E ′ = E .

Example 2. Consider the ldags G1 and G2 depicted in Fig. 2a and Fig. 2b, respectively. Then, G2 = G1|−≺e3
and G1 is 

isomorphic (as a graph) to G2〈rd,0〉 . Indeed, G1 can be obtained from G2 by adding a new node labelled by 〈rd, 0〉, in such 
a way that the new node is related with every node in G2 via ≺.

The following operator allows for the combination of several paths and plays a central role in our characterisation of 
replicated data types.

Definition 3 (Product). Let X = {〈Ei, <i, λi〉}i be a set of paths such that ∀e, i, j.e ∈ Ei ∩ E j implies λi(e) = λ j(e). The 
product of X is⊗

X = {Q | Q is a path over
⋃

i

Ei and Q|Ei
∈ X }

Intuitively, the product of paths is analogous to the synchronous product of transition systems, in which common ele-
ments are identified and the remaining ones can be freely interleaved, as long as the original orders are respected.
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Fig. 4. Counter specification.

Example 3. Consider the paths P1 and P2 in Fig. 3, which share the event labelled 〈wr(2), ok〉. Their product has two 
paths P3 and P4 , each of them contains the elements of P1 and P2 and preserves the relative order of the elements in 
the original paths. We remark that the product is empty when the paths have incompatible orders. For instance, P3 and P4
have the same set of elements yet incompatible orders, thus P3 ⊗ P4 = ∅.

It is straightforward to show that ⊗ is associative and commutative. Hence, we freely use ⊗ over sets of sets of paths.

3. Specifications

We introduce our notion of specification and apply it to well-known data types.

Definition 4 (Specification). A specification S is a function S : G(L) → 2P(L) such that S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG) .

A specification S maps an ldag (i.e., a visibility relation) to a set of paths (i.e., its admissible arbitrations). Note that P ∈
S(G) is a path over EG , and hence a total order of the events in G. However, we do not require P to be a topological ordering 
of G, i.e., ≺G⊆<P may not hold. Although some specification approaches consider only arbitrations that include visibility [6,
7], our definition accommodates also presentations, such as [3,4], in which arbitrations may not preserve visibility. Since 
our approach is independent of this choice, we adopted the most liberal presentation. We also remark that it could be 
the case that S(G) = ∅, which means that S forbids the configuration G (more details in Example 4 below). For technical 
convenience, we impose S(ε) = {ε} and disallow S(ε) = ∅: a specification cannot forbid the empty configuration, which 
denotes the initial state of a data type.

We now illustrate the specification of some well-known replicated data types.

Example 4 (Counter). The data type Counter provides operations for incrementing and reading an integer register with 
initial value 0. A read operation returns the number of increments seen by that read. An increment is always successful 
and returns the value ok. Formally, we consider the set of labels L = {〈inc, ok〉} ∪ ({rd} × N). Then, the specification of
Counter is given by SCtr defined such that

P ∈ SCtr(G)

iff
∀e ∈ EG.∀k.λ(e) = 〈rd,k〉 implies k= #{e′ | e′ ≺G e and λ(e′) = 〈inc,ok〉}

A visibility graph G has admissible arbitrations (i.e., SCtr(G) = ∅) only when each event e in G labelled by rd has a return 
value k that matches the number of increments anteceding e in G. We illustrate two cases for the definition of SCtr in Fig. 4. 
While the configuration in Fig. 4a has admissible arbitrations, the one in Fig. 4b has not, because the unique event labelled 
by rd returns 0 when it is actually preceded by an observed increment. In other words, an execution is not allowed to 
generate such a visibility graph. We remark that SCtr imposes no constraint on the ordering <P . In fact, a path P ∈ SCtr(G)

does not need to be a topological ordering of G as, for instance, the rightmost path in the set of Fig. 4a.

Example 5 (Last-write-wins register). A Register stores a value that can be read and updated. We assume that the initial 
value of a register is undefined. Take L = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} ×N ∪ {⊥}) as the set of labels. Then SlwwR gives the 
semantics of a register that adopts the last-write-wins strategy.
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P ∈ SlwwR(G)

iff

∀e ∈ EG.

⎧⎨
⎩

λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) = 〈wr(k),ok〉
∀k.λ(e) = 〈rd,k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k),ok〉 and

∀e′′ ≺G e. e′ <P e′′ implies ∀k′.λ(e′′) = 〈wr(k′),ok〉
An ldag G has admissible arbitrations only when each event associated with a read returns a previously written value. 

As per the first condition above, a read operation returns the undefined value ⊥ when it does not see any write. By the 
second condition, a read e returns a natural number k when it sees an operation e′ that writes the value k. In such case, 
any admissible arbitration P must order e′ as the greatest (accordingly to <P) among all the write operations seen by e.

Example 6 (Generic Register). We now define a Generic Register that does not commit to a particular strategy for 
resolving conflicts.

P ∈ SgR(G)

iff

∀e ∈ EG.

⎧⎪⎨
⎪⎩

λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) = 〈wr(k),ok〉
∀k.λ(e) = 〈rd,k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k),ok〉 and

∀e′′.∀k′′.λ(e′′) = 〈rd,k′′〉 and − ≺G e = − ≺G e′′ implies k= k′′

As in Example 5, the return value of a read corresponds to a written value seen by that read, but the specification 
does not determine which value should be chosen. We require instead that all read operations with the same causes (i.e., 
− ≺G e = − ≺G e′) have the same result. Since this condition has to be satisfied by any admissible configuration G, it 
ensures convergence. Requiring convergence seems meaningful since we are identifying some minimal conditions ensuring 
the correctness of a specification without making any assumption on the chosen paths. Indeed, convergence can be proved 
for what we call deterministic specifications (i.e., specifications in which the return value of each operation is uniquely 
determined by the visibility and arbitration relations, as formally characterised in Section 4.1), whose instances are in e.g. 
Example 4 and Example 5. Thus, our proposal only apparently disagree with approaches like [3,4], where convergence is 
ensured automatically since the specifications they consider are implicitly deterministic (as shown formally in Section 4.2).

3.1. Refinement

Refinement is a standard approach in data type specification, which allows for a hierarchical organisation that goes from 
abstract descriptions to concrete implementations. The main benefit of refinement relies on the fact that applications can be 
developed and reasoned about in terms of abstract data types, which hide implementation details and leave some freedom 
for the implementation. Consider the specification SgR of the Generic Register introduced in Example 6, which only 
requires a policy for conflict resolution that ensures convergence. On the contrary, the specification SlwwR in Example 5
explicitly states that concurrent updates must be resolved by adopting the last-write-wins policy. Since the latter policy 
ensures convergence, we would like to think about SlwwR as a refinement of SgR . We characterise refinement in our setting 
as follows.

Definition 5 (Refinement). Let S1, S2 be specifications. We say that S1 refines S2 and write S1 � S2 if ∀G. S1(G) ⊆ S2(G).

Example 7. It can be easily checked that P ∈ SlwwR(G) implies P ∈ SgR(G) for any G. Consequently, SlwwR is a refinement 
of SgR .

Example 8. Consider the data type Set, which provides (among others) the operations add, rem and lookup for respec-
tively adding, removing, and examining the elements within a set. Different alternatives have been proposed in the literature 
for resolving conflicts in the presence of concurrent additions and removals of elements (see [14] for a detailed discussion). 
We illustrate two possible alternatives by considering the execution scenario depicted in Fig. 5, for P a topological ordering 
of G. A reasonable semantics for lookup over G and P would fix the return value S, which should contain all the elements 
in the set, as one of the following two values: ∅ or {1}. In fact, under the last-write-wins policy, the specification prescribes 
that lookup returns {1} in this scenario. Differently, the strategy of 2P-Set1 establishes that the result is ∅.

The following definition provides a specification for an abstract data type Set that allows (among others) any of the 
above policies.

1 In 2P-Set, the addition of elements that have been previously removed has no effect.
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Fig. 5. A scenario for the replicated data type Set.

P ∈ SSet(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies Be ⊆ S⊆ Ae and Conve,S

where

Ae = {k | ∃e′ ∈ EG.e′ ≺G e and λ(e′) = 〈add(k),ok〉}
Be = Ae \ {k | ∃e′ ∈ EG.e′ ≺G e and λ(e′) = 〈rem(k),ok〉}
Conve,S = ∀e′∈ EG.∀S′ ∈ 2N.λ(e′) = 〈lookup,S′〉 and − ≺G e = − ≺G e′ implies S= S′

The set Ae contains the elements added to (and possibly removed from) the set seen by e while Be contains those elements 
for which e sees no removal. Thus, the condition Be ⊆ S ⊆ Ae states that lookup returns a set that contains at least all 
the elements added but not removed (i.e., in Be). However, the return value S may contain elements that have been added 
and later removed (the choice is left unspecified). Analogously to the specification of SgR in Example 6, Conve,S ensures 
convergence.

Then, a concrete resolution policy such as 2P-Set can be specified as follows

P ∈ S2P-Set(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies S= Be

A different policy, called Or-Set, states that additions win against remove operations. This policy can be defined as 
follows

P ∈ SOr-Set(G) iff ∀e ∈ EG.∀S ∈ 2N.λ(e) = 〈lookup,S〉 implies S= Ce

where

Ce = {k | ∃e′ ∈ EG.e
′ ≺G e and λ(e′) = 〈add(k),ok〉 and ∀e′′.e′ ≺G e′′ ≺G e implies λ(e′′) = 〈rem(k),ok〉}.

It is immediate to note that S2P-Set is a refinement of SSet . It can be also noticed that Be ⊆ Ce ⊆ Ae . Consequently, SOr-Set is 
also a refinement of SSet .

3.2. Classes of specifications

We discuss two properties of specifications. Firstly, we look at specifications for which the behaviour of larger computa-
tions matches that of their prefixes.

Definition 6 (Past-coherent specification). Let S be a specification. We say that S is past-coherent (briefly, coherent) if

∀G. S(G) =
⊗
e∈EG

S(G|−≺∗e)

A past-coherent specification S is such that the arbitrations for any configuration G (i.e., the set of paths S(G)) can be 
obtained by composing the arbitrations associated with all its sub-configurations G|−≺∗e .

Example 9. The specifications in Example 4, Example 5 and Example 6 are all coherent, because their definitions are in 
terms of restrictions of the ldags. This can be checked by application of Definition 6. Consider e.g. the specification of the 
data type Counter in Example 4. Hence, if P ∈ SCtr(G) then

∀e ∈ EG.∀k.λ(e) = 〈rd,k〉 implies k= #{e′ | e′ ≺G e and λ(e′) = 〈inc,ok〉}
Let e ∈ EG and Ge = G|−≺∗e . Clearly the property above holds ∀e ∈ EGe . Thus P|−≺∗e ∈ SCtr(Ge) = SCtr(G|−≺∗e) and 

consequently P ∈ ⊗
e∈EG

SCtr(G|−≺∗e).
Conversely, let P ∈ ⊗

e∈EG
SCtr(G|−≺∗e) and e ∈ EG . Then P|−≺∗e ∈ SCtr(Ge), hence if λ(e) = 〈rd, k〉 then k = #{e′ | e′ ≺Ge

e and λ(e′) = 〈inc, ok〉}. By definition of Ge , k = #{e′ | e′ ≺G e and λ(e′) = 〈inc, ok〉} and consequently P ∈ SCtr(G).
Now consider the specification S defined such that the equalities in Fig. 6 hold. S is not coherent because the arbi-

trations for the ldag in Fig. 6b should contain all the interleavings for the paths associated with its sub-configurations, as 
depicted in Fig. 6a.
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S ( 〈rd,0〉 ) = { 〈rd,0〉 }

S ( 〈inc,ok〉 ) = { 〈inc,ok〉 }
S ( 〈rd,0〉 〈inc,ok〉 ) =

⎧⎨
⎩

〈rd,0〉

〈inc,ok〉

⎫⎬
⎭

(a) (b)

Fig. 6. A non-coherent specification.

S ( 〈inc,ok〉 ) = { 〈inc,ok〉 }

S ( 〈rd,0〉 ) = { 〈rd,0〉 }
S

⎛
⎝ 〈rd,0〉

〈inc,ok〉

⎞
⎠ =

⎧⎨
⎩

〈rd,0〉

〈inc,ok〉

⎫⎬
⎭

Fig. 7. A non-saturated specification.

A second class of specifications is concerned with saturation. Intuitively, a saturated specification allows every top ele-
ment on the visibility to be arbitrated in any position. We first introduce the notion of saturation for a path.

Definition 7 (Path saturation). Let P be a path and � a label. We write sat(P, �) for the set of paths obtained by saturating 
P with respect to �, defined as follows

sat(P, �) = {Q | Q ∈ P(EP� , λP� ) and Q|EP
= P}

A path P that is saturated with a label � generates the set of all paths obtained by placing a new event labelled by � in 
any position within P. By analogy, a saturated specification thus extends a computation by adding a new operation that can 
be arbitrated in any position.

Definition 8 (Saturated specification). Let S be a specification. We say that S is saturated if

∀〈G,P〉,E, �. P ∈ S(G�
E )

∣∣∣
EG

implies sat(P, �) ⊆ S(G�
E )

Example 10. The specifications in Example 4, Example 5 and Example 6 are all saturated because a new event e can 
be arbitrated in any position. In fact, the specifications in Example 4 and Example 6 do not use any information about 
arbitration, while the specification in Example 5 constrains arbitrations only for events that are not maximal. Fig. 7 shows a 
specification that is not saturated because it does not allow the arbitration of the top event (the one labelled 〈inc, ok〉) as 
the first operation in a path. We remark that the specification is coherent although it is not saturated.

4. Replicated data type

In this section we show that our notion of specification can be considered as (and it is actually more general than) a 
model for the operational description of rdts proposed in [3,4]. We start by recasting the original definition of rdt (as given 
in [4, Def. 4.5]) in terms of ldags. As hinted in the introduction, the meaning of each operation of an rdt is specified in 
terms of a context, written C, which is a pair 〈G, P〉 such that P ∈ P(EG, λG). We write C(L) for the set of contexts over L, 
and fix a set O of operations and a set V of values. Then, the operational description of rdts in [3,4] can be formulated as 
follows.

Definition 9 (Replicated data type). A Replicated Data Type (rdt) is a function F :O ×C(O) → V .

In words, for any visibility graph G and arbitration P, the specification F indicates the result of executing the operation 
op over G and P, which is F(op, 〈G, P〉).

Example 11. The data type Counter introduced in Example 4 is formally specified in [3,4] as follows

Fctr(inc, 〈G,P〉) = ok
Fctr(rd, 〈G,P〉) = #{e | e ∈ G and λ(e) = inc}

Given a context 〈G, P〉 in C(O × V), we may check whether the value associated with each operation matches the 
definition of a particular rdt. This notion is known as return value consistency [4, Def. 4.8]. In order to relate contexts with 
and without return values, we use the following notation: given G ∈ G(O × V), by G ∈ G(O) we denote the ldag obtained 
by projecting the labels of G in the obvious way, i.e., by removing the second component of every label.
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〈 〈inc,ok〉 〈inc,ok〉

〈rd,2〉
,

〈inc,ok〉

〈inc,ok〉

〈rd,2〉

〉 〈 〈inc,ok〉 〈inc,ok〉

〈rd,0〉
,

〈inc,ok〉

〈inc,ok〉

〈rd,0〉

〉

(a) Consistent. (b) Non consistent.

Fig. 8. rval consistency for Fctr .

Definition 10 (Return value consistent). Let F be an rdt and 〈G, P〉 ∈ C(O × V) a context. We say that F is Return Value 
Consistent (rval) over G and P and write rval(F , G, P) if ∀e ∈ EG.λ(e) = 〈op, v〉 implies F(op, G

∣∣−≺e , P
∣∣−≺e) = v.

Moreover, we define

prval(F,G) = {P | rval(F,G,P)}
Example 12. Consider the rdt Fctr introduced in Example 11. The context in Fig. 8a is rval consistent while the one in 
Fig. 8b is not because Fctr requires rd to return the number of inc operations seen by that read, which in this case should 
be 2.

The following result states that return value consistent paths are all coherent, in the sense that they match the behaviour 
allowed for any shorter configuration.

Lemma 1. Let F be an rdt and G an ldag. Then

prval(F ,G) =
⊗
e∈EG

prval(F , G|−≺∗e).

4.1. Functional specifications

We now focus on the relation between our notion of specification, as introduced in Definition 4, and the operational 
description of rdts, as introduced in [3,4] and formalised in Definition 9 in terms of ldags. Specifically, we characterise a 
proper subclass of specifications that precisely correspond to rdts.

For this section we restrict our attention to specifications over the set of labels O × V , i.e., S : G(O × V) → 2P(O×V) .

Definition 11 (Total specification). Let S be a specification. We say that S is total if

∀〈G,P〉,E,op. ∃G1, v. G= G1 ∧ P ∈ S((G1)
〈op,v〉
E )

∣∣∣
EG1

Intuitively, a specification is total when every operation of the data type can be performed in any state of the computa-
tion. Formally, this is stated by considering a context 〈G,P〉 as the representation of the state of a computation. We remark 
that differently from G and P, whose labels are in O × V , G and P have no information about the return value of the oper-
ations (i.e., their labels are in O). Hence, totality says that it is always possible to take an equivalent representation of the 
state (i.e., 〈G1, P1〉 instead of 〈G, P〉) and extend it with an operation op. This is achieved by requiring P ∈ S((G1)

〈op,v〉
E )

∣∣∣
EG1

for some return value v. Thus S((G1)
〈op,v〉
E ) is not empty, hence, the specification allows the execution of op over G1 .

We remark that a total specification does not prevent the definition of an operation that admits more than one return 
value in certain configurations, i.e., v in Definition 11 does not need to be unique. For instance, consider the Generic 
Register in Example 6, where operation rd may return any of the causally-independent, previously written values. Albeit 
being total, the specification for rd is not deterministic. On the contrary, a specification is deterministic if an operation 
executed over a configuration admits at most one return value, as formally stated below.

Definition 12 (Deterministic specification). Let S be a specification. We say that S is deterministic if

∀G,E,op,v,v′. v = v′ implies S(G〈op,v〉
E )

∣∣∣
EG

∩ S(G〈op,v′〉
E )

∣∣∣∣
EG

= ∅

We say that S is weakly deterministic if the property holds for E = ∅.

A less restrictive notion for determinism could allow the result for an added operation to depend also on the given 
admissible path. We say that a specification S is value-deterministic if

∀G,E,op,v,v′. v = v′ ∧ G = ε implies S(G〈op,v〉
E )

∣∣∣
EG

∩ S(G〈op,v′〉
E )

∣∣∣
EG

= ∅
We say that a specification is functional if it is both deterministic and total.
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S

⎛
⎝ 〈inc,ok〉

〈rd,1〉

⎞
⎠ =

⎧⎨
⎩

〈inc,ok〉

〈rd,1〉

⎫⎬
⎭ S

⎛
⎝ 〈inc,fail〉

〈rd,⊥〉

⎞
⎠ =

⎧⎨
⎩

〈inc,fail〉

〈rd,⊥〉

⎫⎬
⎭

(a) (b)

Fig. 9. A value-deterministic and coherent specification.

〈wr(1),ok〉 〈wr(2),ok〉 〈wr(1),ok〉 〈wr(2),ok〉

〈rd,1〉

〈wr(1),ok〉 〈wr(2),ok〉

〈rd,2〉

〈wr(1),ok〉

〈rd,1〉

〈wr(2),ok〉

〈wr(1),ok〉

〈wr(2),ok〉

〈rd,2〉

〈wr(1),ok〉

〈wr(2),ok〉

(a) G. (b) G〈rd,1〉 . (c) G〈rd,2〉 . (d) P1 . (e) P2 . (f) P= P1|EG
= P2|EG

.

Fig. 10. Generic register.

Example 13. Fig. 9 shows a value-deterministic specification. Although a read operation that follows an increment may 
return two different values, such a difference is explained by the previous computation: in one case the increment succeeds 
while in the other fails. However, the specification is not deterministic because it admits a sequence of operations to be 
decorated with different return values.

Example 14. It is straightforward to check that the specifications in Example 4 and Example 5 are deterministic. For Exam-
ple 4 we reason as follows. The case for op= inc follows immediately because the only possible return value is ok. When 
op= rd, from the definition of SCtr (Example 4) we conclude that SCtr(G

〈rd,v〉
E ) = ∅ only when v = #{e | e ∈ E and λ(e) =

〈inc, ok〉}. Consequently, for any v′ = v, SCtr(G
〈rd,v′〉
E ) = ∅ holds, hence, SCtr is deterministic. For Example 5, we can reason 

analogously.
On the contrary, the specification of the Generic Register in Example 6 is not even value-deterministic. It suffices 

to consider a configuration G with two different written values, as shown in Fig. 10a. Consider now the two extensions 
G〈rd,1〉 and G〈rd,2〉 depicted in Fig. 10b and Fig. 10c and the two paths P1 and P2 in Fig. 10d and Fig. 10e. By the definition 
of SgR , we can conclude that P1 ∈ SgR(G〈rd,1〉) and P2 ∈ SgR(G〈rd,2〉). The path P in Fig. 10f corresponds to both P1|EG

and 
P2|EG

. Consequently, SgR(G〈rd,1〉)
∣∣
EG

∩ SgR(G〈rd,2〉)
∣∣
EG

= ∅.
Similarly, Set in Example 8 is not deterministic.

The lemma below states a simple criterion for determinism.

Lemma 2. Let S be a coherent and deterministic specification. Then

∀G1,G2. G1 = G2 implies G1 = G2 ∨ S(G1) ∩ S(G2) = ∅

So, if two configurations are annotated with the same operations yet with different values, then their admissible paths 
are already all different even if we disregard return values.

We then consider a last property that guarantees some sort of additional locality to the notion of coherence.

Definition 13 (Local specification). Let S be a specification. We say that S is local if

∀G,E . ∃G1. ∀op,v. G
∣∣
E = G1 ∧ S(G〈op,v〉

E )

∣∣∣−�� ⊆ S(G1〈op,v〉)

We say that a specification is locally functional if it is both functional and local.
Intuitively, locality states that the admissible paths of an extended configuration are constrained: given a configuration 

G, its extension with an operation op with respect to the events E can be explained by the sub-configuration of G that 
only contains those events, i.e., G

∣∣
E = G1 . Such behaviour is given by S(G1〈op,v〉).

As a side remark, it is noteworthy that locality has an impact on determinism.

Lemma 3. Let S be a local and weakly deterministic specification. Then it is deterministic.

4.2. Correspondence between rdts and specifications

This section establishes the connection between rdts and specifications. We first introduce a mapping from rdts to 
specifications.
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Definition 14 (rdts as specifications). Let F be an rdt. We write S(F) for the specification associated with F , defined as 
follows

S(F)(G) = prval(F,G)

Next result shows that rdts correspond to specifications that are coherent, functional and saturated.

Lemma 4. For every rdt F , S(F) is coherent, locally functional, and saturated.

The inverse mapping from specifications to rdts is defined below.

Definition 15 (Specifications as rdts). Let S be a specification. We write F(S) for the rdt associated with S , defined as 
follows

F(S)(op,G,P) = v if ∃G1. G= G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

F(S) may not be well-defined for some S , e.g. when S is not deterministic. The following lemma states the conditions 
under which F(S) is well-defined.

Lemma 5. For every coherent, functional, and saturated specification S , F(S) is well-defined.

The following two results show that rdts are a particular class of specifications, and hence, provide a fully abstract 
characterisation of operational rdts.

Theorem 1. For every coherent, locally functional, and saturated specification S , S = S(F(S)).

Theorem 2. For every rdt F , F = F(S(F)).

The above characterisation implies that there are data types that cannot be specified as operational rdts. Consider e.g.
Generic Register and Set, as introduced respectively in Example 6 and Example 8. As noted in Example 14, they 
are not deterministic. Hence, they cannot be translated as rdts. We remark that a non-deterministic specification does not 
imply a non-deterministic conflict resolution, but it allows for under-specification.

5. On the correct implementation of replicated data types

The previous section was devoted to the proof of correspondence between the novel notion of specification we intro-
duced and a more standard proposal for modelling replicated data types. In this section we argue that our definition is 
flexible enough for reasoning about the correctness of possible implementations, in terms of the classical notion of simu-
lation. More precisely, first we show how a specification naturally gives rise to a labelled transition system (lts). Then, we 
consider state-based implementations of replicated data types [3].

5.1. From specifications to labelled transitions systems

We note that specifications have an implicit operational interpretation.

Definition 16 (One-replica lts). Let S be a specification. Then, the abstract one-replica lts TS has pairs 〈G, P〉 as states, pairs 
〈op, v〉 as labels, and triples 〈G, P〉 �−→ 〈G′, P′〉 as transitions such that

• 〈G, P〉 is a state whenever P ∈ S(G);
• 〈G, P〉 �−→ 〈G′, P′〉 is a transition whenever G′ = G� and P′∣∣

EG
= P.

A pair 〈G, P〉 such that P ∈ S(G) abstractly represents an admissible computation according to S . Moreover, S allows the 
extension of such computation with an event labelled by � whenever the specification allows us to extend G and P with a 
fresh event labelled by �.

Our next step is to show that a specification can be equipped with a notion of parallel composition. But first, we need 
to consider a suitable kind of morphism.

Definition 17 (Downward closure). Let G = 〈E, ≺, λ〉 be an ldag and E ′ ⊆ E . We say that E ′ is downward closed if

∀e ∈ E ′.− ≺ e ⊆ E ′.
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Definition 18 (Past-reflecting morphisms). An ldag morphism f : G1 → G2 from G1 to G2 is a function f : EG1 → EG2 such 
that λG1 = f; λG2 and e ≺G1 e′ implies f(e) ≺G′ f(e′). An injective ldag morphism f : G1 → G2 is past-reflecting if

• f(e) ≺G2 f(e′) implies e ≺G1 e′;
• ⋃

e∈EG1
f(e) is downward closed.

Hence, past-reflecting injective morphisms f : G1 → G2 are uniquely characterised as such by the properties of the image 
of EG1 with respect to G2 .

Definition 19 (Compatibility). Let G1 , G2 be two ldags. They are compatible if

• e ∈ EG1 ∩ EG2 implies λ1(e) = λ2(e);
• the injective morphisms Gi → G1 ∪ G2 for i ∈ {1, 2} are past-reflecting.

We write G1 � G2 to denote the union of compatible ldags.

Note that the operation � over ldags is idempotent, associative, and commutative. Also note that if G1 and G2 are 
compatible, then the product P1 ⊗ P2 is correctly labelled for any pair P1 ∈ S(G1) and P2 ∈ S(G2) (i.e., events that belongs 
to both EG1 and EG2 have the same label) because each path is built out of the set of events (and the corresponding labels) 
of the associated ldag. Consequently, we write 〈G1 � . . . � Gn, P〉 for a replicated state consisting of n compatible replicas, 
with 〈Gi, P|EGi

〉 denoting the state of the replica i.

Definition 20 (Multi-replica lts). Let S be a coherent specification. Then, the abstract multi-replica lts TS is generated by 
the corresponding one-replica lts and the additional rule below.

(comp)

〈G1, P|EG1
〉 �−→ 〈G′

1,P
′
1〉 P′ ∈ P⊗ P′

1

〈G1 � G2,P〉 �−→ 〈G′
1 � G2,P′〉

Rule (comp) describes the computations associated to a replicated state. Whenever a part of a replicated state (denoted 
by 〈G1, P|EG1

〉) evolves to 〈G′
1, P

′
1〉 by performing the action �, then the whole system evolves to a state obtained by 

composing the part that has not changed (i.e., G2) and the new state 〈G′
1, P

′
1〉.

Indeed, the states corresponding to the union of compatible ldags recalls parallel composition, and the soundness of the 
rule with respect to the target is witnessed by the proposition below, ensuring that the transitions of a composite state are 
in correspondence with the transitions of its components.

Lemma 6. Let S be a coherent specification, G1 , G2 compatible ldags, and P ∈ S(G1 � G2) a path. If 〈G1, P|EG1
〉 �−→ 〈G′

1, P
′〉 then 

P ⊗ P′ ⊆ S(G′
1 � G2).

5.2. Implementing a specification

In this section we address the problem of identifying what a concrete implementation of a replicated data type is. 
We consider a setting in which a replicated data type is realised on top of a set of replicas, where each replica keeps 
a local version of the data and clients perform read and write operations over replicas. Roughly speaking, each request 
made by a client is handled by one of the replicas. In particular, a read request is answered according to the local state 
of the replica that handles that request. Analogously, any update operation is executed over the local state of a replica. 
The changes are then propagated asynchronously to the remaining replicas, which will update their own states later on. 
Since changes are propagated asynchronously and different replicas may be serving concurrent updates, each replica is 
responsible for resolving conflicts locally. We will focus on state-based implementation of replicated data types, as opposed 
to operation-based implementation [2]. In a state-based implementation, replicas propagate changes by communicating their 
own states.

Following the approach in [3], we describe an implementation of a data type in terms of the behaviour of a replica and 
we assume that all the replicas of an implementation behave the same. We will also consider ltss as the operational model 
of replicas. We then let � (ranged over by σ , σ0, . . .) denote the set of possible states of a replica and for a specification S
we use the following set of operations as labels

AS = L ∪ ({send, rcv} × �) ∪ {τ }
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(read)

k= �s∈Rv(s)

〈r, v〉 rd,k−−−→ 〈r, v〉

(inc)

〈r, v〉 inc,ok−−−−→ 〈r, v[r �→ v(r) + 1]〉

(send)

〈r, v〉 send〈r,v〉−−−−−−→ 〈r, v〉

(rcv)

〈r, v〉 rcv〈r′,v′ 〉−−−−−→ 〈r,max{v, v′}〉

Fig. 11. Implementation of data type Counter.

The set AS of labels is then built-up from the operations of the data type (i.e., the elements in L = O×V), with additionally 
two special kinds of operations 〈send, σ 〉 and 〈rcv, σ 〉 that are used by the replicas to synchronise their states and finally 
the label τ for internal transitions.

The behaviour of a replica of a specification S is given by an lts CS with labels in AS that is total, i.e., such that 
∀σ , op. ∃v. σ op,v−−−→. Totality ensures that all operations in the implementation of a replicated data type are non-blocking, 
i.e., a replica is able to perform any operation of the data type at any state.

A complete implementation of a replicated data type is then obtained by putting several replicas in parallel. As a formal 
counterpart, we rely on a composition operator that prescribes the way in which different replicas synchronise. Its definition 
depends on the chosen communication model (synchronous, asynchronous, broadcast, . . . ) and we defer its formal treatment 
to § 5.4.

Example 15. We consider the data type Counter in Example 4 and the state-based implementation presented in [3], which 
is defined below

• � =R × (R �→N), where R is the set of replicas’ identifiers;
• L = {〈inc, ok〉} ∪ ({rd} ×N) is the set of data type operations;
• → is given by the inference rules in Fig. 11.

The states of a replica are pairs of the form 〈r, v〉, where r is the replica’s id and v is a mapping that keeps track of the 
known increments performed over all replicas, i.e., v(r′) is the number of increments performed over the replica r′ .

We now comment on the inference rules in Fig. 11. Rule (read) describes a replica that is handling a client’s request 
for reading the counter. In such case, the replica returns the value k, which corresponds to the total number of increments 
known from all replicas. This transition does not change the state of the replica. Differently, the state changes when per-
forming an increment, as described by rule (inc). The new state records the fact that r has performed another increment. 
The change has only local effect and can be propagated later on, by using rule (send). A replica also updates its local state 
when it receives a change propagated by another replica, as described by the rule (rcv). When receiving a message 〈r′, v′〉, 
the replica updates its local mapping to max{v, v′}, which is defined as follows

∀s.max{v, v′}(s) = max{v(s), v′(s)}
The natural question is whether the behaviour of the replica in Example 15 correctly implements the specification in 

Example 4. We address this problem in two steps: first of all, we show that a single replica is a correct implementation of 
the data type (§ 5.3); then, we analyse the combined behaviour of several replicas (§ 5.4).

5.3. Linking a specification with the behaviour of a replica

In this section we provide a criterion to formally prove that the implementation of a replica is correct. More precisely, 
the correspondence between the behaviour of a replica and a specification is given as a (weak) simulation relation.

Definition 21 (Implementation correctness). Let S be a specification, TS the one-replica (multi-replica) abstract lts, and 
CS an implementation. Then, an implementation relation IS is a relation between the states of CS and TS such that if 
(σ , 〈G, P〉) ∈ IS then for any σ ′ , σ ′′ , op and v

1. if σ op,v−−−→ σ ′ then ∃G′, P′ such that 〈G, P〉 op,v−−−→ 〈G′, P′〉 and (σ ′, 〈G′, P′〉) ∈ IS ;

2. if σ rcv,σ ′−−−−−→ σ ′′ then ∃G′, P′, P′′ such that (σ ′, 〈G′, P′〉) ∈ IS and P′′ ∈ P ⊗ P′ and (σ ′′, 〈G � G′, P′′〉) ∈ IS ;

3. if σ send,σ ′−−−−−→ σ then ∃G′, P′ such that (σ ′, 〈G′, P′〉) ∈ IS and G � G′ = G and P ⊗ P′ = {P};
4. if σ τ−→ σ ′ then (σ ′, 〈G, P〉) ∈ IS .

We write ∼o
S for the largest implementation relation with respect to the abstract one-replica lts of the specification S , 

and ∼m for the multi-replica one.
S
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(add)

V′ = V[r �→ V(r) + 1] W′ = W[(k, r) �→ V(r) + 1]
〈r,V,W〉 add(k),ok−−−−−−→ 〈r,V′,W′〉

(rem)

W′ = W[∀s ∈R. (k, s) �→ 0]
〈r,V,W〉 rem(k),ok−−−−−−→ 〈r,V,W′〉

(lookup)

S= {k | ∃s ∈R. W(k, s) > 0}
〈r,V,W〉 lookup,S−−−−−−→ 〈r,V,W〉

(send)

〈r,V,W〉 send〈r,V,W〉−−−−−−−→ 〈r,V,W〉

(receive)

〈r,V,W〉 rcv〈r′,V′,W′ 〉−−−−−−−→ 〈r,max{V,V′}, (V,W) ⊕ (V′,W′)〉

Fig. 12. Implementation of data type OR-Set

Any pair (σ , 〈G, P〉) in the relation IS establishes that the state σ is explained in terms of the visibility G and the 
arbitration P, which is admitted by the specification (i.e., P ∈ S(G)). Moreover, there is a close correspondence between 
the evolution of σ and 〈G, P〉, which is stated by the items 1–4. Item 1 predicates on the transitions corresponding to 
the operations of the data type. Basically, if the replica performs the operation op that produces the result v , then the 
specification allows G and P to be extended with the corresponding event, which is captured by the transition 〈G, P〉 op,v−−−→
〈G′, P′〉 formalised in Definition 16 and Definition 20.

Item 2 regards those transitions in which the replica receives updates propagated by other replicas. In a state-based 
implementation, the content of a message rcv is a state computed by another replica. For this reason, we require the 
received state σ ′ to be related to a configuration admitted by the specification, i.e., (σ ′, 〈G′, P′〉) ∈ IS . Moreover, 〈G′, P′〉
must be consistent with the history already seen by the replica, i.e., the common history in 〈G, P〉 and 〈G′, P′〉 must coincide. 
This is established by requiring that the union of the two visibilities, i.e., G � G′ , and the merge of the two paths, i.e., 
P′′ ∈ P ⊗P′ , are defined. Under the above conditions, the state σ ′′ obtained as the combination of σ and σ ′ must correspond 
to the combination of 〈G, P〉 and 〈G′, P′〉, i.e., (σ ′′, 〈G � G′, P′′〉) ∈ IS .

Item 3 states that a replica only propagates messages carrying information about its current state. Note that σ ′ may 
contain information about some events on the current state. This is formally stated by conditions G �G′ = G and P ⊗P′ = {P}
(and it is going to be useful in § 5.4). Item 4 is self-explanatory.

In the following, we will refer to one-replica or multi-replica correctness of an implementation when the abstract lts

TS in the definition above is one-replica or multi-replica, respectively.

Example 16. We can show that the replica defined in Example 15 is a correct one-replica implementation of the data type
Counter in Example 4 by showing that the following relation satisfies the conditions stated in Definition 21 (proof details 
are in Appendix B) with respect to the one-replica abstract lts

I = {(〈r, v〉, 〈G,P〉) | there exists f : EG → R such that ∀r ∈ R.v(r) = #{e | f (e) = r and λ(e) = 〈inc,ok〉} }

Example 17. In this example we show that the optimised OR-set implementation in [3] is correct with respect to the 
specification in Example 8. The implementation of a replica is given by

• � =R × (R �→ N) × ((V ×R) �→ N);
• L = {〈add(k), ok〉, 〈rem(k), ok〉 | k ∈ V} ∪ ({lookup} × 2V );
• → is given by the inference rules in Fig. 12.

States are triples 〈r, V, W〉, where r ∈ R is the replica’s id. The mapping V associates each replica with a version number 
and means that r is up-to-date with the version V(r′) of the replica r′ . The mapping W indicates for each replica r′ and 
element k the newest version of r′ in which the element k has been added, if any (i.e., W(k, r′) = 0 means that k either has 
not been added to r′ or it has been added and then deleted). It is assumed that W(k, r) ≤ V(r) for all r and k.

We now discuss the rules in Fig. 12. Rule (add) describes the behaviour of a replica r that handles a request for adding 
the element k to the set. In this case, r changes its local state by (i) creating a new version, i.e., the entry V(r) is updated 
to V(r) + 1 to reflect that there is a new version for r, and (ii) recording that the element k has been added in the newly 
created version of r, i.e., the entry W(k, r) is updated to V(r) + 1. The removal of the element k is described by rule (rem). 
In this case, for all s ∈ R, W(k, s) is set to 0 to indicate the elimination of k. When performing a lookup, the replica r
returns the set S of those elements that are present in at least one of the known versions of the replicas (Rule (lookup)).

Rule (send) is straightforward. During synchronisation, which is described in rule (receive), the mappings V and W are 
updated with the information in the received message. It is assumed that the received mappings V′ and W′ are consistent, 
i.e., W′(k, ri) ≤ V′(ri) for all k. For V, the new state keeps the higher version for each replica, i.e., max{V, V′}. The combination 
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(parL)

σ1
�−→ σ ′

1

σ1‖σ2
�−→ σ ′

1‖σ2

(comm)

σ1
send,σ−−−−→ σ ′

1 σ2
rcv,σ−−−−→ σ ′

2
σ1‖σ2

τ−→ σ ′
1‖σ ′

2

Fig. 13. Synchronous communication of replicas (symmetric rules are omitted).

of W and W′ is more involved because it handles the conflicts due to concurrent operations over the same element. There 
is a conflict between W and W′ for (k, s) when one mapping indicates that k is present in the replica s and the other does 
not, i.e., W(k, s) > 0 and W′(k, s) = 0 or vice versa. In case of a conflict, the mappings V and V′ are used to resolve it. The 
operator ⊕ is defined as follows

(V,W) ⊕ (V′,W′)(k, s) =
{
0 IsREM(W,W′,V,k, s) ∨ IsREM(W′,W,V′,k, s)
max{W(k, s),W′(k, s)} otherwise

where IsREM(W, W′, V, k, s) = (W(k, s) = 0 ∧ W′(k, s) ≤ V(s)) is the predicate characterising the fact that k has been removed 
from the replica s accordingly to the mappings W, W′ , and V.

We show that a replica is correct with respect to the specification in Example 8 by showing that the following relation 
satisfies the conditions in Definition 21

I = {(〈r,V,W〉, 〈G,P〉) | there exists f : EG → R such that
∀k.(∃r ∈ R.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G〈lookup,S〉) = ∅ ∧ k ∈ S)}

Correctness and refinement. It is straightforward to notice that correctness is preserved by refinement, i.e., if S is a refinement 
of S ′ and an implementation I is correct with respect to S , then I is correct with respect to S ′ . This follows from the fact 
that 〈G, P〉 op,v−−−→ 〈G′, P′〉 in S implies 〈G, P〉 op,v−−−→ 〈G′, P′〉 in S ′ . Consequently, we can conclude that the implementation in 
Example 17 is also a correct implementation of the non-deterministic specification of SSet introduced in Example 8.

5.4. On the behaviour of multiple replicas

We now address the problem of showing that the parallel composition of several correct replicas is actually a correct 
implementation of a data type. In this section we focus on coherent specifications and start by considering the standard 
synchronous communication model, which is defined as follows.

Definition 22 (Synchronous implementation). Let S be a specification and CS an implementation. Then the synchronous ex-
tension Cσ

S of CS is obtained by closing the set of states with a binary operation ‖ and extending the transition relation 
with the additional rules in Fig. 13 (where symmetric versions are omitted).

We now want to reach the conclusion that whenever we have an implementation CS that is one-replica correct, then 
the synchronous extension Cσ

S is multi-replica correct. The intuition is that the state of the parallel composition of replicas 
is described in terms of the configurations associated with each of the components. The following result suffices for our 
purposes, since it states that the simulation for a coherent specification is closed under synchronous parallel composition, 
and it relies on Lemma 6.

Lemma 7. Let S be a coherent specification, CS an implementation that is one-replica correct, and σ0, σ1 two states of CS . If σi ∼o
S〈Gi, Pi〉 for i ∈ {1, 2}, then σ1‖σ2 ∼m

S 〈G1 � G2, P〉 for any P ∈ P1 ⊗ P2 .

Then, we obtain immediately the desired result.

Proposition 1. Let S be a coherent specification and CS an implementation that is one-replica correct. Then, Cσ
S is multi-replica 

correct.

Example 18. The result above allows us to conclude that the implementation consisting of the parallel composition of 
replicas behaving as described in Example 15 is correct with respect to the specification of SCtr in Example 4, which 
is coherent (see Example 9). Similarly, we can conclude that the parallel composition of several replicas for OR-Set in 
Example 17 is a correct implementation.

We remark that different communication models can be accommodated analogously. We may consider the (admittedly 
simplistic) asynchronous implementation Cα

S obtained by adding a family of operators |B defined in Fig. 14, where B denotes 
a FIFO buffer. Formally, we represent B as a sequence σ1 · . . . ·σn of states and write ε for the empty sequence. Rule (sendL)
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(parL)

σ1
�−→ σ ′

1

σ1 |B σ2
�−→ σ ′

1 |B σ2

(sendL)

σ1
send,σ−−−−→ σ ′

1
σ1 |B σ2

τ−→ σ ′
1 |B·σ σ2

(receiveL)

σ1
rcv,σ−−−−→ σ ′

1
σ1 |σ ·B σ2

τ−→ σ ′
1 |B σ2

Fig. 14. Buffered communication of replicas (symmetric rules are omitted)

says that the state σ sent by a replica is added at the end of the buffer. Symmetrically, rule (receiveL) states that a replica 
consumes updates from the beginning of the buffer. Also in this case, we can prove that implementation correctness is 
preserved.

Lemma 8. Let S be a coherent specification, CS an implementation that is one-replica correct, and σ0, σ1 two states of CS . If σi ∼o
S〈Gi, Pi〉 for i ∈ {1, 2}, then σ1 |ε σ2 ∼m

S 〈G1 � G2, P〉 for any P ∈ P1 ⊗ P2 .

Proposition 2. Let S be a coherent specification and CS be an implementation that is one-replica correct. Then, Cα
S is multi-replica 

correct.

6. Related works

Weak consistency require to deal with conflict resolution [2,14,15] and convergence of replicas [8,16–18]. The design and 
implementation of data types that ensure convergence has been a very active area of research, notably, conflict-free and 
commutative replicated data type [2,14], which avoid implementing conflict resolution policies.

Different lines of work have addressed the problem of specifying and implementing replicated data types, considering 
also those that require policies for conflict resolution [3,17]. The approach in [3] has been addressed in detail in § 4. 
We remark that all of their specifications implicitly define a precise strategy to resolve conflicts. On the contrary, our 
specifications provide a more abstract view of rdts, which do not commit to a particular strategy for conflict resolution. 
Implementation correctness is characterised in [3] in terms of replication-aware simulations. A replication-aware simulation 
is defined on top of abstract executions decorated with auxiliary information, such as time-stamps, which is defined ad hoc
for each data type. Global correctness, i.e., the behaviour of several replicas, is derived from some agreement properties that 
impose a set of proof obligations that need to be checked. On the contrary, our characterisation of correctness relies on 
the abstract states induced by the specification. In our case, checking implementation correctness reduces to standard lts

simulation. Their approach can be instantiated to handle both state-based and operation-based implementations.
A different approach has been proposed in [17] to deal with optimistic replication systems. In this case, a specification 

associates an operation and a return value to the set of all possible executions (represented in terms of partial orders) 
that explain that particular return value for that operation. Moreover, they allow different operations to be associated with 
different partial orders. In this way, they deal with speculative systems. Furthermore, they reduce the problem of verifying 
eventual consistency to a model-checking and reachability problem.

A framework combining rdts and transactions has been presented in [6]. As shown in [13], our specification style 
enables a categorical presentation of rdts and the development of composition operators. Our results for parallel operators 
and implementation correctness suggests a way of dealing with rdt composition.

As far as the verification of (commutative) replicated data types is concerned, a framework in Isabelle/HOL has been 
proposed in [19], and other lines of work [8,9] have focused on the related problem of verifying properties of applications 
that use replicated data. In the long run, our goal is to exploit tools and techniques from the theory of simulation for 
precisely such purposes.

7. Conclusions and future works

We propose a denotational view of replicated data types. While most of the traditional approaches are operational 
in flavour [3,6,9], we strived for a specification formalism that could exploit the tools of algebraic specification theory. 
More precisely, we associate to each configuration (i.e., visibility) a set of admissible arbitrations. Differently from previous 
approaches, our presentation naturally accommodates non-deterministic specifications and enables abstract definitions al-
lowing for different strategies in conflict resolution. Our formulation brings to light some properties held by mainstream 
specification formalisms: beside the obvious property of (local) functionality, they satisfy coherence and saturation. A co-
herent specification can neither prescribe an arbitration order between events that are unrelated by visibility nor allow for 
additional arbitrations over past events when a configuration is extended (i.e., a new top element is added to visibility). In-
stead, a saturated specification cannot impose any constraint to the arbitration of top events. Note that saturation does not 
hold when requiring that admissible arbitrations should be also topological orderings of visibility. Hence, the approaches in 
[3,4] generate specifications that are not saturated. We remark that this relation between visibility and arbitration translates 
in a quite different property in our setting, and this suggests that consistency models defined as relations between visibility 
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and arbitration (e.g., monotonic and causal consistency) could have alternative characterisations. We plan to explore these 
connections in future works.

Another question concerns coherence, which prevents a specification from choosing an arbitration order on events that 
are unrelated by visibility and forbids, e.g., the definition of strategies that arbitrate first the events coming from a partic-
ular replica. Consequently, it becomes natural to look for those rdts and consistency models that are the counterpart of 
non-coherent specifications, still preserving some suitable notion of causality between events. We consider that the weaker 
property S(G)|−≺∗e ⊆ S(G|−≺∗e) (that is, no additional arbitration over past events when a configuration is extended) is 
a worthwhile alternative, accommodating for many examples that impose less restrictions on the set of admissible paths 
(hence, that may allow more freedom to the arbitration).

We proposed an approach for checking that an implementation is correct with respect to a specification. Our char-
acterisation relies on a notion of simulation and enjoys the property of being compositional with respect to standard 
communication models. This relieves us from checking that the behaviour of several replicas is correct. Our characteri-
sation focuses only on state-based implementations. We are planning to extend the characterisation to operation-based 
implementations.
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Appendix A. Proof of the results in Section 4

Proof of Lemma 1. Let P ∈ ⊗
e∈EG

prval(F , G|−≺∗e), that is, ∀e ∈ EG. P|−≺∗e ∈ prval(F , G|−≺∗e). By return value consis-
tency (Definition 10), this is equivalent to

∀e ∈ EG. ∀e′ ∈ EG|−≺∗e
. λ(e′) = 〈op′,v′〉 implies F(op′, (G

∣∣−≺∗e)

∣∣∣−≺e′ , (P
∣∣−≺∗e)

∣∣∣−≺e′) = v′

Note that (G
∣∣−≺∗e)

∣∣∣−≺e′ coincides with G
∣∣−≺e′ , and the same for P. Then, the result follows because the formula above 

coincides with

∀e ∈ EG. λ(e) = 〈op,v〉 implies F(op, G
∣∣−≺e , P

∣∣−≺e) = v �
Proof of Lemma 2. Consider G1 , G2 such that G1 = G2 and G1 = G2 . We prove that S(G1)∩S(G2) = ∅ follows. Since G1 = G2
there exists an event e such that

G1|−≺+e = G2|−≺+e and λ1(e) = 〈op,v1〉, λ2(e) = 〈op,v2〉 for v1 = v2

Let G = Gi|−≺+e . By determinism, we have that S(Gλ1(e)

−≺e )

∣∣∣∣
EG

∩ S(Gλ2(e)

−≺e )

∣∣∣∣
EG

= ∅, and equivalently that S(G1|−≺∗e)

∣∣∣−≺+e
∩

S(G2|−≺∗e)

∣∣∣−≺+e
= ∅.

Now, assume that there exist Pi ∈ S(Gi) such that P1 = P2 , then by coherence ∀e. Pi|−≺∗e ∈ S(Gi|−≺∗e). Consequently, 
∀e. Pi|−≺+e ∈ S(Gi|−≺∗e)

∣∣−≺+e , which contradicts the statement above for e = e. �
Proof of Lemma 13. By locality, for any G and E there exists G1 such that for all op, v, we have G

∣∣
E = G1 ∧

S(G〈op,v〉
E )

∣∣∣−�� ⊆ S(G1〈op,v〉). Consequently, for any op and v = v′ ,

S(G〈op,v〉
E )

∣∣∣−�� ⊆ S(G1〈op,v〉)

S(G〈op,v′〉
E )

∣∣∣∣−��
⊆ S(G1〈op,v′〉)

If S is not deterministic, then for some op and v = v′ we have S(G〈op,v〉
E )

∣∣∣
EG

∩ S(G〈op,v′〉
E )

∣∣∣∣
EG

= ∅. Therefore 

S(G〈op,v〉
E )

∣∣∣−�� ∩ S(G〈op,v′〉
E )

∣∣∣∣−��
= ∅ and thus we have S(G1〈op,v〉) ∩ S(G1〈op,v′〉) = ∅, against weakly determinism 

for G1 . �
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Proof of Lemma 4. We prove the four properties of S(F).

• Coherent. Immediate by Lemma 1.
• Saturated. We have to prove that

∀〈G,P〉,E, 〈op,v〉. P ∈ S(F)(G〈op,v〉
E )

∣∣∣
EG

implies sat(P, 〈op,v〉) ⊆ S(F)(G〈op,v〉
E )

Since P ∈ S(F)(G〈op,v〉
E )

∣∣∣
EG

, then there is P1 ∈ sat(P, 〈op,v〉) ∩ S(F)(G〈op,v〉
E ).

P1 ∈ S(F)(G〈op,v〉
E )

Definition 14≡ P1 ∈ prval(F,G〈op,v〉
E )

Definition 10≡ rval(F,G〈op,v〉
E ,P1)

Definition 10≡ rval(F, G〈op,v〉
E

∣∣∣
EG

, P1|EG
) ∧ F(op, G〈op,v〉

E

∣∣∣−≺� , P1
∣∣−≺�) = v

= rval(F,G,P) ∧ F(op, G
∣∣
E , P1

∣∣
E ) = v

Now, for every P2 ∈ sat(P, 〈op,v〉) note that P2
∣∣
E = P1

∣∣
E and, consequently, F(op, G

∣∣
E , P1

∣∣
E ) = v holds. Hence, 

P2 ∈ S(F)(G〈op,v〉
E ) holds and the result follows.

• Total. Let us assume that there exist G, P, E , and op such that

∀G1,v. G= G1 implies P ∈ S(F)((G1)
〈op,v〉
E )

∣∣∣
EG1

(1)

Moreover, without loss of generality we can assume that G is a minimal ldag that satisfies (1), i.e., that for all G′ strictly 
contained in G and for all P′ ∈ S(F)(G′) we have

∀E ′,op′. ∃G′
1,v

′. G′ = G′
1 ∧ P′ ∈ S(F)((G′

1)
〈op′,v′〉
E )

∣∣∣∣
EG′

1

Now, let us consider G′ , E ′ , and op′ such that G= (G′)op
′

E ′ and let P′ = P|EG′ . Since we proved that S(F) is saturated 
we have

∃〈G′
1,P

′
1〉, v′. G′ = G′

1 ∧ P′ = P′
1 ∧ sat(P′

1, 〈op′,v′〉) ⊆ S(F)((G′
1)

〈op′,v′〉
E ′ )

Then, let us take G1 = (G′
1)

〈op′,v′〉
E ′ and P1 ∈ sat(P′

1, 〈op′,v′〉) such that P = P1 and P1 ∈ S(F)(G1). First, note that 
G = G1 because G = (G′)op

′
E ′ , G′ = G′

1 , and G1 = (G′
1)

〈op′,v′〉
E ′ . We now show that for each E and op there exists v such 

that P1〈op,v〉 ∈ S(F)((G1)
〈op,v〉
E ), which is in contradiction with the assumption (1). Given E and op, take v such that 

F(op, G1
∣∣
E , P1

∣∣
E ) = v (such v exists because of the definition of F ). By following the same reasoning as for saturation 

we have

P1〈op,v〉 ∈ S(F)((G1)
〈op,v〉
E )

Definition 14≡ P1〈op,v〉 ∈ prval(F, (G1)
〈op,v〉
E )

Definition 10≡ . . .

= rval(F,G1,P1) ∧ F(op, G1
∣∣
E , P1

∣∣
E ) = v

Since rval(F , G1, P1) coincides with P1 ∈ S(F)(G1), the result follows.
• Deterministic. Let G, E , op, v1, and v2 such that v1 = v2 and

S(F)(G〈op,v1〉
E )

∣∣∣
EG

∩ S(F)(G〈op,v2〉
E )

∣∣∣
EG

= ∅

Then, there exist paths P1 , P2 such that Pi ∈ S(F)(G〈op,vi〉
E ) and P1

∣∣
EG

= P2
∣∣
EG

. By the definition of S(F) (see 

Definition 14), the former is equivalent to Pi ∈ prval(F , G〈op,vi〉
E ) and then to rval(F , G〈op,vi〉

E , Pi). By return value 

consistency (see Definition 10), we have that F(op, G〈op,vi〉
E

∣∣∣−≺� , Pi
∣∣−≺�) = vi , and since G〈op,vi〉

E

∣∣∣−≺� = G|E and 
Pi|−≺� = Pi|E , it results in a contradiction.

• Local. For every P such that P ∈ S(F)(G〈op,v〉
E )

∣∣∣−�� there exists P1 ∈ S(F)(G〈op,v〉
E ) such that P = P1

∣∣−�� . Then, by 

following the same reasoning as for saturation we have

P1 ∈ S(F)(G〈op,v〉
E )

Definition 14≡ P1 ∈ prval(F,G〈op,v〉
E )

Definition 10≡ ∀e ∈ EG. λ(e) = 〈op′,v′〉 implies F(op′, G
∣∣−≺e , P1

∣∣−≺e)= v′ ∧ F(op, G
∣∣ , P

∣∣ ) = v
E 1 E
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Since F is a function, for every G1 such that G
∣∣
E = G1 the following holds

∀e ∈ EG1 ,op
′.∃v′′.F(op′, G1

∣∣−≺e , P1
∣∣−≺e) = v′′

Consequently, by coherence there exists P2 ∈ S(F)(G1) such that P1
∣∣
EG1

= P2 . Moreover, F(op, G
∣∣
E , P1

∣∣
E ) = v and 

by saturation this implies that sat(P2, 〈op,v〉) ⊆ S(F)(G1〈op,v〉). Therefore, P ∈ S(G1〈op,v〉). �
Proof of Lemma 5. Since S is total, there exists at least a value for every triple op, G, and P. Let us now assume that there 
are more than two values, i.e., that there exist op, Gi , and vi such that

G= G1 = G2 ∧ v1 = v2 ∧ P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

Since S is deterministic and G1 = G2 , two cases may occur by Lemma 2

• G1 = G2 . By hypothesis we have that P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

, hence

S(G1〈op,v1〉)
∣∣∣
EG1

∩ S(G1〈op,v2〉)
∣∣∣
EG1

= ∅

Again by being S deterministic, it follows that v1 = v2.

• S(G1) ∩ S(G2) = ∅. Since S is coherent and saturated and by hypothesis P ∈ S(Gi〈op,vi〉)
∣∣∣
EGi

, we have that P ∈ S(Gi), 

which leads to a contradiction. �
We state an auxiliary result that will be used in the proof of Theorem 1.

Lemma 9. Let S be a coherent, functional, and saturated specification and 〈G, P〉 a context. If

∀e ∈ EG. λ(e) = 〈op,v〉 implies ∃G1. G
∣∣−≺e = G1 ∧ P

∣∣−≺e ∈ S(G1〈op,v〉)
∣∣∣
EG1

(2)

then ∀e ∈ EG. P|−≺∗e ∈ S(G|−≺∗e).
Moreover, let S be a local and coherent specification. Then, the vice versa holds.

Proof. (⇐) Let e such that λ(e) = 〈op, v〉. By hypothesis P|−≺∗e ∈ S(G|−≺∗e), by coherence P|−≺+e ∈ S(G|−≺+e), and by 
locality

∃G1. (G
∣∣−≺+e)

∣∣∣−≺e
= G1 ∧ S((G|−≺+e)

〈op,v〉
−≺e )

∣∣∣−�e
⊆ S(G1〈op,v〉)

This is in turn equivalent to

∃G1. G
∣∣−≺e = G1 ∧ S(G|−≺∗e)

∣∣∣−�e
⊆ S(G1〈op,v〉)

and again by the hypothesis P|−≺∗e ∈ S(G|−≺∗e) the result follows.
(⇒) By contradiction, let us assume that there exist e ∈ EG such that the equation (2) holds but P|−≺∗e ∈ S(G|−≺∗e). 

Without loss of generality, assume e is minimal, i.e., for all e′ such that e′ ≺+ e we have

P|−≺∗e′ ∈ S(G|−≺∗e′ )

By coherence we have

P|−≺+e ∈ S(G|−≺+e)

Assuming λ(e) = 〈op, v〉, by totality it follows

∃G1,v1. G1 = G
∣∣−≺+e ∧ P

∣∣−≺+e ∈ S((G1)
〈op,v1〉
−≺e )

∣∣∣−≺+e

Now, by saturation and coherence we have that P
∣∣−≺+e ∈ S(G1), thus by determinism G1 = G|−≺+e , so that it holds

∃v1. P
∣∣−≺+e ∈ S((G|−≺+e)

〈op,v1〉
−≺e )

∣∣∣
−≺+e
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Now, by saturation and (2)

∃G2. (G
∣∣−≺+e)

∣∣∣−≺e
= G2 ∧ P

∣∣−≺e ∈ S((G2)〈op,v1〉)
∣∣∣−≺e

However, applying (2) to G tells that

∃G3. G
∣∣−≺e = G3 ∧ P

∣∣−≺e ∈ S((G3)〈op,v〉)
∣∣∣−≺e

and by saturation and determinism (G2)〈op,v1〉 = (G3)〈op,v〉 , so that v = v1.
Thus now we have

P
∣∣−≺+e ∈ S(G|−≺∗e)

∣∣∣−≺+e

and by saturation it holds that

P
∣∣−≺∗e ∈ S(G|−≺∗e)

and since by hypothesis

P|−≺+e ∈ S(G|−≺+e)

we have that

P|−≺∗e ∈ S(G|−≺∗e)

which is in contradiction with the assumptions. �
Proof of Theorem 1. We have to prove that for any G it holds S(G) = S(F(S))(G).

P ∈ S(F(S))(G)
Definition 14≡ P ∈ prval(F(S),G)
Definition 10≡ rval(F(S),G,P)
Definition 10≡ ∀e ∈ EG. λ(e) = 〈op,v〉 implies F(S)(op, G

∣∣−≺e , P
∣∣−≺e) = v

Definition 15≡ ∀e ∈ EG. λ(e) = 〈op,v〉 implies ∃G1. G
∣∣−≺e = G1 ∧ P

∣∣−≺e ∈ S(G1〈op,v〉)
∣∣∣
EG1

Lemma 9≡ ∀e ∈ EG. P|−≺∗e ∈ S(G|−≺∗e)
Definition 3≡ P ∈ ⊗

e∈EG
S(G|−≺∗e)

coh≡ P ∈ S(G) �
Proof of Theorem 2. We prove that F(op,G,P) = F(S(F))(op,G,P) for any 〈G,P〉 and op.

F(S(F))(op,G,P) = v
Definition 15≡ ∃〈G1,P1〉. G= G1 ∧ P= P1 ∧ P1 ∈ S(F)(G〈op,v〉

1 )

∣∣∣
EG1

sat⇒ ∃〈G1, P1〉. G1 = G∧ P= P1 ∧ P〈op,v〉
1 ∈ S(F)(G〈op,v〉

1 )
Definition 15≡ . . . ∧ P〈op,v〉

1 ∈ prval(F,G〈op,v〉
1 )

Definition 10≡ . . . ∧ rval(F,G〈op,v〉
1

,P〈op,v〉
1 )

Definition 10≡ . . . ∧ rval(F,G1,P1) ∧F(op, (G1)〈op,v〉
∣∣∣−≺� , (P1)〈op,v〉

∣∣∣−≺�) = v

≡ . . . ∧F(op,G1,P1) = v
⇒ F(op,G,P) = v

Then the result holds, since F and F(S(F)) are total functions. �
Appendix B. Proof of the results in Section 5

Proof of Lemma 6. It follows from the fact that S is coherent. �
Proof of Example 16. By case analysis on the derivation of σ α−→ σ ′ . Consider σ = 〈rj, v〉 and (σ , 〈G, P〉) ∈ I . Consequently, 
there exists f : EG →R such that

∀r ∈ R.v(r) = #{e | f (e) = r and λ(e) = 〈inc,ok〉} (3)
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• (read) Hence, σ = 〈rj, v〉 rd,k−−−→ 〈rj, v〉 = σ ′ and k = ∑
r∈R v(r). From (3), k = ∑

r∈R v(r) = #{e | e ∈ EG ∧ λ(e) =
〈inc, ok〉}. Define G′ = G〈rd,k〉 and f ′ : EG′ →R as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
It is immediate to check that

∀r ∈R.v(r) = #{e | f ′(e) = r and λ(e) = 〈inc,ok〉}
Hence,

k=
∑
r∈R

v(r) = #{e | e ∈ EG′ ∧ λ(e) = 〈inc,ok〉}

Consequently, sat(P, 〈rd,k〉) ⊆ SCtr(G′). Then, for any P′ ∈ sat(P, 〈rd,k〉), we have (〈rj, v〉, 〈G〈rd,k〉, P′〉) ∈ I .

• (inc) Then, σ = 〈r j, v〉 inc,ok−−−−−→ 〈r j, v[r j �→ v(rj) + 1]〉 = σ ′ . Take G′ = G〈inc,ok〉 . It is immediate to check that
sat(P, 〈inc,ok〉) ⊆ SCtr(G′). Then, define f ′ : EG′ →R as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Hence, #{e | f ′(e) = r and λ(e) = 〈inc, ok〉} = v(r) for all r = r j , and

#{e | f ′(e) = r j and λ(e) = 〈inc,ok〉} = v(r j) + 1

Consequently, for any P′ ∈ sat(P, 〈inc,ok〉) the following holds

(〈r j, v[r j �→ v(r j) + 1]〉, 〈G〈inc,ok〉,P′〉) ∈ I

• (receive) Then, σ = 〈r, v〉 rcv,〈r′,v′′〉−−−−−−−→ 〈r, v′〉 = σ ′ such that v′ = max{v, v′′}. Define G′ = 〈F , ≺′, λ′〉 and f ′ : EG′ →R such 
that ∀r ∈R
– v′′(r) = #{e | f ′(e) = r and λ′(e) = 〈inc, ok〉}
– min{v(r), v′′(r)} = #{e | f (e) = r} ∩ #{e | f ′(e) = r}
– ≺G′ |EG∩EG′ = ≺G|EG∩EG′ ,
– λG′ |EG∩EG′ = λG|EG∩EG′ .

It is immediate to note that there exists P′ such that (〈r′, v′′〉, 〈G′, P′〉) ∈ I . Moreover, G � G′ is defined under the above 
conditions and for any P′ ∈ SCtr(G′) we have P ⊗ P′ ⊆ SCtr(G � G′). Hence, it suffices to take P′′ ∈ P ⊗ P′ .
Define f ′′ : EG�G′ →R as

f ′′(e) =
{

f (e) if e ∈ EG

f ′(e) = r j otherwise

From the definition of G′ and f ′′ it follows that for all r ∈ R

#{e | e ∈ EG�G′ and λ(e) = 〈inc,ok〉} = max{v(r), v′′(r)} = v′(r)

Consequently, (〈r, v′〉, 〈G � G′, P′′〉) ∈ I .

• (send) Then, σ = 〈r, v〉 send,〈r,v〉−−−−−−−→ 〈r, v〉 = σ ′ . It follows immediately, because (〈r, v〉, 〈G, P〉) ∈ I holds by hypothesis. �
Proof of Example 17. By case analysis on the applied rule for the derivation of σ α−→ σ ′ . Consider σ = 〈r j, V, W〉 and 
(σ , 〈G, P〉) ∈ I . Hence, there exists f : EG →R and

∀k.(∃r.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
〈lookup,S〉) = ∅ ∧ k ∈ S) (4)

• (lookup) Hence, σ lookup,S−−−−−−−→ σ ′ = σ . Define G′ = G〈lookup,S〉 and take f ′ : EG′ →R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Note that

∀k.(∃r.W(k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S)

follows from the definition of SOr-Set and (4). Moreover, we conclude that sat(P, 〈lookup,S〉) ⊆ SOr-Set(G′〈lookup,S〉). 
Therefore, (σ ′, 〈G′, P′〉) ∈ I for any P′ ∈ sat(P, 〈lookup,S〉).
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• (add) Then, σ add(k′),ok−−−−−−−→ 〈r j, V[r j �→ V(r j) +1], W[(k′, r j) �→ V(r j) +1]〉 = σ ′ . Define G′ = G〈add(k′),ok〉 and take f ′ : EG′ →
R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
Now, we show that the following holds

∀k(∃r.W[(k′, r j) �→ V(r j) + 1](k, r) > 0 ⇐⇒ ∃ S. SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S) (5)

For all k = k′ , the condition holds by (4)

W[(k′, r j) �→ V(r j) + 1](k, r) > 0 ⇐⇒ ∃S.SOr-Set(G
〈lookup,S′〉) = ∅ ∧ k ∈ S

Then, for k = k′ it is enough to take r = r j to conclude that the double implication holds.
By the definition of SOr-Set , we have that SOr-Set(G〈lookup,S′〉) = ∅ implies SOr-Set(G

′〈lookup,S∪{k′}〉) = ∅. Addition-
ally, sat(P, 〈add(k),ok〉) ⊆ SOr-Set(G′) because P ∈ SOr-Set(G). Then, for any P′ ∈ sat(P, 〈add(k),ok〉), we have 
(σ ′, 〈G′, P′〉) ∈ I .

• (rem) Then, σ
rem(k′),ok−−−−−−−→ 〈r j, V, W′〉 = σ ′ , and ∀s.W′(k′, s) = 0, and ∀s, k′′ = k′.W′(k′′, s) = W(k′′, s). Define G′ =

G〈rem(k′),ok〉 and take f ′ : EG′ →R defined as follows

f ′(e) =
{

f (e) if e ∈ EG

r j if e = �
As in the previous case, we conclude that the following holds for all k = k′

∃r.W′(k, r) > 0 ⇐⇒ ∃S.SOr-Set(G
′〈lookup,S〉) = ∅ ∧ k ∈ S

from (4) and the fact that W′(k′′, r) = W(k′′, r) holds for all k′′ = k′ and r. By SOr-Set , SOr-Set(G
′〈lookup,S〉) = ∅ implies 

{k′} ∈ S. Then, the proof is completed by noting that ∀r.W′(k′, r) = 0.
• (send) Then, σ send,σ−−−−−→ σ . It follows because (σ , 〈G, P〉) ∈ I by hypothesis.

• (receive) Then, σ receive〈rk,V′,W′〉−−−−−−−−−−−→ 〈r j, max{V, V′}, (V, W) ⊕ (V′, W′)〉 = σ ′ . Define G′ = 〈EG′ , ≺G′ , λG′ 〉 where
– EG′ = ⊎

r∈R,k∈NFk
r (where � stands for disjoint union) and

Fk
r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ek
r if W′(k, r) = 0 ∧ W′(k, r) ≤ V(r) (i)

Ek
r � {akr } if W′(k, r) = 0 ∧ W′(k, r) > V(r) (ii)

Ek
r � {rkr } if W′(k, r) = 0 ∧ W(k, r) ≤ V′(r) (iii)

∅ if W′(k, r) = 0 ∧ W(k, r) > V′(r) (iv)

where Ek
r = {e | e ∈ EG ∧ f (e) = r ∧ λG(e) = 〈add(k),ok〉}

– λG′ is defined such that

λG′ (e) =
{ 〈add(k),ok〉 if e ∈Fk

r ∧ e = rkr〈rem(k),ok〉 if e = rkr

– ≺G′ defined such that

≺G′ |Fk
r

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≺|Ek
r

if Fk
r = Ek

r

≺|Ek
r

if Fk
r = Ek

r � {akr }
≺|Ek

r
∪ (Ek

r × {rk}) if Fk
r = Ek

r � {rkr }
∅ if Fk

r = ∅
Now we check that (〈rk,V

′,W′〉, 〈G′, P′〉) ∈ I . By definition of SOr-Set in Example 8, we may conclude that
SOr-Set(G

′〈lookup,S′〉) = ∅ whenever

S′ = {k | ∃e′ ∈ EG′ .∃k ∈N.λG′(e′) = 〈add(k),ok〉 and ∀e′′.e′ ≺G′ e′′ implies λG′(e′′) = 〈rem(k),ok 〉}
From the definition of G′ , it is immediate that k ∈ S′ iff ∃r.W′(k, r) > 0 (the cases (i) and (ii) on the definition of 
Fk

r apply). Then, for any P′ ∈ SOr-Set(G′), we have (〈rk,V
′,W′〉, 〈G′, P′〉) ∈ I by taking f ′′ : EG′ → R defined such that 

f ′′(e) = r if there exists k ∈N s.t. e ∈Fk
r .

Note that G � G′ is well-defined because G′ is defined such that λG′ |EG∩EG′ = λG|EG∩EG′ and ≺G′ |EG∩EG′ = ≺G|EG∩EG′ . 
Moreover, P ⊗ P′ = ∅ by the definition of G′ . It remains to prove that (σ ′, 〈G � G′, P′′〉) ∈ I for any P′′ ∈ P ⊗ P′ .
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Now define f ′ : EG�G′ →R such that

f ′(e) =
{

f (e) if e ∈ EG

f ′′(e) if e ∈ EG′

Note that f ′ is well-defined because {Fk
r }r∈R,k∈N is a partition of EG′ , and the definition of G′ ensures that Ek

r ∩Fk′
s = ∅

for all k, k′ and r = s. Finally, we show that for all k, the following holds

∃r.(V,W) ⊕ (V′,W′)(k, r) > 0 ⇐⇒ ∃ S. S((G � G′)〈lookup,S〉) = ∅ ∧ k ∈ S

For ⇒), assume that (V, W) ⊕ (V′, W′)(k, r) > 0 for some r. By the definition of ⊕, ¬(IsREM(W, W′, V, k, r) ∨ IsREM(W′, W,

V′, k, r)). Consequently,

¬ ( (W(k, r) = 0 ∧ W′(k, r) ≤ V(r)) ∨ (W′(k, r) = 0 ∧ W(k, r) ≤ V′(r)) )

By rearranging terms,

(W(k, r) = 0∧ W′(k, r) = 0) ∨ (W(k, r) = 0∧ W(k, r) > V′(r)) ∨
(W′(k, r) > V(r) ∧ W′(k, r) = 0) ∨ (W′(k, r) > V(r) ∧ W(k, r) > V′(r))

We proceed by case analysis:
a) W(k, r) = 0 ∧ W′(k, r) = 0. Since (〈r, V, W〉, 〈G, P〉) ∈ I , W(k, r) > 0 implies ∃ S. SOr-Set(G〈lookup,S〉) = ∅ ∧ k ∈ S. By 

the definition of SOr-Set , ∃e′ ∈ EG such that λG(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λG(e′′) = 〈rem(k), ok 〉. 
Moreover, since W′(k, r) = 0, the definition of G′ is such that the cases (i) and (ii) in Fkr only apply. Consequently, 
∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. Therefore, SOr-Set((G � G′)〈lookup,S〉) = ∅ implies k ∈ S.

b) W(k, r) = 0 ∧ W(k, r) > V′(r). If W′(k, r) = 0, then the proof follows as in the previous case. Otherwise (W′(k, r) = 0), 
the only possible case in the definition of Fk

r is (iv) and we reason analogously to the previous case to conclude that 
SOr-Set((G � G′)〈lookup,S〉) = ∅ implies k ∈ S.

c) W′(k, r) > V(r) ∧ W′(k, r) = 0. Hence, only the case (ii) in the definition of Fk
r applies. Consequently, for akr it holds 

that ∀e′′.akr ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. Therefore, SOr-Set(G〈lookup,S〉) = ∅ implies k ∈ S.
d) W′(k, r) > V(r) ∧ W(k, r) > V′(r). Now note that W′(k, r) > V(r) implies W′(k, r) = 0 and W(k, r) > V′(r) implies 

W(k, r) = 0. Then, the proof follows as in case a).
Now, we consider the case in which (V, W) ⊕ (V′, W′)(k, r) = 0 for all r. As before, we conclude that for all r, the following 
holds:

(W(k, r) = 0 ∧ W′(k, r) ≤ V(r)) ∨ (W′(k, r) = 0 ∧ W(k, r) ≤ V′(r))
We proceed by case analysis for all r
a) W(k, r) = 0 ∧ W′(k, r) ≤ V(r). From W(k, r) = 0 and (〈r, V, W〉, 〈G, P〉) ∈ I we deduce that there is not e′ ∈ EG such that 

λ(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λ(e′′) = 〈rem(k), ok 〉. Moreover, the applicable cases in the definition 
of Fk

r are (i), (iii), and (iv). Consequently, there is not e′ ∈ Ek
r ∪Fk

r such that λG�G′ (e′) = 〈add(k), ok〉 and for all e′′
if e′ ≺G�G′ e′′ then λG�G′ (e′′) = 〈rem(k), ok 〉.

b) W′(k, r) = 0 ∧ W(k, r) ≤ V′(r). This case corresponds to (iii) in the definition of Fk
r . Hence, for all e′ ∈ Ek

r ∪ Fk
r such 

that λ(e′) = 〈add(k), ok〉 we have that e′ ≺G�G′ rk . Consequently, there is not e′ ∈ Ek
r ∪ Fk

r such that λG�G′ (e′) =
〈add(k), ok〉 and for all e′′ if e′ ≺G�G′ e′′ then λG�G′ (e′′) = 〈rem(k), ok 〉.

Since the above two cases hold for all k and r, we conclude that

∀r.(V,W) ⊕ (V′,W′)(k, r) = 0 ⇒ ∀ S. S((G � G′)〈lookup,S〉) = ∅ ∨ k ∈ S

For ⇐), assume that there exists S and k such that S((G � G′)〈lookup,S〉) = ∅ ∧ k ∈ S. Then, there exists e′ such that 
λG�G′ (e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉. There are two cases:
a) e′ ∈ EG . By definition of G � G′ , λG(e′) = 〈add(k), ok〉 and ∀e′′.e′ ≺G e′′ implies λG(e′′) = 〈rem(k), ok 〉. Since, 

(〈r, V, W〉, 〈G, P〉) ∈ I , then there exists r such that W(k, r) > 0. Consequently, ¬IsREM(W, W′, V, k, r) holds. Since 
∀e′′.e′ ≺G�G′ e′′ implies λG�G′ (e′′) = 〈rem(k), ok 〉, we conclude that Fk

r is such that either (i), (ii) or (iv) holds. 
For (i) or (ii), note that W′(k, s) = 0 and, hence, ¬IsREM(W′, W, V′, k, r) holds. For (iii), W(k, r) ≤ V′(r) implies 
¬IsREM(W′, W, V′, k, r). Consequently, ¬IsREM(W, W′, V, k, r) and ¬IsREM(W′, W, V′, k, r). Hence,

(V,W) ⊕ (V′,W′)(k, r) = max{W(k, r),W′(k, r)}

Since W(k, r) > 0, (V, W) ⊕ (V′, W′)(k, r) > 0 holds.
b) e′ ∈ EG . Then, e′ ∈ EG′ . The only possibility is e′ = akr for some Fk

r (case (ii)). Hence, W′(k, r) = 0 and 
W′(k, r) > V(r). The case follows by noting that W′(k, r) = 0 implies ¬IsREM(W′, W, V′, k, r) and W′(k, r) > V(r) implies 
¬IsREM(W, W′, V, k, r).
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Now, consider that there exists k such that for all S, if S((G � G′)〈lookup,S〉) = ∅ then k ∈ S. Consequently, for all 
e′ ∈ EG�G′ if λG�G′ (e′) = 〈add(k), ok〉 then there exists e′′ such that e′ ≺G�G′ e′′ and λG�G′ (e′′) = 〈rem(k), ok〉. Then, 
Fk

r was obtained by using either (i), (iii) or (iv). In case (iii) is used, then W′(k, r) = 0 and W(k, r) ≤ V′(r). Therefore, 
IsREM(W′, W, V′, k, r) holds and (V, W) ⊕ (V′, W′)(k, r) = 0. For cases (i) and (iv), we first note that e′′ ∈ EG . Hence, for 
all S, if S(G〈lookup,S〉) = ∅ then k ∈ S. Since (〈r, V, W〉, 〈G, P〉) ∈ I , we have W(k, r) = 0 for all r. Additionally, (i) im-
plies W′(k, r) ≤ V(r) and, hence, IsREM(W, W′, V, k, r) holds. Consequently, (V, W) ⊕ (V′, W′)(k, r) = 0. Case (iv) also implies 
W′(k, r) = 0. Hence, max{W(k, r), W′(k, r)} = 0 and (V, W) ⊕ (V′, W′)(k, r) = 0.
Therefore, (〈r, max{V, V′}, (W, V) ⊕ (W′, V′)〉, 〈G � G′, P′′〉) ∈ I holds. �

Proof of Lemma 7. We show that the following relation satisfies Definition 21.

I = {(σ1‖σ2, 〈G1 � G2,P〉) | σ1 ∼o
S 〈G1,P1〉 and σ2 ∼o

S 〈G2,P2〉 and P ∈ P1 ⊗ P2}
We proceed by case analysis on the transitions of σ1 ‖ σ2.

• (parL). Since σ1 ∼o
S 〈G1, P1〉, we have that 〈G1, P|EG1

〉 �−→ 〈G′
1, P

′
1〉. Then, the case follows by Lemma 6.

• (comm). Since σ1
send,σ−−−−−→ σ ′

1 and σ1 ∼o
S 〈G1, P1〉, we have (i) σ ′

1 = σ1, (ii) σ ∼o
S 〈G′, P′〉, (iii) G1 � G′ = G1 , and (iv) 

P1 ⊗ P′ = P1 . Additionally, σ2
rcv,σ−−−−→ σ ′

2 implies there exist G′′, P′′ such that (v) σ ∼o
S 〈G′′, P′′〉, (vi) P′

2 ∈ P2 ⊗ P′′ and 
(vii) σ ′

2 ∼o
S 〈G2 �G′′, P′

2〉. From (ii), (v) and (vii) we conclude that σ ′
2 ∼o

S 〈G2 �G′, P′
2〉. Moreover, G1� (G2 �G′) = G1 �G2

because of (iii). Hence, (σ ′
1 ‖ σ ′

2, 〈G1 � G2, P〉) ∈ I . �
Proof of Prop. 1. It follows as in the previous lemma by showing that ∼m

S is preserved by parallel composition ‖ of 
states. �
Proof of Lemma 8. Proof follows analogously to Lemma 7 by showing that the following relation satisfies Definition 21.

I = {(σ1 |B σ2, 〈G1 � G2,P〉) | σ1 ∼o
S 〈G1,P1〉 and σ2 ∼o

S 〈G2,P2〉 and P ∈ P1 ⊗ P2

and ∀σ ∈ B.∃G.(σ ∼o
S 〈G,P〉 and (G1 � G2) � G defined)} �

Proof of Prop. 2. It follows as in the previous lemma by showing that ∼m
S is preserved by parallel composition |B of 

states. �
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