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Abstract. The Global Sequence Protocol (GSP) is an operational model
for replicated data stores, in which updates propagate asynchronously.
We introduce the GSP-calculus as a formal model for GSP. We give a for-
mal account for its proposed implementation, which addresses communi-
cation failures and compact representation of data, and use simulation to
prove that the implementation is correct. Then, we use the GSP-calculus
to reason about execution histories and prove ordering guarantees, such
as read my writes, monotonic reads, causality and consistent prefix. We
also prove that GSP extended with synchronous updates provides strong
consistency guarantees.

1 Introduction

Cloud infrastructures provide data storages that are virtually unlimited, elas-
tic (i.e., scalable at run-time), highly available and partition tolerant. This is
achieved by replicating data over multiple servers. A client may perform up-
date and read operations over any of these replicas and the store is responsible
for keeping them synchronised. However, it is known (CAP theorem [7]) that
any system cannot simultaneously provide availability, partition tolerance, and
consistency. Thus, one of these properties has to be discarded. Today’s popular
data storages, such as Dynamo [6] and Cassandra [9], ensure availability and of-
fer weaker notions of consistency, called eventual consistency. Roughly, eventual
consistency guarantees that all updates will be delivered to the different replicas,
which will eventually converge to the same state [1]. The storages adopt differ-
ent strategies to achieve eventual consistency, which impact on the guarantees
provided by the system, i.e., on the kind of inconsistencies or anomalies that are
allowed to happen. For instance, a storage may resolve automatically conflicts in-
troduced be concurrent updates (e.g., by using timestamps or causality) or may
leave the problem to applications that read the database (like in Cassandra). In
this way, the consistency model supported by a data store becomes crucial when
writing applications.

Consequently, there has been a growing interest on establishing program-
ming abstractions to help developers to deal with eventual consistent stores. For
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instance, commutative replicated data types [10] and cloud types [3] provide pro-
grammers with suitable data type abstractions that encapsulate issues related
to eventual consistency. Recent proposals advocate declarative approaches for
programming with eventual consistency, e.g., to automatically select the consis-
tency level required from a store provided with a consistency contract for the
application [11] or to prove that a given consistency level is adequate for pre-
serving some data invariant [8]. With similar aims, the Global Sequence Protocol
(gsp) [5] proposes an operational model to reason about applications running
on top of replicated stores. Basically, the state of a store is represented as the
sequence of updates that have led to it. Clients have their own copy of the state
which they operate upon: each read and write operation has immediate effect
over the local state and the system propagates changes to make all replicas con-
sistent using a reliable total order broadcast protocol (rtob). The rtob protocol
guarantees that all messages are delivered in the same total order to all clients.
Replicas rely on the order generated by rtob to converge to the same state. In
the very basic model, called core gsp, each client interacts with its local state by
performing read and write operations. Albeit simple, this model introduces some
subtleties when programming because it does not ensure read stability (i.e., two
successive reads may return different values) nor atomicity of several updates
(i.e., another client may partially observe the effects of a sequence of updates).
To overcome these limitations, three synchronisation primitives, namely pull,
push and confirmed, allow programmers to control the propagation of changes.
It has been shown that this model can be implemented so to handle communi-
cation failures and to represent updates efficiently by using two type of objects:
states and deltas. Both models, i.e. the idealised one and its implementation,
have been defined in terms of a reference implementation.

In this paper, we propose a formal account for each model: the gsp and igsp
calculi (§ 2 and § 3). We prove that the behaviour of a program running over
igsp can be observed over the idealised model. Technically, we show that each
igsp system can be simulated by the corresponding gsp system (§ 4). Then,
we study and prove the consistency guarantees ensured by gsp. We rely on the
characterisation of consistency guarantees in terms of abstract histories proposed
in [2]. Abstract histories capture the visibility relation between actions and the
arbitration order of updates in the system. Then, a wide-spectrum of consistency
models can be characterised in terms of these two relations. In § 5, we show
how to operationally associate abstract histories to concrete computations and
prove that gsp enjoys properties such as Monotonic Read, Causal Visibility and
Consistent prefix, among others. Finally, in § 6 we study the extension of gsp
with synchronous write operations, which ensures strong consistency.

2 Global Sequence Protocol Calculus

2.1 Syntax

Clients interact with a store by performing operations in U ∪ R: an element
in U denotes an update operation, while one in R stands for a read operation.
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(naturals) j, k, n ∈ N
(update) U = {u, u′, . . . , u0, . . .}
(read) R = {r, r′, . . . , r0, . . .}
(event) V = {v, v′, . . . , v0, . . .}
(var) X = {x, x′, . . . , x0, . . .}
(ids) I = {i, j, i′, . . . , i0, . . .}

(upd seq) u ::=ε | uv · u
(block seq) b ::=ε | LuTM · b
(system) N ::=S ||C
(store) S ::=b
(client) C ::=0 | 〈P, uT, b, b, k, j 〉i | C ||C

(program) P ::= update(u);P | let x = read(r) in P | pull;P |
push;P | let x = confirmed in P

Fig. 1. Syntax of the gsp calculus

No operation can simultaneously read and update a store, therefore we assume
U ∩R = ∅. We write u, u′, u′′, . . . for updates and r, r′, r′′, . . . for reads.

The state of a store is represented by a sequence of updates. For technical
convenience (particularly in § 5), we distinguish different executions of the same
operation. Formally, stores associate each update with a fresh event identifier.
We assume a set V of event identifiers v, v0, . . . , v′,. . . and write uv for the
update u associated with the event v.

We use u to denote sequences of decorated updates and LuM for an atomic
block of updates. We write b for a sequence of blocks. We denote the empty
sequence with ε and use the usual operations on sequences such as b[i] to denote
the i-th element of b, b[i..j] for the subsequence of b from position i to j, |b| for
its length and b\b′ for the relative complement of b in b′. Additionally, b stands
for the plain sequence of updates in b (i.e., without any separation in blocks).

We rely on the countable sets X of program variables x, x′, . . . and I of client
identifiers i, i′, . . . , i1, . . ..

Definition 2.1 (GSP Language). The set of gsp terms is given by the gram-
mar in Fig. 1.

A gsp system N consists of a store and zero or more clients. The global store
S is completely defined by its state, which consists of a sequence of blocks. The
term 〈P, uT, bS, bP, k, j 〉i stands for a client identified by i and engaged on the
execution of the program P . The remaining elements are used to describe the
state of the local replica: uT contains the updates that have been made locally
and are part of an unfinished block; bS models the communication buffer, which
keeps all blocks completed by the client but not received by the global store; bP
is the pending buffer, which contains all completed blocks that are unconfirmed
by the global store. For simplicity, we do not have an explicit replica of the global
store in each client; we use instead a natural number k to indicate the portion
of the global state that is known to the client. Specifically, the client i knows
the sequence S[0..k − 1]. Similarly, j indicates the number of updates received
by the client that have not been added to the local replica, i.e., the client has
received the updates contained in the segment S[k..k + j − 1].

A program P is built as a sequence of operations that interacts with the
store: read(r), update(u), pull, push, confirmed (we postpone their description
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until § 2.2). A program let x = . . . in P introduces a bound variable whose
scope is P . The definition of free variables of a program is standard. We say
that a process P is closed when it does not contain free variables. We keep the
language for programs simple. We remark that this choice does not affect the
results presented in this paper. Actually, we could just have characterised the
behaviour of programs as a labelled transition system, but we prefer to have a
syntax throughout the presentation.

Definition 2.2 (Well-formedness). A gsp system N = C0|| . . . ||Cm||S where
Cl = 〈Pl, uTl, bSl, bPl, kl, jl 〉il for all l ∈ {0, . . . ,m} is well-formed if the follow-
ing conditions hold

1. il 6= il′ for all l 6= l′;
2. kl + jl ≤ |S| for all l;
3. bPl = Lu1M · · · LupM · bSl and for all 1 ≤ x < y ≤ p there exists x′, y′ s.t.

S[x′] = LuxM, S[y′] = LuyM and kl ≤ x′ < y′; and

4. u = S · bS0 · · · bSm · uT0 · · · uTm, if u[x] = uv, u[y] = uv
′

and x 6= y then
v 6= v

′.

We require identifiers to univocally identify clients (1) and every local state to
be consistent with the global store, i.e., a client can see at most every message
in the store (2), all unconfirmed blocks in bPl are either in the communication
buffer bSl or in the unseen part of the global store Lu1M · · · LupM (3). Moreover, an
event identifier is associated with a unique update in the system (4). Hereafter,
we assume every gsp system to be well-formed.

2.2 Operational Semantics

The operational semantics of gsp is given by a labelled transition system over
well-formed terms, quotiented by the structural equivalence ≡ defined as the
least equivalence such that || is associative, commutative and has 0 as neutral
element. The set of actions is given by the following grammar:

λ ::= τ | rd(r) | wr(uv) | pull | push | cfm

As usual, τ stands for an internal, unobservable action, while the remaining ones
correspond to the interaction of a client with the store. A label (λ, i) indicates

that the client i performs the action λ. We write
λ−→i instead of

(λ,i)−−−→.
We now comment on the inference rules in Fig. 2. When a client performs an

update (rule update), the change has only local effects: the sequence of local
updates uT is extended with the operation u decorated with a globally fresh
identifier v. We remark that decorations are used for technical reasons but they
are operationally irrelevant (see § 5).

A client propagates its local changes to the global store by executing push

(rule push): all local changes in uT will be transmitted as a block LuTM, i.e., as
an atomic unit. Nevertheless, these changes are not made available immediately
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(update)

v fresh

〈update(u);P, uT, bS, bP, k, j 〉i || N
wr(uv)−−−−→i 〈P, uT · uv, bS, bP, k, j 〉i || N

(push)

〈push;P, uT, bS, bP, k, j 〉i || N
push−−−→i 〈P, ε, bS · LuTM, bP · LuTM, k, j 〉i || N

(send)

〈P, uT, Lu′TM · bS, bP, k, j 〉i || C || S
τ−→i 〈P, uT, bS, bP, k, j 〉i || C || S · Lu′TM

(receive)

k + j < |S|

〈P, uT, bS, bP, k, j 〉i || C || S
τ−→i 〈P, uT, bS, bP, k, j + 1 〉i || C || S

(pull)

〈pull;P, uT, bS, bP, k, j 〉i || C||S
pull−−→i 〈P, uT, bS, bP \ S[k..k + j −1], k + j, 0 〉i || C||S

(read)

rvalue(r, S[0..k − 1] · bP · uT) = v

〈let x = read(r) in P, uT, bS, bP, k, j 〉i || C||S
rd(r)−−−→i 〈P{v/x}, uT, bS, bP, k, j 〉i || C||S

(confirm)

v = (bP · uT == ε)

〈let x = confirmed in P, uT, bS, bP, k, j 〉i || N
cfm−−→i 〈P{v/x}, uT, bS, bP, k, j 〉i || N

Fig. 2. Operational semantics for gsp

at the global store because of the asynchronous communication model. In fact,
the new block LuTM is added to the communication buffer bS, which contains
all blocks that have not reached the global store. Also, LuTM is added to the
pending messages bP. Rule send stands for a block that finally reaches the
global store. Conversely, rule receive models the reception of a new update.
The received update is not immediately added to the local replica. Actually, each
client explicitly refreshes its local view by executing pull (rule pull). At this
time, all previously received updates j are incorporated to the local copy (i.e.,
k is changed to k + j). Additionally, all pending updates in the new fragment
S[k..k + j − 1] are remove from bP.

The semantics of operations is defined abstractly by the interpretation func-
tion rvalue : R × U∗ → V, i.e., a function that takes a read operation and a
sequence of updates and returns a value in some domain V. A read operation r
is evaluated over the local state of the client (rule read), i.e., the known prefix
of the global store S[0..k− 1] and the local updates in bP and uT. The value v is
bound to the variable x, and hence all free occurrences of x in the continuation
P are substituted by v. A client may perform confirmed to check whether its
executed updates are already in the global store: this operation returns true only
when the local buffers bP and uT are both empty (rule confirm).

We remark that the operational semantics preserves well-formedness.

Lemma 2.1. If N is well-formed and N
λ−→i N

′, then N ′ is well-formed.
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(state) s, s′, . . . , s1, . . . ∈ State
(delta) δ, δ′, . . . , δ1, . . . ∈ Delta
(round) r ::= 〈i, n, δ〉
(rnd Seq) r ::= ε | r · r
(max rnd) f, f′, . . . , f1, . . . ∈ I → N
(segment) seg ::= 〈δ, f〉 | 〈s, f〉

(sgmt seq) seg ::= ε | seg · seg
(in srv) ins ∈ I → r

(out srv) outs ∈ I → seg

(system) N ::= S || C
(server) S ::= 〈s, f, ins, outs〉
(clients) C ::= 0 | 〈P, s, δ, δ, n, r, seg〉i | C||C

Fig. 3. Syntax of the igsp calculus

3 Implementation of gsp

The gsp model describes an idealised system that abstracts away from several
implementation details, such as non-optimised representation of the state and
unreliable communication. This section presents a formal model for the imple-
mentation proposed in [5].

3.1 Syntax

The implementation of gsp relies on a compact representation for states and
updates. Their precise definition highly depends on the datatype of the values
handled by the store, but they are characterised in terms of two abstract types:
State and Delta, which provides the following operations [5]:

δ∅ : Delta
append : Delta× U → Delta
reduce : Delta∗ → Delta

∅ : State
apply : State×Delta∗ → State
read : R× State→ V

Constants δ∅ and ∅ denote the empty elements in their respective types. An
object δ ∈ Delta describes the effects of a sequence of updates and is built by
either appending an update to an existing delta (append) or combining together
several deltas (reduce). Operation read is the interpretation function for opera-
tions (i.e., the implementation counterpart of function rvalue( , ) used by the
idealised model) and apply corresponds to state transformations.

Clients and the global store exchange δ objects to communicate changes. As
each single δ may correspond to several update operations, clients send each δ
accompanied by its own identifier and a sequence number n. Precisely, clients
send rounds, i.e. triples r = 〈i, n, δ〉. Differently, the global store sends segments
seg = 〈δ, f〉, in which δ is accompanied by a function f ∈ I → N. In this way,
the global store confirms all changes from client i until round f(i). To deal with
crashes and recovery, the server may send segments of the form 〈s, f〉, which
communicates a complete state instead of a delta object.

Definition 3.1 (GSP Language). The set of igsp terms is given by the gram-
mar in Fig. 3.

As for gsp, a system is composed by a global store S and possibly many
clients C. A global store is modelled by a tuple 〈s, f, ins, outs〉 containing a
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state s, a function f to keep track of processed rounds and the communication
buffers ins and outs. There are two dedicated buffers for each client i: ins(i)
contains the rounds received from i, and outs(i) the segments that have been
sent to i.

A client is represented by a term 〈P, s, δT, δP, n, r, inc〉i. As for gsp, i is its
identity and P is its program. Note that the language for programs remains
unaltered. The component δT is analogous to uT in the gsp model, i.e., it keeps
all local updates until the client performs push. Differently, δP keeps all finished
blocks that have not been sent. The number n identifies the current round. Buffer
r keeps all sent rounds that have not been confirmed by the global store (similar
to bP in gsp), while inc keeps all received segments (analogous to j).

We also impose the following well-formedness condition on systems.

Definition 3.2 (igsp well-formedness). A igsp system N = C0|| . . . ||Cm||S
with S = 〈s, f, ins, outs〉 and Cl = 〈Pl, sl, δTl, δPl, nl, rl, incl〉il for l ∈ {0, . . . ,m}
is well-formed if the following conditions hold

1. il 6= il′ for all l 6= l′.

2. dom(ins) = dom(outs) ⊆ {0, . . . ,m}.
3. il 6∈ dom(outs) implies incl = ε.

4. if il ∈ dom(outs) and incl · outs(il) 6= ε then either

(i) incl · outs(il) = 〈δ0, f0〉 · · · 〈δh, fh〉; or

(ii) incl · outs(il) = 〈s, f0〉 · 〈δ1, f1〉 · · · 〈δh, fh〉
and fj(il) ≤ fk(il) for all j < k ∈ {0..h} and fh = f.

5. rl = 〈i0, n0, δ0〉 · · · 〈ir, nr, δr〉, nj < nk for all j < k ∈ {0..r} and either

(i) δPl = δ∅, nr ≤ nl and f(il) ≤ nl; or

(ii) δPl 6= δ∅, nr < nl and f(il) < nl.

6. either

(i) rl = ε, f(il) ≤ nl and if il ∈ dom(ins) then ins(il) = ε;

(ii) rl = ins(il) = 〈il, nfst , δfst〉 · r′l and nfst > f(il);

(iii) rl = r′′l · 〈il, nlst, δlst〉 · ins(il) and incl · outs(il) = 〈δ0, f0〉 · · · 〈δ′lst, flst〉
with flst(il) = nlst; or

(iv) ins(il) = ε, rl = r′′l ·〈il, nlst, δlst〉 and either incl ·outs(il) = 〈s, f′〉·seg
with f′(il) ≤ nlst or incl · outs(il) = ε and f(il) ≤ nlst.

We require all clients to have different identifiers (1). Communication chan-
nels in the implementation are bidirectional, hence il ∈ dom(ins) iff il ∈ dom(outs)
(2). Moreover, the input buffer of a disconnected client is empty (3). Condition
(4) states that 〈s, f′〉 can appear only as the first message in the flow from
the store and that the store confirms processed rounds in a non-decreasing or-
der. Similarly, clients send rounds with increasing round number (5). The last
condition (6) states a coherence requirement between pending rounds and the
segments sent by the store, which can only confirm rounds that are pending.
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(i-update)

〈update(u);P, s, δT, δP, n, r, inc〉i || N
wr(uv)−−−−→i 〈P, s, append(δT, u), δP, n, r, inc〉i || N

(i-push)

〈push;P, s, δT, δP, n, r, inc〉i || N
push−−−→i 〈P, s, δ∅, reduce(δP · δT), n+ 1, r, inc〉i || N

(i-send)

δP 6= δ∅ i ∈ dom(ins) r = 〈i, n, δP〉 inc · outs(i) 6= 〈s′, f〉 · seg
〈P, s, δT, δP, n, r, inc〉i || 〈s′, f, ins, outs〉 || C

τ−→i

〈P, s, δT, δ∅, n, r · r , inc〉i || 〈s′, f, ins[i 7→ ins(i) · r ], outs〉 || C
(i-receive)

outs(i) = seg · seg
〈P, s, δT, δP, n, r, inc〉i || 〈s′, f, ins, outs〉 || C

τ−→i

〈P, s, δT, δP, n, r, inc · seg〉i || 〈s′, f, ins, outs[i 7→ seg]〉 || C
(i-pull1)

r′ = filter(fk(i), r) inc = 〈δ1, f1〉 . . . 〈δk, fk〉

〈pull;P, s, δT, δP, n, r, inc〉i || N
pull−−→i 〈P, apply(s, reduce(δ1 · · · δk)), δT, δP, n, r

′, ε〉i || N

(i-read)

read(r, apply(s,∆(r) · δP · δT)) = v

〈let x = read(r) in P, s, δT, δP, n, r, inc〉i || N
rd(r)−−−→i 〈P{v/x}, s, δT, δP, n, r, inc〉i || N

(i-confirm)

v = (r · δP · δT == ε)

〈let x = confirmed in P, s, δT, δP, n, r, inc〉i|| N
cfm−−→i 〈P{v/x}, s, δT, δP, n, r, inc〉i|| N

(i-batch)

〈δ, f′〉 = rnds(ins) δ 6= δ∅ s′ = apply(s, δ) ∀i.(outs′(i) = outs(i)·〈δ, f[f′]〉∧ins′(i) = ε)

〈s, f, ins, outs〉 || C
τ−→ 〈s′, f[f′], ins

′, outs
′〉 || C

(i-drop-cxn)

i ∈ ins i ∈ outs

〈P, s, δT, δP, n, r, inc〉i || 〈s, f, ins, outs〉 || C
τ−→
〈P, s, δT, δP, n, r, ε〉i ||〈s, f, ins \ i, outs \ i〉 || C

(i-accept-cxn)

i /∈ ins i /∈ outs

〈s, f, ins, outs〉 || Ci || C
τ−→ 〈s, f, ins[i 7→ ε], outs[i 7→ 〈s, f〉]〉 || Ci || C

(i-pull2)

inc = 〈s′′′, f0〉 · 〈δ1, f1〉 . . . 〈δk, fk〉 s′′ = apply(s′′′, reduce(δ∅ · δ1 · · · δk))
r′ = filter(fk(i), r)

〈pull;P, s, δT, δP, n, r, inc〉i || 〈s′, f, ins, outs〉 || C
pull−−→i

〈P, s′′, δT, δP, n, r′, ε〉i || 〈s′, f, ins[i 7→ ins(i) · r′], outs〉 || C

Fig. 4. Operational semantics of igsp
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3.2 Operational Semantics

As for the idealised model, the operational semantics is given by a labelled tran-
sition system over well-formed terms, up-to structural equivalence. We consider a
new label τ without any client annotation for transitions associated with changes
in the global store and communication failures. The inference rules are in Fig. 4.

Rule (i-update), which is analogous to rule (update), adds the operation
u to the temporary block δT. The decoration v is irrelevant in this model, hence
we do not impose any freshness requirement. A client terminates a block by
executing push (i-push). At this time, the block δT is appended to the already
terminated blocks in δP, which will be sent on the next round. Additionally, the
block counter n is incremented by 1. By rule (i-send), a client sends changes
to the global store. This transition takes place whenever the client is connected
(i.e., i ∈ dom(ins)), there are finished blocks in δP (i.e., δP 6= δ∅) and there is
no need for resynchronisation (i.e., inc · outs(i) 6= 〈s′, f〉 · seg)3. The available
blocks are sent within the same round r = 〈i, n, δP〉, which contains the number
n corresponding to the last finished block. The new round r is added to the
corresponding input buffer in the store, i.e., ins(i) is updated to ins(i) · r (where
[ 7→ ] is the update operator for functions). Additionally, r is added to the

sequence of pending rounds r and the buffer δP is reset to δ∅.

Symmetrically, the client i may receive an available segment at any time (i-
receive). The new segment seg is removed from the buffer outs(i) of the global
store and added to the input buffer of the client. As for the idealised model,
all received changes are applied to the local replica when i performs pull. Rule
(i-pull1) handles the case in which the connection with the global store has not
been previously reset. In such case, all received segments are of the form 〈δ, f〉.
Therefore, the changes δ1 · · · δk are applied to the local state s and all rounds
confirmed by the received segments are removed from the pending list r. By
well-formedness (Def. 3.2,5), it suffices to consider the confirmation fk, which
has the greatest confirmation. Hence, all rounds up-to fk(i) are removed from r.
This is done by the auxiliary function filter( , ), defined as follows

filter(n, r) = 〈i, nj , δj〉 · · · 〈i, nk, δk〉 if r = 〈i, n0, δ0〉 · · · 〈i, nj , δj〉 · · · 〈i, nk, δk〉,
nj−1 ≤ n and nj > n

Rules (i-read) and (i-confirm) are analogous the ones in the gsp calculus.
We use ∆( ) for the function that projects a sequence of rounds into the se-
quence that contains the corresponding δs. The global store changes its state
as prescribed by rule (i-batch): it collects all received rounds in ins by using
the auxiliary function rnds( ), which builds a unique object δ by appending all
available rounds, and a function f that associates each client with the number
of the last received round. Let ins be such that dom(ins) = {i0, . . . , im} and
∀il ∈ dom(ins).ins(il) = rl · 〈il, nkll , δ

kl
l 〉. Then, rnds( ) is defined as follows

3 For simplicity we check re-synchronisation by inspecting buffers instead of explicitly
adding the condition channel established used in the implementation.
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rnds(ins) = 〈δ, f′〉 with δ = reduce(∆(ins(i0)) · · ·∆(ins(im))),
dom(f′) = {i | i ∈ dom(ins) and ins(i) 6= ε} and

∀il ∈ dom(ins).f
′(il) = nkll

The obtained δ is applied to the current state s and f is updated with f′. In
addition, the new segment 〈δ, f[f′]〉 is sent to every connected client, i.e., it is
added at the end of every buffer outs(i). The input buffers ins(il) are emptied
because all received rounds have been processed.

The remaining rules deal with connectivity issues: rule (i-drop-cxn) mod-
els a disconnection: the buffers outs(i) and ins(i) are removed from the global
store and also the input buffer of i is set to ε. When the client i (re-)establishes
its connection (i-accept-cxn), the store creates the buffers for i and sends a
segment containing the current state of the store. Rule (i-pull2) is analogous
to (i-pull1), but handles the first pull after a reconnection. The first received
segment 〈s′′′, f0〉 contains a state instead of a delta object. The client uses s′′′

instead of its local state to resynchronise. The application of successive segments
is analogous to rule (i-pull1). Moreover, the client resends a round r′ containing
all pending segments lost by the server during the disconnection.

The proposed implementation allows for a server to crash, i.e., to close all
communication buffers, but we do not model explicitly this behaviour because
it can be obtained by applying rule (i-drop-cxn) several times.

Lemma 3.1. Let N be a well-formed igsp system. If N
λ−→i N

′, then N′ is well-
formed.

4 Correctness of the Implementation

We now prove that igsp is a correct implementation of gsp. We recall in Fig. 5
the requirements stated in [5] for the operations provided by the data types
State and Delta. Formally, the relation / associates delta and state objects
with sequences of updates: δ / u (similarly, s / u) means that δ (correspondingly,
s) is a compact representation of u. Then, it is also assumed that s / u implies
read(r, s) = rvalue(r, u) for any r. Building on the above relation, we define
under which conditions a igsp system is an implementation of a gsp system.

Definition 4.1. Let N = C0 || . . . || Cm || S be a gsp system such that Cl =
〈Pl, uTl, bSl, bPl, kl, jl 〉il for all l ∈ {0, . . . ,m}, and N = C0 || . . . || Cm || S a igsp
system such that S = 〈s, fs, ins, outs〉 and Cl = 〈Pl, sl, δTl, δPl, nl, rl, incl〉il . We
say N implements N if the following conditions hold:

1. s / S;
2. sl / S[0..kl − 1];
3. δTl / uTl;
4. reduce(∆(rl) · δPl) / bPl;
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(/-δ∅ )

δ∅ / ε

(/-append)

δ / u

append(δ, u) / u · uv

(/-read)

s / u

read(r, s) = rvalue(r, u)

(/-∅ )

∅ / ε

(/-apply)

s / u δ1 / u1 . . . δn / un

apply(s, δ1 · · · δn) / u · u1 · · · un

(/-reduce)

δ1 / u1 . . . δn / un

reduce(δ1 · · · δn) / u1 · · · un

Fig. 5. Coherence requirements for Delta and State operators

5. if il ∈ dom(ins) and inc · outs(il) 6= 〈s′, f〉 · seg then

reduce(∆(ins(il)) · δPl) / bSl;
ă

6. if il ∈ dom(outs) then either

i. incl · outs(il) = ε, kl = |S|;
ii. incl = 〈δ′, f〉 · seg, reduce(∆(incl)) / S[kl..kl + jl − 1], and

reduce(∆(outs(il))) / S[kl + jl..|S| − 1];

iii. incl = 〈s′, f0〉 ·seg, there exists t s.t. kl ≤ t ≤ kl+jl s.t. s′ / S[0..t− 1],

reduce(∆(seg)) / S[t..kl + jl − 1] and

reduce(∆(outs(il))) / S[kl + jl..|S| − 1]; or

iv. incl = ε, outs(il) = 〈s′, f〉·seg there exists t ≥ kl+jl s.t. s′/ S[0..t− 1]

reduce(∆(seg)) / S[t..|S| − 1];

7. for all f s.t f = fs or 〈 , f〉 ∈ incl · outs(il), for all 〈i, n, δ′〉 ∈ rl if n ≤ f(il)
then δ / S[x..x′] and δ′ / S[y..y′] with y′ ≤ x′.

The first three conditions are self-explanatory. Condition (4) states that the
pending blocks in bPl correspond either to rounds in the pending list rl or to
blocks ready to be sent, i.e., in δPl. By condition (5), if a client is synchronised
with the store (i.e., il ∈ dom(ins) and inc ·outs(il) 6= 〈s′, f〉 ·seg) then all blocks
in the sending list bSl are either rounds that have been sent, i.e., in ins(il), or
ready blocks in δPl. Condition (6) establishes the relation between the received
messages in both models. Basically, the local replica is complete when there are
no segments for the client (i). When the first received segment is a delta object
(ii), the content in the input buffer incl corresponds to the received messages
in S[kl..kl + jl − 1] and the the output buffer outs(il) contains the updates in
the sequence S[kl + jl..|S| − 1]. In the remaining two cases, the first segment
contains a state. When the segment is in the input buffer of the client (iii), the
received state s′ corresponds to a prefix of the sequence S whose length lies in
between of the updates already received by the client in the idealised model, i.e.,
S[0..t− 1] with k ≤ t ≤ kl + jl, while the remaining conditions are analogous to
the previous case. Differently, when the first segment is still on the output buffer
of the store (iv), s′ corresponds to a prefix that contains at least all updates in
S already known to the client, i.e., t ≥ kl + jl because the store confirmations
are monotonic.
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Condition (7) states that in any segment 〈δ, f〉 sent by the store, δ corre-
sponds to a contiguous sequence of updates in S, i.e., S[x..x′]. Moreover, all
confirmed rounds are also within the prefix S[0..x′].

We now show that igsp is a correct implementation of gsp by proving that
N weakly simulates N when N implements N . We use standard simulation but
technically we take into account the fact that gsp associates a fresh event identi-
fier to each update while igsp does not. Take→=

τ−→
⋃

i∈I
τ−→i,⇒ as the reflexive

and transitive closure of →, i.e.⇒=→∗, and
λ
=⇒i = ⇒;

λ−→i;⇒.

Definition 4.2 (Simulation). R is an implementation simulation if for all
(N, N) ∈ R we have:

1. If N
wr(uv)−−−−→i N

′ then ∃N ′,w s.t. N
wr(uw)
====⇒i N

′ and (N′, N ′) ∈ R;

2. If N
λ−→i N

′ and λ 6= wr(uv), τ then ∃N ′ s.t. N
λ
=⇒i N

′ and (N′, N ′) ∈ R;
3. If N −→ N′ then ∃N ′ s.t. N ⇒ N ′ and (N′, N ′) ∈ R;

As usual, we write N - N if there exists a simulation R s.t. (N, N) ∈ R.

Theorem 4.1. If N implements N , then N - N .

Proof. We show that R = {(N, N) | N implements N} is a simulation.

We remark that R−1 is not a simulation because the implementation cannot
mimic the behaviour in which a client have completed two consecutive blocks
(i.e., two push commands) without sending the first block. In gsp it is still
possible to interleave the two blocks with blocks sent by other clients but in
igsp they are treated as atomic because they will be sent as a unique δ object.

5 Consistency Guarantees

In this section we study the consistency properties offered by gsp. We rely on
the characterisation of properties in terms of abstract executions [4], execution
histories enriched with information about visibility and arbitration of actions.

Definition 5.1. Let N be a well-formed gsp system, an abstract history for N
is a tuple A = 〈N,OP, SS, SO,VIS,AR〉 where:

– OP : V→ R∪ U maps events to operations;
– SS : I → V associates events with a session (i.e., a client);
– SO ⊆ V× V describes the order of operations within a session;
– VIS ⊆ V× V indicates whether the effects of an update are visible to a read;
– AR ⊆ V× V resolves concurrent update conflicts.

We write ↓ for function/relation restriction. For a given abstract history A,
we write U (similarly, R) for the codomain restriction of OP to U (correspondingly,
R), i.e., U = {v | v ∈ OP,OP(v) ∈ U} (R = {v | v ∈ OP,OP(v) ∈ R}).
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Definition 5.2 (Well-formed history). Let N = C0|| . . . ||Cm||S be a gsp
system where Cl = 〈Pl, uTl, bSl, bPl, kl, jl 〉il . A history A = 〈N,OP, SS, SO,VIS,AR〉
is well-formed if the following conditions hold:

1. for all i ∈ dom(SS), SS(i) ⊆ dom(OP);
2. (v,w) ∈ SO then exist i ∈ dom(SS) s.t. {v,w} ∈ SS(i).
3. for all i ∈ dom(SS), SO ↓SS(i) is a total order;
4. VIS ⊆ U× R;
5. AR ⊆ U× U is a prefix order.
6. (v,w) ∈ AR iff

– S[i] = uv and S[j] = uw and i < j; or
– uv ∈ S and uw ∈ bSl · uTl;

7. if bSl · uTl[i] = uv and bSl · uTl[j] = uw and i < j, then (v,w) ∈ SO and
{v,w} ∈ SS(il).

The above conditions ensure that events in SS are associated with an opera-
tion by OP (1). Besides, SO only relates events belonging to the same session (2),
which are totally ordered within each session (3). Differently from the definition
in [2], we restrict visibility to keep track of dependencies between updates and
read events(4). We do not require AR to be a total order but instead to be a
prefix order (5). In this way the updates in different replicas are arbitrated when
they reach the global store. The remaining two conditions require the abstract
history to be consistent with the state of the system.

Rules in Fig. 6 provides an operational way to associate abstract executions
with gsp computations. Rules (a-update) and (a-read) add new events to
the history and corresponds to the execution of a read or update operation by a
client. In both cases OP is extended with a new event v (i.e., v /∈ dom(OP)), which
is associated with the corresponding operation (either r or u). The new event v
is added to the corresponding session i, and SO is updated to make v the maximal
event for the session i. Rule (a-update) amends AR by capturing the fact that
all updates that are already in the global state took place before the new event.
Rule (a-read) instead augments VIS with the pairs associating the new event
with all events that are seen by the read action, namely, the local view of the
global state S[0..ki − 1] and the local buffers bPi and uTi. Rule (a-arb) handles
the changes in the state of the global store (due to a send transition in one client)
and amends AR by arbitrating (i) the new events by respecting the relative order
in which they are added to the store (i.e., {(vi, vj) | i, j ∈ {0, . . . , n}, i < j})
and (ii) all updates in the local state of the clients after the new ones (i.e.,
({v0, . . . , vn} × {w | w ∈ U ∀u.uw 6∈ S · u}). The remaining transitions of the
system are considered as internal changes that do not affect the history and are
handled by rule (a-int).

Lemma 5.1. Let A be a well-formed history. If A
λ−→i A′, then A′ is well-formed.

We use histories to analyse the ordering guarantees offered by the gsp model.
(Due to space limitation, we refer the interested reader to see the characterisa-
tions provided in [2, Ch. 5]).
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(a-update)

N
wr(uv)−−−−→i N

′
v /∈ dom(OP) OP

′ = OP[v 7→ u] SS
′ = SS[i 7→ SS(i) ∪ {v}]

SO
′ = SO ∪ (SS(i)× {v}) AR

′ = AR ∪ ({w | uw ∈ S} × {v})

〈N,OP, SS, SO,VIS,AR〉 wr(uv)−−−−→i 〈N ′,OP
′, SS, SO′,VIS,AR

′〉
(a-read)

N
rd(r)−−−→i N

′
v /∈ dom(OP) OP

′ = OP[v 7→ r] SS
′ = SS[i 7→ SS(i) ∪ {v}]

SO
′ = SO ∪ (SS(i)× {v}) VIS

′ = VIS ∪ ({w | uw ∈ S[0..k i − 1] · bPi · uT i} × {v})

〈N,OP, SS, SO,VIS,AR〉 rd(rv)−−−−→i 〈N ′,OP
′, SS′, SO′,VIS

′,AR〉
(a-arb)

S || C λ−→i S · u || C′ λ 6= wr(uv), rd(r) u = Lu0
v0 · · ·unvnM

AR
′ = AR ∪ {(vi, vj) | i, j ∈ {0, . . . , n}, i < j}

∪ ({v0, . . . , vn} × {w | w ∈ U, ∀u.uw 6∈ S · u})
〈S || C,OP, SS, SO,VIS,AR〉 λ−→i 〈S · u || C′,OP, SS, SO,VIS,AR

′〉
(a-int)

S||C λ−→i S||C′ λ 6= wr(uv), rd(r)

〈S||C,OP, SS, SO,VIS,AR〉 λ−→i 〈S||C′,OP, SS, SO,VIS,AR〉

Fig. 6. Computation of abstract executions

Theorem 5.1. If 〈N, ∅, ∅, ∅, ∅, ∅〉 −→∗i 〈N ′,OP, SS, SO,VIS,AR〉 then

(1) Read My Writes: SO↓U×R⊆ VIS

(2) Monotonic Read: VIS; SO↓U×R⊆ VIS.

(3) No Circular Causality: (SO ∪ VIS)+ is acyclic.

(4) Causal Visibility: (SO ∪ VIS)+↓U×R⊆ VIS.

(5) Causal Arbitration: ((SO ∪ VIS)+ \ SO)↓U×U ⊆ AR.

(6) Consistent prefix: AR; (VIS \ SS) ⊆ VIS.

The following example shows that the gsp model exhibits the Dekker anomaly,
hence it does not enjoy sequential consistency [2].

Example 5.1 (Dekker anomaly). Consider the following system consisting of two
clients and the empty store N = ε || C1 || C2 where

C1 = 〈update(u1); let y = read(r1) in P, ε, ε, ε, 0, 0 〉i1
C2 = 〈update(u2); let y = read(r2) in Q, ε, ε, ε, 0, 0 〉i2

Since the updates are made locally, none of the clients see the update performed
by the other and this is the essence of the Dekker anomaly which is ruled out
by strong consistency models like sequential consistency or linearizability.
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(sync-upd)

〈syncUpd(u);P, uT, bS, bP, k, j 〉i || N
τ−→i

〈update(u); push; wait;P, uT, bS, bP, k, j 〉i || N
(wait)

〈wait;P, uT, bS, bP, k, j 〉i || N
τ−→i

〈let x = confirmed in x . (pull; wait;P );P, uT, bS, bP, k, j 〉i || N
(guard-true)

e ↓ true

〈e . (P );Q, uT, bS, bP, k, j 〉i || N
τ−→i 〈Q, uT, bS, bP, k, j 〉i || N

(guard-false)

e ↓ false

〈e . (P );Q, uT, bS, bP, k, j 〉i || N
τ−→i 〈P, uT, bS, bP, k, j 〉i || N

Fig. 7. Semantics of gsp with atomic updates

6 gsp with atomic updates

In this section we study the atomic updates proposed in [5]. We extend the
language of programs as follows:

(program) P ::= . . . | syncUpd(u);P

The execution of a program syncUpd(u);P remains blocked until the update
u is performed over the global store. This is achieved by continuously pulling
(i.e., a busy-waiting) until the updates are confirmed by global store. In order to
provide the formal semantics of the language, we consider the following runtime
syntax for programs.

(run-time-program) P ::= . . . | wait;P | e . (P );P

The operational semantics for the new primitives is given by the rules in
Fig. 2. Rule (sync-upd) rewrites each synchronous update as the sequence con-
sisting of an asynchronous update followed by pull and wait. Processes wait

continuously checks whether local changes have been confirmed by the global
store. As described by rule (wait), it is implemented as a busy-waiting loop
that first checks the local buffers by executing confirmed and then performs the
conditional jump x . (pull; wait);P . If the condition x is true, then it follows
as P otherwise it continues as pull; wait, as described by rules (guard-true)
and (guard-false).

Single order is characterised, essentially, by imposing arbitration and visibil-
ity to coincide [2]. Since our definition for AR and VIS makes them disjoint, we use
an alternative characterisation of single order guarantee, which disregards the
arbitration order of updates that are not observed. Hence, we use the following
characterisation for single order:

AR; VIS ⊆ VIS and AR
−1;¬VIS ⊆ ¬VIS
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The following result shows that any well-formed gsp system, whose programs
are free from asynchronous updates enjoy the single order guarantee.

Theorem 6.1 (Single Order). Let N be a well-formed system s.t. update(u)
does not appear in N . If 〈N, ∅, ∅, ∅, ∅, ∅〉 −→∗i 〈N ′,OP, SS, SO,VIS,AR〉 then AR; VIS ⊆
VIS and AR

−1;¬VIS ⊆ ¬VIS.

7 Conclusions

We have proposed a formal model for the Global Sequence Protocol and its pro-
posed implementation. We use our formal model to provide a simplified proof
(that relies on standard simulation) that the proposed implementation is cor-
rect. We remark that our proof does not require to exhibit an auxiliary state for
the simulation and that several invariants are trivially ensured by the definition
of the model (e.g., the fact that clients have a consistent view of the global se-
quence) and the well-formed conditions imposed over systems. We have formally
studied the consistency guarantees ensured by the model by relying on the op-
erational semantics of the calculus to incrementally compute (a relaxed version
of) abstract histories. We have also shown how gsp can be used to formally
study programming patterns, like synchronous update operations, that provide
stronger consistency guarantees at the expenses of efficiency and availability.
We plan to use the gsp calculus as a formal basis for developing programming
techniques to enable the fine-tuning of consistency levels in applications.

Acknowledgments We thank the anonymous reviewers of Coordination 2016 for
their careful reading of our paper and detailed comments.

References

1. P. Bailis and A. Ghodsi. Eventual consistency today: limitations, extensions, and
beyond. Commun. ACM, 56(5):55–63, 2013.

2. S. Burckhardt. Principles of eventual consistency. Foundations and Trends in
Programming Languages, 1(1-2):1–150, 2014.

3. S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types for eventual
consistency. In ECOOP 2012, pages 283–307. Springer, 2012.

4. S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent
transactions. In ESOP 2012, pages 67–86. Springer, 2012.

5. S. Burckhardt, D. Leijen, J. Protzenko, and M. Fähndrich. Global sequence pro-
tocol: A robust abstraction for replicated shared state. In ECOOP 2015, pages
568–590, 2015.

6. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly avail-
able key-value store. In SOSP ’07, pages 205–220. ACM, 2007.

7. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.



A Formal Analysis of the Global Sequence Protocol 17

8. A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ’Cause i’m
strong enough: reasoning about consistency choices in distributed systems. In
POPL 2016, pages 371–384, 2016.

9. A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

10. M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated
data types. In SSS 2011, pages 386–400, 2011.

11. K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative programming
over eventually consistent data stores. In PLDI 2015, pages 413–424. ACM, 2015.


