
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Verificación Automática de Estructuras de Datos Aćıclicas
usando Demostradores de Teoremas

Automatic Verification of Acyclic Data Structures
using Theorem Provers

Tesis presentada para optar al t́ıtulo de
Licenciado en Ciencias de la Computación

Ariel Mart́ın Neisen - L.U. 9/05

Directores: Dr. Diego Garbervetsky, Dr. Daniel Goŕın

Buenos Aires, 2010

2

Resumen

El objetivo de la presente tesis es investigar acerca del diseño de lenguajes orientados a objetos y las
diferentes técnicas existentes para ofrecer garant́ıas estáticas de verificación. En particular, nos interesa
definir un calificador de tipos aćıclicos, que asegure que la clausura transitiva de la relación points-
to de una instancia aćıclica sea irreflexiva. Listas enlazadas y árboles son t́ıpicos ejemplos de tipos
aćıclicos. Dicha propiedad es interesante debido a que: i) las estructuras de datos aćıclicas pueden ser
fácilmente recolectadas utilizando una estrategia de conteo de referencias (reference counting), y ii) es
sencillo garantizar la terminación de ciclos que recorren estructuras de datos aćıclicas. La discusión
sobre aciclicidad nos llevará a entender cuán dif́ıcil es garantizarla con las herramientas disponibles en la
actualidad.

Desde el punto de vista técnico, propusimos un lenguaje con un calificador de clases opcional “aćıclico”.
El mismo impone algunas restricciones de tipado: si la clase A es declarada como aćıclica y A contiene
un campo “f” de tipo B, entonces B debe ser aćıclico también. La aciclicidad es entonces forzada por
construcción, o sea, agregando una precondición especial a la asignación “a.f := b”, para “a” una instancia
aćıclica, que garantice la preservación de la aciclicidad de “a” y “b”. La especificación es lograda utilizando
una variación del trabajo realizado en dynamic frames. Uno de los problemas más interesantes a resolver
es encontrar el nivel correcto de abstracción, en particular, cuál es la mı́nima información necesaria en
el contrato de los métodos para que funcione correctamente la verificación. El trabajo sobre Dynamic
Frames ofrece un enfoque elegante para resolverlo.

Las contribuciones de esta tesis incluyen la presentación de un nuevo lenguaje, con la definición
formal de su semántica y las pruebas de su validez. Finalmente, se analizan experiencias realizadas que
aprovechan los beneficios de los tipos aćıclicos.

3

4

Abstract

The aim of this thesis is to research on the design of object-oriented languages and the different techniques
available to offer static verification guarantees. In particular, we became interested in defining acyclic
type qualifier. By this we mean that the transitive closure of the points-to relation of an instance of an
acyclic type must be irreflexive. Linked-lists and trees constitute typical examples of acyclic types. This
is interesting because: i) acyclic data structures can be garbage collected automatically using a cheap
reference counting strategy, and ii) loops that traverse acyclic data structures can be easily shown to be
terminating. The discussion on acyclicity will lead us to understand how difficult it is to verify it using
the current techniques available.

Technically speaking, we propose a language with an optional “acyclic” qualification to the classes
declaration. This imposes some typing constraints: if class A is declared as acyclic and A contains a field
“f” of type B, then B must have been declared as acyclic too. Acyclicity is then enforced by construction,
that is, by adding a special precondition to the assignment “a.f := b” for “a” an instance of an acyclic
type, that guarantees that the acyclicity of “a” and “b” are preserved. The specification is achieved
by using a variation of the dynamic frames style. One interesting problem is to find the right level of
abstraction: what is the minimum information needed to include in the contract of each method to make
the verification work. The link with the specification of Dynamic Frames offers an elegant approach to
help here.

The contributions of the work include the presentation of the new language, with the formal definition
of its semantics and the proofs of soundness. We end up analyzing the experimental code samples, taking
advantage of the acyclic types benefits.

5

6

Agradecimientos

Este trabajo representa el fin de una etapa que comencé hace varios años. Durante ese tiempo mucha
gente me ayudó de distintas formas y este es el momento de agradecerles (aunque posiblemente me olvide
de alguno).

Conoćı a Diego Garbervetsky y Dani Goŕın en mis primeras materias cursadas en la carrera. Cuando
llegó el momento de buscar un tema de tesis, no dudé en acudir a ellos como primera opción. Ellos
confiaron en mi para llevar la tesis adelante y le dedicaron mucho esfuerzo y tiempo para que la pueda
concluir de la mejor forma. Espero que este trabajo sea el inicio de una amistad por muchos años.

A Eduardo Bonelli y Guido de Caso por haber aceptado ser los jurados de la tesis. Sus correcciones,
comentarios e ideas ayudaron a concluir con el desarrollo del trabajo. A Leo Spett y Pablo Zaidenvoren
por haber sido revisores iniciales del documento.

A mis compañeros de la Facultad, la gente de la facu, con quienes compart́ı los últimos años dentro
y fuera de la cursada: Mat́ıas Blanco, Fernando Bugni, Luis Brassara, Facundo Carreiro, Bruno Cuervo
Parrino, Diego Freijo, Maxi Giusto, Pablo Laciana, Sergio Medina, Santiago Palladino, Leandro Radusky,
Leo Rodriguez, Nati Rodriguez, Viviana Siless, Javier Silveira, Leo Spett, Andrés Taraciuk, Mart́ın
Verzilli, Pablo Zaidenvoren, Eddy Zoppi. Sin dudas que el apoyo del grupo fue fundamental para poder
completar la carrera.

A mis compañeros de trabajo, por su aporte a mi desarrollo profesional.

Al Departamento de Computación de la Universidad de Buenos Aires por haberme dado una educación
de calidad y permitido conocer personas brillantes. Al grupo de Ingenieŕıa del Software, donde d́ı mis
primeros pasos en la docencia.

A mis amigos Ari Brow, Fer Kahan, Mati Rubacha, Leo Spett, Nico Teitel y Zaiden, por ayudarme a
despejar la cabeza y acompañarme en otro momento importante de mi vida.

A mi Familia, por su apoyo constante e incondicional, por alentarme a que me esfuerce en las cosas
que me interesan y acompañarme en la construcción de mi camino.

7

8

Contents

1 Introduction 11

1.1 What this thesis is about . 12

1.2 Related Work . 13

1.3 Thesis Structure . 14

2 Dynamic Frames 15

2.1 Overview . 15

2.2 Implementations based on Dynamic Frames . 17

3 Dealing with acyclicity in an Object-Oriented language 19

3.1 Enforcing acyclicity by construction . 21

4 A language that enforces acyclicity 25

4.1 Syntax . 25

4.2 Dynamic Operational Semantics . 26

4.3 Failing Executions . 32

4.4 Static Semantics . 36

4.5 Semantics Soundness . 38

5 Implementation 47

5.1 Background . 47

5.2 Implementation Details . 54

5.3 Translation Example . 57

5.4 Experiments . 59

5.5 Lessons Learned . 61

6 Conclusions and future work 63

Bibliography 65

9

10 CONTENTS

Chapter 1

Introduction

Writing correct and reliable programs is a very hard task. Whenever we get a piece of software, instead
of coming with guarantees, it includes disclaimers and warnings. At the same time, software is becoming
present in almost every aspect of our daily life. In consequence, a malfunctioning software may cause
significant losses[Bro75].

Fortunately, both the academia and industry have made considerable progress in creating techniques,
tools and methodologies which aim to improve the quality of software. In this thesis we follow the work in
this area, with the intention of making a contribution to help programmers write better and more reliable
software. Specifically, we are interested in analyzing programs. The analysis strategies can be divided
into static (which take place before the program is executed) and dynamic (which take place during the
execution of the program), or hybrid. There are many strategies, but for static analysis we will consider
program verification and type systems, and for dynamic analysis we will consider testing.

Program Verification is one of the major research subjects of computer sciences. One of its applications
is to prove that a program satisfies its specification. As the compiler has the role of generating the
executable code from a program; a verifier is responsible to check if the program verifies its specification
for all inputs and in each possible execution path. A program verifier usually works as follows:

• First of all, the program is formalized with regard to its semantics and proof obligations. A typical
technique[Lei08a] is to translate the program into a verification language, which helps to prescribe
the formalisms in a more natural way.

• Then, a module generates the logical formulas from the formalization (called verification condi-
tions). The validity of the verification conditions implies that the program satisfies the correctness
properties under consideration.

• Finally, the verification conditions are processed by a theorem prover searching for a successful proof
or counterexamples that show possible errors in the program, such as the Z3[dMB08] satisfiability-
modulo-theories (SMT) solver.

A type system is typically a tractable syntactic method for proving the absence of certain program
undesired behaviors by classifying phrases to the kinds of values they compute[Pie02]. Type systems are a
powerful (and nowadays natural) way of reasoning about programs and calculating a static approximation
of its runtime behavior. They can be used to detect errors (the static type-checking allows early detection
of programming errors) and improve abstraction, documentation (a typed program is more easily to read
than a non-typed) and efficiency (some optimizations can be implemented using the type information).

Testing has shown to be a very powerful tool to find and correct bugs in large scale software develop-
ment. Unit testing and different Extreme Programming[BA04] approaches are used in many industrial
projects. Nevertheless, a very important amount of commercial software products reach the public with
several bugs or the testing process takes a significant amount of resources and time. Testing shows the
presence, not the absence of bugs (Edsger W. Dijkstra).

11

12 CHAPTER 1. INTRODUCTION

Certainly, program verification is still far from replacing manual testing. One of the techniques to
accomplish it relies on the design-by-contract approach[Mey91]. It establishes that all software designers
must define a formal and verifiable specification (also called contract) for the components that they are
building. Besides from program verification, contracts are very useful to generate (and check) documen-
tation. In Section 1.2 we will show the current state-of-the-art of program verification.

1.1 What this thesis is about

This thesis deals with the problem of verifying modular programs with the goal of enforcing some par-
ticular properties in runtime. We start researching on the language design and verification of modular
object-oriented programs. This kind of programs have the benefit of scalability and the ability of changing
a module implementation without any impact on the client. If we want to have a manageable verification
process, we cannot afford to re-examine every module. That is why in modular program verification
each module can be verified individually and then the specification is available for other client modules.
Apart from being modular, we are also interested in verifying heap-manipulating programs; adding the
challenge of finding the right level of abstraction to reason about them.

The property we have studied is acyclicity of objects. By this we mean that there will not be a cycle
in runtime generated with the objects that it reaches. Linked-lists and trees constitute typical examples
of acyclic data structures. The benefits of acyclic data structures are that:

1. Acyclic data structures can be garbage collected automatically using reference counting, which
is a predictable garbage collection techniques. This property is very important in real time and
embedded environments, where resource constraints require predictability of response times and
available resources[CKP+08]. This idea is illustrated by the iPhone Memory Management[App09]
(that uses the Objective-C language[Koc03]).

2. Loops that traverse acyclic data structures can be easily shown to terminate (if it is proven to
progress). When analyzing the termination of a loop, if it iterates over an acyclic data structure,
it will eventually reach the last element of the structure and terminate.

A garbage collection algorithm is in charge of keeping track of the memory used by a program and
automatically releasing the locations that are not being used. Almost all the modern program execution
environments rely on a garbage collection module. The algorithms can be divided into reference counting
and tracing. A reference counting algorithm counts the amount of references that point to each object
and when it gets to zero, the object can be deallocated. An execution system that implements a tracing
algorithm takes a whole process to analyze the memory and release the locations that are unreachable.
The reference counting approach is much more predictable than the tracing, since the memory analysis of
the tracing can be executed at any time, putting at risk the execution time of the operations. However,
reference counting has some disadvantages that limit its use in mainstream environments:

• The storage overhead that comes from keeping a count for each object.

• The execution overhead because of updating the reference count for each pointer operation.

• The inability to detect cycles (which is probably its greatest weakness). The reason for this is that
a reference count of a cyclic object will always be greater than zero, and therefore it will never
be deleted. It requires the programer to break cycles explicitly in the code or the use of a tracing
algorithm to deal with cycles.

Figure 1.1 illustrates the cyclic problem in reference counting. r is one of the program root objects
and the nodes in the gray area produce a cycle. In Figure 1.1a, r reaches the cyclic nodes. When
it does not reach them anymore (in Figure 1.1b), the gray area should be deallocated, because its
objects are not reached by any of the program roots (in this case r). However, the reference count
of those objects is greater than zero (since they are strongly connected) and will not be deallocated.

The contributions of this thesis are:

1.2. RELATED WORK 13

r

(a) Before

r

(b) After

Figure 1.1: Memory garbage cycle example

• The formal definition of a language that enforces acyclicity

• The proof of soundness of the language

• A tool that statically checks the programs using a translation to Boogie[Lei08b]

1.2 Related Work

Program verification (as we know it) was first introduced by Floyd[Flo67] and Hoare[Hoa83]. They
presented a formal system that consists of a set of axioms and inference rules which can be used in
proofs of properties of computer programs. The central contributions of this system is the Hoare logic,
which is based on triples and describes how the execution of a piece of code changes the state of the
computation. The initial implementations were formalized from small procedure-oriented programming
languages. Since those days, there’s been plenty active work in the area trying to apply the program
verification concepts into the modern object-oriented programming languages. This section provides a
summary of the related work in the research of object-oriented programs verification.

Spec#[BLS04] is one of the most important works in verification of object-oriented programs. It is
built as an extension to the popular C# language[HWG03]; supporting pre/post conditions, specification
of abstractions, non-null types and loop invariants. It also includes support to the whole .NET Framework,
in order to increase the adoption of the language. The verification is performed by translating the Spec#
code into BoogiePL. We will go deep into BoogiePL translations in Chapter 5. Some of its ideas were
taken for the Code Contracts support in C#4[Mic09a], which offers a design-by-contract programming
methodology using static methods and decorations natively.

The Java Modeling Language (JML)[LBR99] is a behavioral interface specification language designed
to specify Java modules. It allows to add explicit annotations for the module’s clients. JML is also being
used by specific purpose tools for verification and memory consumption.

The Extended Static Checking for Java (ESC/Java)[FLL+02] is a tool that tries to find common
programming errors statically. It uses code annotations and tries to find inconsistencies between the
design and the actual code implementation. ESC/Java design tries to trade-off soundness and usefulness
to reduce the annotations cost and to improve performance. In practice, users have complained that the
amount of annotations needed is heavy and that it throws too many false warnings.

The Java Type Annotations Specification[Ern08] is an extension that allows annotations to appear
in almost all the uses of a type. Those annotations can be written in unusual locations, such as generic
types arguments. One of its benefits is that it is planned to be part of the Java 7 language, allowing
a native support for annotations. Then, any type-checking tool can detect errors using the information
provided by the programer.

There are some works that try to deal with the acyclicity problem. Shape Analysis[SRW02] concerns
the problem of determining invariants of programs that manipulate dynamically allocated storage. Using
the shape graph, it might be possible to analyse the acyclicity. Another approach is to use memory
regions[LP04]. Even though this approach has shown its high points, it introduces a programming style
for that purpose. In our work, we try to solve the acyclicity problem using the style that is used in a
standard object-oriented verification language.

14 CHAPTER 1. INTRODUCTION

Another interesting approach to make static verification in the memory graph is using Ownership
types[CPN98]. This provides a flexible way of restricting the visibility of object references and relations,
enforcing object encapsulation statically. It introduces the concepts of owner (which controls the access
to an object) and a representation (the objects owned by an object). The idea is that an object can
own subobjects it depends on, preventing them to be accessible from the outside. Ownership can also
guarantee acyclicity by enforcing a tree data structure. This is a more restrictive approach than the one
that we will present in this thesis, because we allow any kind of acyclic data structures.

In Section 2.2 we present the related work regarding the Dynamic Frames style, which is a very
interesting approach to modular program specification. We will present the motivation and solution,
including the experimental languages that have been implemented by different authors.

1.3 Thesis Structure

Chapter 2 introduces the framing problem when specifying and verifying object-oriented programs and
how to deal with it. With that goal in mind, we describe the dynamic frames approach from its motiva-
tions, up to the prototypes that illustrate the concept.

Chapter 3 goes deep into understanding what it means when we say that a reference is acyclic and
how difficult it is to verify it. We will see that acyclicity cannot be expressed with a first-order logic
formula and, therefore, should be guaranteed by construction instead.

Chapter 4 presents the simple language that we will use throughout this thesis. We will present
the syntax (which is similar to the one of a simple Java-like language), the interesting features that we
are supporting and the dynamic and static semantics. Then we define the formalism for verifying the
execution properties that we are interested in and we prove that it guarantees the acyclicity of references.

Chapter 5 takes the formalism defined in Chapter 4 and the related work in program verification
in order to put into practice our language. It starts with the background work in which we base the
implementation and we go over all the details of the translations from our language into the verification
one. The chapter ends with the experiments we have done and the analysis of its results.

Finally, Chapter 6 presents the conclusions and contributions of this thesis, and discusses what areas
of future work it opens.

Chapter 2

Dynamic Frames

When verifying modular programs, one of the critical aspects is how to specify the area of the memory that
a method can access, which is called the framing problem[LLM07]. This chapter presents an introduction
of one of the alternatives to deal with that problem and the related work in the subject. Most of the
approaches are based on the dynamic frames style introduced by Ioannis Kassios [Kas08, Kas06].

2.1 Overview

Abstraction[LG86] is one of the central concepts when designing and programming object-oriented pro-
grams. This means that the details about how a class (or method) is implemented can be suppressed,
and an implementation can be replaced by any other respecting the same expected behavior without
affecting the overall result. One possible solution is to create an abstraction that exposes the method’s
specification that separates the way it is implemented internally. The same notion applies to the way
in which a class is structured with regards to its internal data (which is called data abstraction). Data
abstraction is a methodology that enables us to isolate the data that a class exposes from how it is inter-
nally constructed. Therefore, programs should operate over abstract data, without making assumptions
on how each component is implemented [AS96].

However, one of the obstacles of applying abstraction is the framing problem[LLM07]. A method’s
frame expresses what it is allowed to change during its execution, in other words, the part of the state
that it operates upon. Without it, a specification will not be very useful. Let’s take a look at an example
of this problem in an abstract manner1. Suppose we have a square shape with two operations:

• paint(color), with the following contract: “After the method call, the square will be painted ac-
cording to the color given as a parameter”

• move(dir), with the following contract: “After the method call, the square will be moved according
to the direction given as a parameter”

Then consider the execution sequence “paint(white);move(right)” illustrated in the following figure:

paint(white); move(right);

The final outcome was not the expected, right? The square’s color should be white, not black. The
problem is that from move(right) we can only conclude that the square will be moved to the right, but
it does not say anything about the color preservation.

1Example taken from http://pm.ethz.ch/teaching/ws2006/SemSpecVer/slides/Dynamic_Frames.pdf

15

http://pm.ethz.ch/teaching/ws2006/SemSpecVer/slides/Dynamic_Frames.pdf

16 CHAPTER 2. DYNAMIC FRAMES

The same problem occurs when verifying a program. Kassios solution for the framing problem consists
of using dynamic frames[Kas06]: a specification variable that represents a set of memory locations and
is used to specify the effect of methods in an abstract matter. A specification variable is an abstract
representation of the state that is exposed to the client, but is not taken into account at runtime.
Dynamic Frames provides an interesting style to describe classes in which an object is implemented in
terms of another (will be shown with some examples in the rest of the section). It brought a more
powerful style to specify modular classes, and still is amenable to use in the current verifiers.

We will continue the explanation using some code examples.

class Ce l l {
var value : I n t e g e r ;
var f o o t p r i n t : Set<Object>;

Ce l l ()
ensures getValue () == null ;
ensures f o o t p r i n t == {} ;

{
value := null ;
f o o t p r i n t := {} ;

}

method getValue ()
returns (r : I n t e g e r)

ensures r == value ;
{

r := value ;
}

method setValue (I n t e g e r newValue)
modifies f o o t p r i n t ;
ensures getValue () == newValue ;
ensures f o o t p r i n t == {newValue } ;

{
value := newValue ;
f o o t p r i n t := { value } ;

}
}

(a) The Cell class

method main () {
Ce l l c1 = new Ce l l () ;
c1 . setValue (1) ;

Ce l l c2 = new Ce l l () ;
c2 . setValue (2) ;

assert c1 . getValue () == 1 ;
}

(b) Client program

Figure 2.1: A simple dynamic frames specified class with its client program

Figure 2.1a shows a simple Cell class source code. The Cell class has an explicit footprint field which
is a set of memory locations that specifies its frame. The setValue method modifies what value references.
However, if we explicitly specify it, we will expose Cell’s internal representation. Therefore, using the
footprint it maintains the information hiding and allows the programer to specify the contracts in an
implementation independent way. The modifies clause of the contract frames the objects on which the
method is allowed to have an effect, apart from allocating and modifying new objects. If the modifies
expression is a footprint, it means that the method can change the object that it includes. On the other
hand, if the modifies clause is not defined, the method is side-effects free.

Let’s informally follow the execution of the client program from Figure 2.1b. The first statement
(Cell c1 = new Cell()) does not modify any living object (since the modifies clause is not defined)
and ensures that c1’s footprint is empty. Then, the c1.setValue(1) statement only modifies the loca-
tions in c1 pre state and ensures that c1.getValue() is 1. Following that, it executes an allocation
(Cell c2 = new Cell()) that creates a new empty footprint for c2. c2’s footprint is disjoint from c1’s be-
cause the allocation statement creates an object that was not allocated before the execution of the object

2.2. IMPLEMENTATIONS BASED ON DYNAMIC FRAMES 17

(also called fresh object). That is why the next statement c2.setValue(2) does not affect c1. footprint
(and, in consequence, c1.getValue()), concluding that assert c1.getValue() == 1 will be valid.

class Node {
var f o o t p r i n t : set<Node>;
var next : Node ;

function Valid () : bool
{

this in f o o t p r i n t &&
(next != null ⇒ next ∈ f o o t p r i n t &&

(next . f o o t p r i n t ⊆ f o o t p r i n t) &&
next . Val id ()

)
}

method I n i t ()
modifies this ;
ensures Valid () ;

{
next := null ;
f o o t p r i n t := { this } ;

}

method Prepend (f i r s t : Node)
requires Valid () && f i r s t . next == null ;
ensures f i r s t . Val id () ;
ensures f i r s t . f o o t p r i n t == { f i r s t } ∪ f o o t p r i n t

{
f i r s t . next := this ;
f i r s t . f o o t p r i n t := { f i r s t } ∪ f o o t p r i n t ;

}
}

Figure 2.2: Node class representing a linked-list. It requires the first .getNext() == null for simplicity
in the explanation.

Up to this point we have not seen clearly the dynamic property of the dynamic frames. The Node
class in Figure 2.2 represents a linked-list with a prepend method that connects the parameter node with
the list. The Valid function works as an explicit class invariant that enforces the state of the footprint
(the footprint of a node must include the footprint of all the nodes found following the next field). Then,
when executing prepend(first), first ’s footprint grows because it is connected to the rest of the list.
In other words, prepend(first)’s frame change dynamically during the execution of the program. Notice
that the programer must update the footprint manually, both in the specification and method body. This
has the disadvantages of making it more difficult to write a program and it relies on the programmer
to produce a correct specification. A part of our work (mostly in Section 4) consists of automating the
operations over the footprints.

2.2 Implementations based on Dynamic Frames

This section presents the different works related to implementing a language following the dynamic frames
style in different scenarios.

Dafny[Lei08a] is an experimental language created by K. Rustan M. Leino that explores the dynamic

18 CHAPTER 2. DYNAMIC FRAMES

frames style of specifications in an object-based sequential setting. Both Figures 2.1 and 2.2 are written
in Dafny language. Some of its features are:

• It is a very simple object-oriented language (similar to Java) that supports method specification
using dynamic frames.

• Needs to explicitly specify the effects on the footprint

• Supports complex predicates (like the Valid function in Figure 2.2).

This work is described in Section 5.1.3 since the implementation we proposed is build upon Dafny’s
base.

SJava[SJPS08] is a small Java-like language that does not support features such as exceptions and
multithreading. One interesting aspect of this work is that it includes inheritance. It extends regular
Java so that it supports contract specification and specification variables for dynamic frames. The verifier
is build based on the Spec# program verifier and it uses the Z3 and Simplify theorem provers[dMB08].

Another work presented the notion of Implicit Dynamic Frames[SJP09]. It proposes a variant of the
dynamic frames style inspired by separation logic[PB08]. This approach eliminates the need to explicitly
write and check frame annotations, like in the other implementations. The solution consists of specifying
in a contract the accessibility to the memory locations that a method is intended to read or write.
This work shows a significant difference with regards to the others because it separates completely the
implementation from the specification of the effects in the memory.

Chalice[LM09, LMS09] is a language and program verifier that detects bugs in concurrent programs by
verifying the absence of data races and deadlocks. The implementation is built on top of Implicit Dynamic
Frames to specify access of a method over a memory location using fractional permissions[Boy03]. This is
an example of how to leverage the concept of dynamic frames to solve other problems. VeriCool[SJP08]
implements a similar approach.

Chapter 3

Dealing with acyclicity in an
Object-Oriented language

In Chapter 1 we discussed why we are interested in guaranteeing acyclic references. This chapter studies
how to enforce this property.

Given a programming language that supports contract specification, we need to provide means to
enforce acyclicity. One way is to extend its type system, axioms and formal specification to statically
verify that all acyclic annotated references are acyclic. In the code of Figure 3.1 we present a simple
Node class with some client methods. Look at its declaration: acyclic class Node. The acyclic qualifier
defines the class to be acyclic. The link method connects its first Node parameter with the second
(n1.setNext(n2)). Then, the last line of the testCycle method invokes the link method, which would
create a cycle between someNode and someOtherNode. That statement should throw an error, since it
breaks the acyclicity of both objects. This does not happen in testAcyclic, where the final Node structure
is acyclic.

acyclic class Node
{

private Node next ;

public Node getNext ()
{ return next ; }

public void setNext (n : Node)
{ next = n ; }

}

method l i n k (n1 : Node , n2 : Node)
{

// . . .
// some code
// . . .

n1 . setNext (n2) ;
}

method t e s tCyc l e ()
{

Node someNode = new Node ;
Node someOtherNode = new Node ;

l i n k (someNode , someOtherNode) ;
l i n k (someOtherNode , someNode) ;

}

method t e s t A c y c l i c ()
{

Node someNode = new Node ;
Node someOtherNode = new Node ;
Node f ina lNode = new Node ;

l i n k (someNode , someOtherNode) ;
l i n k (someOtherNode , f ina lNode) ;

}

Figure 3.1: testCycle shows a program that produces a cycle and testAcyclic produces an acyclic list

Our first idea to solve this problems was to think of the acyclicity as a class invariant. A class
invariant[HK00] expresses which states of an object of the class are consistent or legal. When updating
an object, we need to be sure that its invariant holds. In practice, a method requires that the invariant

19

20 CHAPTER 3. DEALING WITH ACYCLICITY IN AN OBJECT-ORIENTED LANGUAGE

holds as a precondition and ensures it when returning. In our case, we can generate an isAcyclic predicate
for each class expressing that it is acyclic. Then, all the method’s specifications would implicitly include
this. isAcyclic () for all the references in the requires and ensures clauses. Moreover, this approach would
enable to break the acyclicity inside a method body and reestablish it before returning. Figure 3.2
presents this idea. In line 6 a cycle is generated between node and its successor. Then, before returning
from the method (in line 12) the acyclicity is reestablished, verifying the ensures clause node.isAcyclic().

method r e e s t a b l i s h i n g A c y c l i c i t y (node : Node)
requires node . i s A c y c l i c () ;
ensures node . i s A c y c l i c () ;

{
node . setNext (new Node ()) ;

6 : node . getNext () . setNext (node) ;

// . . .
// more method code
// . . .

12 : node . getNext () . setNext (null) ;
}

Figure 3.2: Breaking the acyclicity and restoring it before the method returns

Despite the fact that the invariant approach seems natural and would be the classic approach using
C#[BLS04] or JML[LBR99], we came across with a difficulty. The acyclicity predicate is not expressible
in first order logic! In consequence, approaches based in SMT solvers would not work (since we cannot
write the acyclicity invariant for the classes). Let’s show why this happens. First of all, we need to recall
the Compactness Theorem.

Compactness Theorem. Let Γ be any set of formulas of first-order logic. Then:

• If ∀ Γ0 finite, Γ0 ⊆ Γ,Γ0 is unsatisfiable ⇒ Γ is unsatisfiable.

We want to prove that there does not exist a formula IsAcyclic(x), with a free variable x, so that
M |= IsAcyclic[v] ⇔ not exists a1, ..., an ∈ [M] such that a1 = v(x) and RM(an, aj) and RM(a1, a2)
and ... and RM(an−1, an) for any j ∈ {1, ..., n}. R is a symbol that represents a binary relation, in our
case a reference reachability.

Lets assume that IsAcyclic(x) is expressible. In that case, the formula ¬IsAcyclic(x) is true in a
model iff exists a finite cycle from x. That is, for some i, Acyclici is true, where i ∈ {1, ..., n}.

Acyclic0(x) ≡ ¬R(x, x) (there is no cycle of length 0)
Acyclic1(x) ≡ ¬(∃y1, y2)(x = y1 ∧R(y1, y2) ∧ y2 = y1)
Acyclic2(x) ≡ ¬(∃y1, y2, y3)(x = y1 ∧R(y1, y2) ∧R(y2, y3) ∧ (y3 = y1 ∨ y3 = y2)

...
Acyclicn(x) ≡ ¬(∃y1, y2, ..., yn)(x = y1 ∧R(y1, y2) ∧R(y2, y3) ∧ ... ∧R(yn−1, yn)

∧ (yn = y1 ∨ yn = y2 ∨ ... ∨ yn = yn−1)

Let c be a constant. Consider Γ = {¬IsAcyclic(c), Acyclic0(c), Acyclic1(c), ...}.

Fact 1 Γ is unsatisfiable. If it were satisfiable then, for some model M, M |= Γ. In particular, M |=
¬IsAcyclic(c), which implies that
cMhas a cycle of length κ, and therefore M 6|= IsAcyclicκ(c),but IsAcyclicκ(c) ∈ Γ

3.1. ENFORCING ACYCLICITY BY CONSTRUCTION 21

Fact 2 Γ is satisfiable. Let Γ0 be finite so that Γ0 ⊆ Γ. Therefore, for some m Γ0 ⊆ {¬IsAcyclic(c),
Acyclic1(c), Acyclic2(c), ..., Acyclicm(c)} = Γ1

Let’s show that Γ1 is satisfiable. Take any model M where cM is cyclic in more than m steps.

c

R R

R

R
m + n, n > 0

Since Γ0 ⊆ Γ1,Γ0 is satisfiable too. By Compactness, Γ is satisfiable.

From Fact 1 and Fact 2 we get a contradiction, which comes from assuming that IsAcyclic is
expressible in first-order logic.

In conclusion, we were not able to implement our first approach. Our second idea was to enforce
acyclicity by construction, that is guaranteeing that after the execution of each statement, the acyclic
objects are acyclic. This imposes some constrains on the programs that we will support, for instance the
one from Figure 3.2 will fail, no matter if the acyclicity is reestablished at the end of the method, since
the acyclic objects should always be acyclic.

3.1 Enforcing acyclicity by construction

Type qualifiers[FFA99] encode a simple but highly useful form of subtyping. Since it is a declarative way
to add properties to a type, we implemented an acyclic type qualifier to identify the classes whose objects
should be acyclic.

Then we chose to enforce acyclicity by construction. One of the decisions we made is how to reason
about the memory. In chapter 2 we presented how Dynamic Frames approaches the framing problem
by introducing a specification variable whose value is a set of allocations. [Lei08a] and [SJPS08] refer to
that variable as footprint, implementing and maintaining it in different ways. The footprint of a method
specifies an upper bound of the memory locations that it reads or writes.

We took the footprint concept and specialized it to allow finer grained specifications about the state of
the memory. Instead of using just a set, we implement footprints as a multiset of references that specify
the memory locations that can be reached from any given reference, in particular from how many simple
paths1 it can be reached.

Definition 1. Given ref1, ref2, ref1.footprint[ref2] returns the number of different simple paths from
ref1 to ref2 (where the paths are defined by the object’s fields)

Node 1 Node 2
field1

Node 3

field2

field3

Figure 3.3: An acyclic example

The footprint of an object a with respect to another object b counts how many ways a can reach to
b. In Figure 3.3 we can see that:

• node1.footprint[node1] == 1 since the reference is only reachable from itself

• node1.footprint[node3] == 2 since node3 can only be reached from node1 through node2. node2
reaches node3 from both field2 and field3, so its footprint value is 2

22 CHAPTER 3. DEALING WITH ACYCLICITY IN AN OBJECT-ORIENTED LANGUAGE

Node 1 Node 2
field1

Node 3
field2

field3

Figure 3.4: A cyclic example

In Figure 3.4 we can see that:

• node3 generates a cycle because its connection to node1

• node1.footprint[node1] == 2 since the reference can also be reached from node1 → node2 →
node3→ node1

It is worth mentioning that when a reference’s footprint value for itself it is greater that 1, we are in
the presence of a cycle. This concept will be used later in Chapter 4 when we will present the semantics
of our language.

Definition 2. An Acyclic Type Qualifier defines a type such that:

1. All its fields are acyclic qualified

2. Verifies the allocation, assignment and invariant conditions defined in as follows:

Allocation Conditions

When a new object of an acyclic type is allocated, we need to initialize its footprint in order to ensure
that the object is fresh. Figure 3.5 illustrate how the memory changes after the allocation is executed.

o

after allocation

Figure 3.5: Memory changes after allocation

On the left there is the heap memory with some objects already allocated and on the right we can
see the effects of allocating an object (o is a reference to it). Notice that:

• The previously allocated objects do not reach o

1Counting simple paths works fine with acyclic data structures. However, in the presence of cycles we need to take some
special considerations that are left for future work.

3.1. ENFORCING ACYCLICITY BY CONSTRUCTION 23

• o can only reach itself

More formally, the effect on the footprint after the allocation of a new object (referenced by o) is2:

(∀ r : Ref)(r 6= o ⇒ o.footprint [r] = 0) ∧
(∀ r : Ref)(r 6= o ⇒ r .footprint [o] = 0) ∧

o.footprint [o] = 1

Assignments Conditions

When we write a field, we need to take some precautions, since the operation may create a cycle. That
is why before executing an acyclic assignment “o.f = d”, we need to require that the target object (d)
does not reach the receiving one (o). Figure 3.6 shows an acyclic memory state and how an assignment
generates a cycle.

do do
after assignment

Figure 3.6: An assignment that generates a cycle

In order to prevent this case, before an assignment we need to require that:

d .footprint [o] = 0

In order to verify that the assignments do not generate cycles, we need to correctly model the effect
of those assignments in the footprint. Potentially, the footprint of all references may be affected, so we
need to provide a granular specification. Figure 3.7 illustrates the effect on the memory after executing
“o.f = d”. Notice that not only o ends up reaching d, but also a and b (since those objects also reach o).

a

b o

a

b o d
after assignment

Figure 3.7: Memory changes after a field assignment

More formally, the changes in the footprint after “o.f = d” are:

• If o.f was previously assigned, it will be removed from the footprint of objects that reach o

((old(o).f 6= null ∧ d = null)⇒ ((∀ r1, r2 : Ref)(r1.footprint[o] > 0⇒
r1.footprint[r2] = old(r1).footprint[r2]− old(o).f.footprint[r2])))

• Not only d, but also all the objects that d reaches are added to the footprint of the objects that
reach o

((old(o).f = null ∧ d 6= null)⇒ ((∀ r1, r2 : Ref)(r1.footprint[o] > 0⇒
r1.footprint[r2] = old(r1).footprint[r2] + d.footprint[r2])))

2This predicate does not express that the footprints where o is not present have the same value as before the allocation
execution. The complete formal definition will be presented in Chapter 4

24 CHAPTER 3. DEALING WITH ACYCLICITY IN AN OBJECT-ORIENTED LANGUAGE

• If o.f was previously assigned and d is not null, the effect is defined using the former cases

((old(o).f 6= null ∧ d 6= null)⇒ ((∀ r1, r2 : Ref)(r1.footprint[o] > 0⇒
r1.footprint[r2] =

old(r1).footprint[r2]− old(o).f.footprint[r2] + d.footprint[r2])))

Footprint invariant for acyclic qualified types

Each acyclic qualified type has an implicit invariant that characterizes its basic structure in the heap,
in terms of the reachability of the living objects. An object footprint is the specification variable that
represents that structure. Therefore, the footprint invariant should check:

1. The footprints do not include null, since it does not point to any object

2. The reference reaches itself only once, otherwise it will present a cycle (illustrated in Figure 3.4)

3. For each (non-null) field in the reference type:

• The reference reaches the field at least once

• The field’s footprint is a subset of the reference’s footprint

• The field preserves the footprint invariant

More formally, the footprint invariant can be considered as the following axiom:

(∀o : Ref)(FootprintInvariant(o)⇔ (o.footprint[o] = 1 ∧
o.footprint[null] = 0 ∧
(∀ field : Field)

(o.footprint[o.field] ≥ 1 ∧
o.field.footprint ⊆ o.footprint ∧
FootprintInvariant(o.field))))

It is worth mentioning that in this last predicate there is an universal quantification over the fields.
As a matter of fact, this predicate can be auto-generated for each class because the field members are
fixed in compile time in our language.

Chapter 4

A language that enforces acyclicity

In Chapter 3 we discussed the difficulties of expressing acyclicity in a first order formula using a SMT
solver and the proposed solution: enforcing acyclicity by construction.

This chapter formally presents a language that supports acyclic type qualifiers. We will show a compre-
hensive definition, including the language grammar, the first order logic (for the contract specifications)
and the semantics.

We should also take into consideration that as our programs get larger, the amount of specification
predicates needed in the method’s contract becomes difficult. For that, the semantics definition enforces
the constraints in order to avoid the explicit declaration of acyclicity conditions in the contracts. We also
include macros for some predicates.

4.1 Syntax

The syntax of the language that will be used throughout this section is defined in Figure 4.1. It is a
simple object-oriented language, with the following properties:

• Provides the level of Object-Orientation that can be found in a limited Java language (we are not
supporting inheritance and polymorphism)

• Includes contract specifications based on Dynamic Frames

• Supports the acyclic type qualifier that enables the programer to specify an acyclic type.

• Defines an implicit footprint member in all classes. Recalling Section 3.1, we have decided to express
the reachable objects using a multiset footprint. Some other experiments[Lei10] have shown that
this level of granularity provides a flexible and simple specification.

For the sake of simplicity, we are not supporting primitive types (such as integers or booleans). In
case of needing those types, the programer can define them as explicit classes. This will help us to present
more clear formal definitions and proofs; without losing expressibility (the programer can implement an
integer class).

We are not going to define in detail the type system (which is similar to Dafny’s[Lei08a]) and it is
assumed that all the programs used when defining the semantics type successfully.

The expression of the conditional is a reference, instead of using a boolean. If the reference is non-null,
the true statements are executed. Otherwise, the execution continues with the false case.

We do not implement the while control flow statement in order to simplify the semantics. However,
it can be implemented using recursion and conditionals.

Methods include contracts with pre and post conditions predicates, like in Eiffel[Mey92], JML[LBR99]
and Spec#[BLS04]. If a method contract cannot be proven, the programer will get an error from the

25

26 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

verifier. We have defined a first-order logic to express those predicates, which is shown in Figure 4.2.
The precondition (Exprrequires) refers to the execution state before the method invocation using the free
variable Spre and the postcondition (Exprensures) can refer to the state after and before it using the free
variables Spre and Spos respectively (for example, it may use the value of a field before the method was
executed).

As we have discussed in Chapter 2, an important part of a method contract is to specify what parts
of the state it modifies (the framing problem). This part is expressed in the modifies clause. We allow a
method to modify a single object or all the objects included in a multiset.

Program ::= Class∗

Class ::= acyclic class ClassName {Member∗} |
class ClassName {Member∗}

Member ::= Field | Method
F ield ::= var id : ClassName

Method ::= method Id(Param∗) returns (Param) Spec∗ { Stmt }
Param ::= id : ClassName
Stmt ::= Expr := Expr

| id := new Type
| if (Expr){Stmt} else {Stmt}
| id := Expr.Id(Expr∗)
| Stmt;Stmt
| skip

Expr ::= id | this | null | id.f | this.f
Exprmod ::= id | this | id .footprint | this.footprint

Spec ::= requires Exprrequires; | modifies Exprmod
∗; | ensures Exprensures;

Figure 4.1: Our programming language. The expressions of the requires and ensures clauses are the
formulas presented in Figure 4.2.

To understand the grammar and method’s specification, in Figure 4.3 we show a typical linked-list
acyclic data structure. In that program the reader can find that:

• The setFirst method precondition requires that node does not reach the list, because otherwise it
would create a cycle after the execution.

• The setFirst method postcondition states that this.first == node. Notice that we do not specify
the effect on the resulting footprint, because of the footprint invariant (definition 2).

4.2 Dynamic Operational Semantics

The presentation of the semantics is inspired in [DVE00]. First of all we will introduce the program state
in Figure 4.4.

The smallest elements of the state are objects and references. An object represents an instance of a
class C and is noted � f1 : ι1, ..., fn : ιn �C. fi are the fields defined in the class C. The footprint is a
special field (named Footprint). Each field value holds a reference. A reference (named ι, ιi, κ, κi) is a
link to an object and null is a special reference that does not point to any object.

The Store (named σ) is a partial mapping of references to objects. The mapping function is injective
(i.e., ref1 6= ref2 ⇒ σ(ref1) 6= σ(ref2)).

Definition 3. Given an object obj =� f1 : ι1, ..., fn : ιn �C of class C and a store σ, the operations over
the objects and stores are defined as:

4.2. DYNAMIC OPERATIONAL SEMANTICS 27

Sorts

Store | Ref | Num | Field

Terms

storeRead(tS , tr, tf) : Ref tS is Store, tr is Ref , tf is Field

0̄ : Num

1̄ : Num

t1+̇t2 : Num t1, t2 are Num

t1−̇t2 : Num t1, t2 are Num

footprint(tS , tr, t′r) : Num tS is Store, tr is Ref , t′r is Ref

null : Ref

this : Ref

Formulas

alive(tr, tS) tr is a Ref , tS is a Store

isAcyclicQual(tr) tr is a Ref

tr == t′r | tr 6= t′r tr and t′r are Ref

t1 == t2 | t1 6= t2 | t1 < t2 | t1 > t2 t1 and t2 are Num

¬F | F1 ∧ F2 F, F1, F2 are formulas

∀x • F x is a Ref , F is a formula

∀tS • F tS is a Store, F is a formula

Macros

S(o.f) ≡ storeRead(S, o, f)

new(Spre,Spos, x) ≡ ¬alive(x,Spre) ∧ alive(x,Spos)

Figure 4.2: Formation rules of the terms and formulas of the first order logic used to specify the
method’s contracts. S(o.f) is a macro for the storeRead term and returns the value of o.f . alive returns
whether the instance is alive in the current store (if the parameter is null, the function returns true).
new(Spre,Spos, x) is a macro for ¬alive(x,Spre) ∧ alive(x,Spos) and returns whether the reference is a
new fresh object. isAcyclicQual returns if the reference’s type is acyclic qualified.

28 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

acyclic class Node {
var next : Node ;

}

acyclic class L i s t {
var f i r s t : Node ;

method s e t F i r s t (node : Node)
requires node 6= null ∧ storeRead (Spre, node , next) == null ;
// Prevent a c y c l e between t h i s and node
requires footprint(Spre, node , this)== 0 ;
// The method ’ s frame i s the f o o t p r i n t o f t h i s
modifies this . footprint ;
// S p e c i f y the expec ted e f f e c t o f the method
ensures storeRead (Spos, this , f i r s t) == node ∧

storeRead (Spos, node , next) ==
storeRead (Spre, this , f i r s t) ;

{
node . next := f i r s t ;
this . f i r s t := node ;

}
}

Figure 4.3: Code sample showing the use of the grammar

Store ::= Ref → Object
Object ::= � (Field : Ref)∗ �ClassName

Ref ::= ι | null
Env ::= id→ Ref

Figure 4.4: Program state

4.2. DYNAMIC OPERATIONAL SEMANTICS 29

obj(fi) = ιi

obj[f 7→ κ](f′) =
{
κ if f′ = f
obj(f′) otherwise

σ(ι, f) = σ(ι)(f)

σ[ι 7→ z](ι′) =
{

z if ι′ = ι
σ(ι′) otherwise

σ[ι, f 7→ κ] = σ[ι 7→ σ(ι)[f 7→ κ]]

typeof(� ...�C) = C

Env is a partial mapping of local variables (or identifiers) to references. The identifiers will be named
v, vi.

The program state is defined with a 3-tuple < σ, env, this >, where σ is a store, env is the environment
and this is a reference; such that Img(env) \ {this} ⊆ dom(σ). In other words, each variable in the
environment has to be associated with an object in the store.

The program’s semantics is modeled using the following runtime mappings:

Configurationstmt ::= Stmt× (Store× Env ×Ref)
Configurationexpr ::= Expr × (Store× Env ×Ref)

; : Configurationstmt → (Store× Env)
e
; : Configurationexpr → Ref

Configurationstmt is a tuple of statements (the ones defined in Figure 4.1), stores, environments and the
context this reference1. Likewise, Configurationexpr defines the semantics of the expressions execution.
The expression will be named e, ei.

A big step semantics (i.e., the one that describes the final outcome of the execution of a statement) is
better suited for our purposes, because it helps to analyze this semantics with regards to the static one
(see Section 4.5).

We will present the dynamic semantics using an iterative approach: we begin with a reduced Java
language and refine its semantics incorporating dynamic frames first and acyclicity constrains later.
Figures 4.5 and 4.6 define the semantics of the first basic language.

Most of the rules of this section are quite standard. Rule d call of Figure 4.6 defines how to
execute a method call (v := e0.m(e1, ..., en)). Since we implement a big step semantics, first we execute
the statements of the method’s body with the appropriate this reference, the initial σ store and a new
environment that maps the parameter names to the references of the invocation. After that, the outcome
of the method call is the resulting σ′ store and the initial environment with the v variable mapping to
the value of the ret variable of the method body. Notice that we are not performing any runtime check
with the pre or post conditions. We will define how to check if a method contract fails in Section 4.3.

4.2.1 Dynamic Frames language dynamic semantics

Following the discussion on Chapter 2, here we extend the language to ensure that a method invocation
does not modify any object beyond its frame. Rule d field w 2 updates the footprints after writing an

1We do not include the reference to this in the outcome because it does not change after the execution of the statement

30 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

d v
env(v) = ι

v, σ, env, this e
; ι

d field r
e, σ, env, this e

; ι
ι is not null

e.f, σ, env, this e
; σ(ι, f)

d this
this, σ, env, this e

; this
d null

null, σ, env, this e
; null

Figure 4.5: Evaluation of expressions

d seq
stmt1, σ, env, this ; σ′, env′

stmt2, σ′, env′, this ; σ′′, env′′

stmt1; stmt2, σ, env, this ; σ′′, env′′

d if then

e, σ, env, this e
; ι

ι is not null
stmt1, σ, env, this ; σ′, env′

if (e) {stmt1} else {stmt2}, σ, env, this ; σ′, env′

d if else
e, σ, env, this e

; null
stmt2, σ, env, this ; σ′, env′

if (e) {stmt1} else {stmt2}, σ, env, this ; σ′, env′

d skip
skip, σ, env, this ; σ, env

d new
ι is fresh
σ′ = σ[ι 7→� f1 : null, ..., fn : null�C]

v := new C(), σ, env, this ; σ′, env[v 7→ ι]

d field w

o, σ, env, this e
; ι

v, σ, env, this e
; κ

ι is not null
o.f := v, σ, env, this ; σ[ι, f 7→ κ], env

d var w
e, σ, env, this e

; ι
v := e, σ, env, this ; σ, env[v 7→ ι]

d call

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; modifies Mod; ensures Post;
{ Body }

env′ = [p1 7→ ι1, ..., pn 7→ ιn, ret 7→ null]
Body, σ, env′, ι0 ; σ′, env′′

v := e0.m(e1, ..., en), σ, env, this ; σ′, env[v 7→ env′′(ret)]

Figure 4.6: Semantics of the statements execution

4.2. DYNAMIC OPERATIONAL SEMANTICS 31

object field, because we must add the paths that the new reference reaches and remove the ones from
the old value. Figure 3.7 illustrates this case. In rule d new 2 we only initialize the footprint of the
new object, explained in Figure 3.5. Finally, in Rule d call 2 we need to check if the method execution
violates its frame. First we execute the expressions of the modifies clause and then we verify that the
objects either have the same value as before executing the method or belong to the frame.

d field w 2

o, σ, env, this e
; ι

v, σ, env, this e
; κ

ι is not null
σ′ = σ[ι, f 7→ κ]
σ(ι, f) 6= null and κ 6= null implies that for all ι1, σ(ι1, Footprint)[ι] > 0

implies that σ′(ι1, Footprint) = σ(ι1, Footprint)− σ(ι, f)(Footprint)+
σ(κ, Footprint)

σ(ι, f) 6= null and κ = null implies that for all ι1, σ(ι1, Footprint)[ι] > 0
implies that σ′(ι1, Footprint) = σ(ι1, Footprint)− σ(ι, f)(Footprint)

σ(ι, f) = null and κ 6= null implies that for all ι1, σ(ι1, Footprint)[ι] > 0
implies that σ′(ι1, Footprint) = σ(ι1, Footprint) + σ(κ, Footprint)

o.f := v, σ, env, this ; σ′, env

d new 2
ι is fresh
σ′ = σ[ι 7→� f1 : null, ..., fn : null, Footprint : {ι : 1} �C]

id := new C(), σ, env, this ; σ′, env[id 7→ ι]

d call 2

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; modifies Mods; ensures Post;
{ Body }

env′ = [p1 7→ ι1, ..., pn 7→ ιn, ret 7→ null]
Body, σ, env′, ι0 ; σ′, env′′

For all emod,i in Mods, emod,i, σ, env
′, ι0

e
; ιmod,i

CheckFrame(σ, σ′, ιmod,0, ..., ιmod,n)
v:=e0.m(e1, ..., en), σ, env, this ; σ′, env[v 7→ env′′(ret)]

CheckFrame(σ, σ′, ιmod,0, ..., ιmod,n) ≡
for all ι, σ(ι) = σ′(ι) or InMod(ι, ιmod,0) or ... or InMod(ι, ιmod,n)

InMod(ι, ιmod,i) ≡
{
ι = ιmod,i if ιmod,i is Ref
ι ∈ ιmod,i if ιmod,i is Multiset

The rule d field w 2 would be very difficult to implement if we were designing the compiler for this
language. The complexity of the statement would be O(|σ|), because in worst case all the objects in
the store might be affected. We will discuss if this operation can be optimized in the static semantics
Definition 9.

4.2.2 Acyclicity-aware language dynamic semantics

The last step in the presentation of the semantics modifies Rule d field w 2 in order to prevent the
generation of cycles in an acyclic object. In Chapter 3 we analyzed that before executing a field assign-
ment, we need to check that it will not create a cycle (illustrated in Figure 3.6). For that reason, Rule
d field w 3 fails the execution of the assignment (o.f := v) if o is included in v’s footprint (which would
produce a cycle). Figure 4.7 extends the definition of the semantics, introducing Rule d field w 3.

32 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

d field w 3

o, σ, env, this e
; ι

v, σ, env, this e
; κ

ι is not null
σ(κ, Footprint)[ι] = 0
σ′ = σ[ι, f 7→ κ]
σ(ι, f) 6= null and κ 6= null implies that for all ι1, σ(ι1, Footprint)[ι] > 0

implies that σ′(ι1, Footprint) = σ(ι1, Footprint)− σ(ι, f)(Footprint)+
σ(κ, Footprint)

σ(ι, f) 6= null and κ = null implies that for all ι1, σ(ι1, Footprint)[ι] > 0
implies that σ′(ι1, Footprint) = σ(ι1, Footprint)− σ(ι, f)(Footprint)

σ(ι, f) = null and κ 6= null implies that for all ι1, σ(ι1, Footprint)[ι] > 0
implies that σ′(ι1, Footprint) = σ(ι1, Footprint) + σ(κ, Footprint)

o.f := v, σ, env, this ; σ′, env

Figure 4.7: Semantics of an allocation to prevent cycles

4.3 Failing Executions

While the operational semantics defined in the previous section represents the executions of programs
and the impact on the state, we are also interested in ensuring some properties in the state after the
operational execution. In order to prove those properties, we need to distinguish the executions that fail
from the ones that do not terminate. By failure we mean if occurs an assertion failure or if the dynamic
semantics gets stuck (because we use big step semantics, the latter includes non-termination). For that
reason, we are introducing in this section the definition of the fails predicate:

fails :: Store× Env ×Ref × (Stmt ∪ Expr)

When the fails predicate holds, it represents that the Stmt statement or Expr expression has failed.
Like in the previous one, this Section explains the definition of the function for the different kind of
languages. Before giving the definitions of the fails predicate, we need to explain how to make sure that
a method contract is valid (or not). Section 4.1 defines the details of the language syntax, specially the
first order language that expresses the predicates. Therefore, we need to define an interpretation of the
first-order language with regards to a dynamic state.

Definition 4. The following set of definitions present the interpretation of the language from Figure 4.2.

The valuation of the variables is the following:

vr : V arsRef → Ref

vs : V arsStore → Store

The interpretation of the language is:

Terms of sort Store

IStorevs,vr,this
(xS) = vs[xS]

Terms of sort Ref

IRefvs,vr,this
(xr) = vr[xr]

IRefvs,vr,this
(null) = null

IRefvs,vr,this
(this) = this

IRefvs,vr,this
(storeRead(tS , tr, tf)) = IStorevs,vr,this

(tS)(IRefvs,vr,this
(tr), IFieldvs,vr,this

(tf))

4.3. FAILING EXECUTIONS 33

Terms of sort Num

INumvs,vr,this
(0̄) = 0

INumvs,vr,this
(1̄) = 1

INumvs,vr,this
(x1+̇x1) = INumvs,vr,this

(x1) + INumvs,vr,this
(x2)

INumvs,vr,this
(x1−̇x1) = INumvs,vr,this

(x1)− INumvs,vr,this
(x2)

INumvs,vr,this
(footprint(tS , tr, t′r)) = IStorevs,vr,this

(tS)(IRefvs,vr,this
(tr), Footprint)[IRefvs,vr,this

(t′r)]

Terms of sort Field

IFieldvs,vr,this
(xf) = xf

Formulas

vs, vr, this |= alive(tr, tS)⇔ IRefvs,vr,this
(tr) is not null implies that is in the domain of IStorevs,vr,this

(tS)

vs, vr, this |= isAcyclicQual(tr)⇔ IRefvs,vr,this
(tr) type is annotated as acyclic

vs, vr, this |= tr == t′r ⇔ I
Ref
vs,vr,this

(tr) = IRefvs,vr,this
(t′r)

vs, vr, this |= tr 6= t′r ⇔ I
Ref
vs,vr,this

(tr) 6= IRefvs,vr,this
(t′r)

vs, vr, this |= t1 == t2 ⇔ INumvs,vr,this
(t1) = INumvs,vr,this

(t2)

vs, vr, this |= t1 6= t2 ⇔ INumvs,vr,this
(t1) 6= INumvs,vr,this

(t2)

vs, vr, this |= t1 < t2 ⇔ INumvs,vr,this
(t1) < INumvs,vr,this

(t2)

vs, vr, this |= t1 > t2 ⇔ INumvs,vr,this
(t1) > INumvs,vr,this

(t2)

vs, vr, this |= ¬F ⇔ vs, vr, this 6|= F

vs, vr, this |= F1 ∧ F2 ⇔ vs, vr, this |= F1 and vs, vr, this |= F2

vs, vr, this |= ∀x • F ⇔ vs, vr[x 7→ r], this |= F for all r ∈ Ref

vs, vr, this |= ∀S • F ⇔ vs[S 7→ s], vr, this |= F for all s ∈ State

As a syntactic sugar, we allow the following interpretation expressions:

σ, vr, this |= ϕ ≡ {Spre 7→ σ}, vr, this |= ϕ
{σ, σ′}, vr, this |= ϕ ≡ {Spre 7→ σ,Spos 7→ σ′}, vr, this |= ϕ

The rules for the definition of the fails predicate are close to the dynamic semantics ones. For the
executions of statements in a basic Java language, a failing execution is one in which a method contract
is violated or when we try to access an invalid object (like a null reference, a null reference in a method
invocation or an undeclared variable). We also need to make sure that the execution failure is correctly
propagated over the flow of the different statements. All those definitions can be found on Figure 4.8.

Rule f call 1 holds when the initial state does not satisfy the contract precondition. On the other
hand, Rule f call 2 holds when the resulting state does not satisfy the postcondition. And finally, Rule
f call 3 holds when the statements of the method’s body fail.

When we include dynamic frames support in the language, the modifies clause adds some constraints
that must be checked after the invocation of a method: only the references in that clause can be modified
and the footprint should be valid. Taking that into account, in Rule f call 4 from Figure 4.9 we extend
the definition of the fails predicate in order to hold:

34 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

f seq 1
fails(σ, env, this, stmt1)

fails(σ, env, this, stmt1; stmt2)
f seq 2

stmt1, σ, env, this ; σ′, env′

fails(σ′, env′, this, stmt2)
fails(σ, env, this, stmt1; stmt2)

f if 1

e, σ, env, this e
; ι

ι is not null
fails(σ, env, this, stmt1)

fails(σ, env, if (e) {stmt1} else {stmt2})

f if 2

e, σ, env, this e
; ι

ι is null
fails(σ, env, this, stmt2)

fails(σ, env, if (e) {stmt1} else {stmt2})

f null
o, σ, env, this e

; ι
ι is null

fails(σ, env, this, o.f)
f call null

id is an identifier
ei, σ, env, this e

; ιi
ι0 is null

fails(σ, env, this, id := e0.m(e1, ..., en))

f call 1

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
id is an identifier
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; ensures Post;
{ Body }

env′ = [p1 7→ ι1, ..., pn 7→ ιn, ret 7→ null]
σ, env′, ι0 6|= Pre

fails(σ, env, this, id := e0.m(e1, ..., en))

f call 2

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
id is an identifier
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; ensures Post;
{ Body }

id := e0.m(e1, ..., en), σ, env, this ; σ′, env′

{σ, σ′}, env′, ι0 6|= Post
fails(σ, env, this, id := e0.m(e1, ..., en))

f call 3

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
id is an identifier
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; ensures Post;
{ Body }

env′ = [p1 7→ ι1, ..., pn 7→ ιn, ret 7→ null]
fails(σ, env′, ι0, Body)

fails(σ, env, this, id := e0.m(e1, ..., en))

Figure 4.8: Definition of the fails predicate for a basic Java language

4.3. FAILING EXECUTIONS 35

• if a non-modifiable object changes after the invocation, or

• if the footprint state is invalid. Those conditions over the footprint are needed to enforce acyclicity
by construction (discussed in Section 3.1).

f call 4

ei, σ, env, this e
; ιi

ι0 is not null and typeof(σ(ι0)) = C
id is an identifier
C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; modifies Mods; ensures Post;
{ Body }

id := e0.m(e1, ..., en), σ, env, this ; σ′, env′

For all emod,i in Mods, emod,i, σ, env
′, ι0

e
; ιmod,i

CheckFrame(σ, σ′, ιmod,0, ..., ιmod,n) does not hold
σ, env 6|= FootprintInvariant or σ′, env′ 6|= FootprintInvariant

fails(σ, env, this, id := e0.m(e1, ..., en))

∀σ, ι • FootprintInvariant(σ, ι)⇔ (isAcyclicQual(ι) implies that
σ(ι, Footprint)[ι] = 1) and

(¬isAcyclicQual(ι) implies that σ(ι, Footprint)[ι] ≥ 1) and
(for all f field in ι, σ(ι, Footprint)[σ(ι, f)] ≥ 1 and
(for all ι1 Ref, σ(ι, Footprint)[ι1] ≥ σ(σ(ι, f), Footprint)[ι1] and
FootprintInvariant(σ, σ(ι, f))))

Figure 4.9: Definition of the fails predicate after a method invocation in a Dynamic Frames language

To finish the definition of the fails predicate, we need to add a rule that holds when a field assignment
produces a cycle. In Figure 3.6 we have shown how this statement may violate the acyclicity invariant.
The Rule f field w from Figure 4.10 completes the presentation of the rules of the fails predicate. In
Section 4.5 we will prove the soundness of the language and its semantics; showing the reasons behind
the definitions of this section.

f field w

o, σ, env, this e
; ι

v, σ, env, this e
; κ

κ 6= null and isAcyclicQual(ι) and σ(κ, Footprint)[ι] > 0
fails(σ, env, this, o.f := v)

Figure 4.10: Definition of the fails predicate for a field assignment in an Acyclicity Aware language.

36 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

4.4 Static Semantics

This section presents a Hoare-style logic for our language, allowing to define the static semantics which
will be used to verify the programs implementation. A very interesting work on this subject can be found
in [PHM99]. The first order language that we will be referring was defined in Figure 4.2.

The way to express each statement and expression is in the form of { P } Stmt { Q } triples, where
P,Q are first order formulas that can be considered to be the pre and post conditions, respectively.
The P formulas have as free variable the Spre store and the Q has the Spre and Spos stores (since the
postconditions can make reference to values in the pre-state of the execution). Just as syntactic sugar,
in P o.f is equivalent to Spre(o.f); and in Q o.f is equivalent to Spos(o.f) and pre(o.f) is equivalent to
Spre(o.f).

One of the cornerstones of the static semantics approach that we are presenting is how to express the
invocation of a method. All the methods have the Stores as free variables. Since most of the statements
can be considered as a method invocation with a special pre and post conditions, the semantics is defined
only for that statement. Then, the other ones can be implemented as a method. An example of this
concept is shown after Definition 5.

Definition 5. The evaluation of a method call is defined as follows2:

s call 1

C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)
requires Pre; modifies Mods; ensures Pos; { ... }

typeof(e0) == C
|= ∀Spre •P(Spre)⇒ Pre[e0/this, ei/pi](Spre)
|= ∀Spre,Spos • ∃id′ • (P[id′/id](Spre)∧

Pos[e0/this, ei/pi, id′/id, id/ret](Spre,Spos) ∧ alive(id,Spos))⇒
Q(Spre,Spos)

{P} id := e0.m(e1, ..., en) {Q}

When invoking a method, we need to take a Spre and Spos that verifies the precondition and post-
condition, respectively. We implicitly create a new variable id that points to an element in the Store
(the result reference of the rule) which is the return value of the method. The substitution operator a/b
should be interpreted as replacing b with a.

For example, a natural division operation statement (x := x/y;) should be statically implemented as:

...
x := this.divide(x, y);
...
method divide(p1 : Num, p2 : Num) returns (ret : Num)

requires p2 6= 0;
ensures ret == p1/p2;

{
ret := divideAux(p1, p2);

}
The divideAux method might implement the division as repeated subtractions. It is important to

focus on the method’s contract and the instantiation of the call rule (Definition 5):

Precondition

|= ∀Spre •P(Spre)⇒ Pre[this/this, x/p1, y/p2](Spre)
|= ∀Spre •P(Spre)⇒ (p2 6= 0)[this/this, x/p1, y/p2](Spre)
|= ∀Spre •P(Spre)⇒ (y 6= 0)(Spre)
|= ∀Spre •P(Spre)⇒ y 6= 0

Postcondition

|= ∀Spre,Spos • ∃id′ • (P[id′/x](Spre) ∧ Pos[this this, x/p1, y/p2, id
′/x, x/ret](Spre,Spos)∧

alive(x,Spos))⇒ Q(Spre,Spos)
2Since we are not support neither inheritance nor polymorphism, we know the type of e0 before the execution

4.4. STATIC SEMANTICS 37

|= ∀Spre,Spos•∃id′•(P[id′/x](Spre)∧(ret == p1/p2)[this/this, x/p1, y/p2, id
′/x, x/ret](Spre,Spos)∧

alive(x,Spos))⇒ Q(Spre,Spos)
|= ∀Spre,Spos • ∃id′ • (P[id′/x](Spre) ∧ (x == id′/y)(Spre,Spos) ∧ alive(x,Spos))⇒

Q(Spre,Spos)
|= ∀Spre,Spos • ∃id′ • (P[id′/x](Spre) ∧ (x == id′/y) ∧ alive(x,Spos))⇒ Q(Spre,Spos)

For simplicity, this example shows the invocation of a method using only local variables. In order to
include references to the store space in the specifications, we only need to use the free variables Spre and
Spos.

The first definition of the method invocation rule (s call 1) is the one of a basic Java language.
Like in the dynamic semantics, we need to add some conditions before and after the invocation takes
place (i.e., checking the dynamic frame and verifying the footprint invariant). Therefore, the method
invocation rule is extending like this:

Definition 6. The evaluation of a method call is the following:

s call 2

C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)
requires Pre; modifies Mod; ensures Pos; { ... }

typeof(e0) == C
|= ∀Spre •P(Spre)⇒ (Pre[e0/this, ei/pi](Spre)∧

FootprintInvariant(Spre, e0))
|= ∀Spre,Spos • ∃id′ • (P[id′/id](Spre)∧

HeapSucc(Spre,Spos,Mod[e0/this, id′/id, ei/pi])∧
Pos[e0/this, ei/pi, id′/id, id/ret](Spre,Spos) ∧ alive(id,Spos)∧
FootprintInvariant(Spos, e0) ∧ FootprintInvariant(Spos, ei))

⇒ Q(Spre,Spos)
{P} id = e0.m(e1, ..., en) {Q}

HeapSucc(Spre,Spos,Mod) ≡ (∀x • alive(x,Spre)⇒ alive(x,Spos))∧
(∀x • Spre(x) == Spos(x) ∨ x ∈Mod ∨ ¬alive(x,Spre))

FootprintInvariant(S, x) ≡ (isAcyclicQual(x)⇒ footprint(S, x, x) == 1̄)∧
(¬isAcyclicQual(x)⇒ footprint(S, x, x) ≥ 1̄)∧
(∀f • footprint(S, x,S(x.f)) ≥ 1̄∧

(∀ref • footprint(S, x, ref) ≥ footprint(S,S(x.f), ref))∧
FootprintInvariant(S,S(x.f))

When allocating a new instance, we need to make sure that the footprints of all the objects are correct
(i.e., not reaching the actual new instance).

Definition 7. The statement x := new C(); is expressed using the following method

method allocate(C : ClassName) returns (x : Ref)
requires true;
modifies {};
ensures x 6= null ∧ new(Spre,Spos, x);
ensures NewObjectFootprint(Spre,Spos, x);

NewObjectFootprint(Spre,Spos, x) ≡ footprint(Spos, x, x) == 1̄∧
(∀ref1 • ref1 6= x⇒ footprint(Spos, x, ref1) == 0̄ ∧ footprint(Spos, ref1, x) == 0̄)∧
(∀ref1, ref2 • ref1 6= x ∧ ref2 6= x⇒

footprint(Spre, ref1, ref2) == footprint(Spos, ref1, ref2))

The method that reads an object field has a simple contract: it only needs to ensure that the result
is the value of the desired field. Since it does not modify the memory, the modifies clause is empty.

38 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

Definition 8. The statement x := o.field; is expressed using the following method

method read(o : Ref, field : Field) returns (x : Ref)
requires o 6= null;
modifies {};
ensures x == Spre(o.field);

When writing a field we need to ensure that the footprint values are correctly updated and that, when
we are dealing with an acyclic object, the assignment does not generate a cycle. By now it should be
clear that when an assignment is executed, there’s an extensive impact on the footprint of (in worst case)
all living objects.

Definition 9. The statement o.field := x; is expressed using the following method:

method write(o : Ref, field : Field, x : Ref)
requires o 6= null ∧ ((isAcyclicQual(o) ∧ x 6= null)⇒ isAcyclicQual(x)∧

footprint(Spre, x, o) == 0̄);
modifies o.footprint;
ensures x == Spos(o.field);
ensures MergeFootprints(Spre,Spos, o, x);

MergeFootprints(Spre,Spos, o, x) ≡ (∀ref1, ref2 • (footprint(Spre, ref1, o) == 0̄⇒
footprint(Spre, ref1, ref2) == footprint(Spos, ref1, ref2))∧
((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) 6= null ∧ x 6= null)⇒

footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2)−̇
footprint(Spre,Spre(o.field), ref2))∧

((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) 6= null ∧ x == null)⇒
footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)−̇

footprint(Spre,Spre(o.field), ref2))∧
((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) == null ∧ x 6= null)⇒

footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2)))

This last rule maps with the operational semantics Rule d field w 2 from Section 4.2.1. As we
mentioned there, execution a field assignment statement would be a very expensive operation because, in
worst case, it modifies all the living objects’ footprint. Since the footprint is only used by the verifier, when
building a compiler (and if the program verifies successfully) all the footprint operations and assertions
can be omitted in order to get the desired performance in the execution.

Definition 10. The conditional, sequence and empty statements execution is the following:

s seq
{P1} stmt1 {Q1} {P2} stmt2 {Q2}
|= P⇒ P1 |= Q1 ⇒ P2 |= Q2 ⇒ Q

{P} stmt1; stmt2 {Q}
s skip

|= P⇒ Q
{P} skip {Q}

s if

{P1} stmt1 {Q1} {P2} stmt2 {Q2}
|= P ∧ expr 6= null⇒ P1 |= Q1 ⇒ Q
|= P ∧ expr == null⇒ P2 |= Q2 ⇒ Q
{P} if (expr) {stmt1} else {stmt2} {Q}

4.5 Semantics Soundness

The previous sections focused on the definition of the dynamic and static semantics for the language that
we are introducing. This section intends to prove some particular invariants and properties using those
definitions. By the end of the demonstrations, we expect to show how all the decisions that we have
made for our language will converge in the verification of the acyclic data structures.

Definition 11. A store σ is defined as valid if:

4.5. SEMANTICS SOUNDNESS 39

- For all Refs ref1 and ref2, footprint(σ, ref1, ref2) == n implies that there are n different paths
from ref1 to ref2 in σ

- null is not in the domain of σ

Theorem 1. For all valid store σ, environment env, reference this, and blocks {P} Stmt {Q}, if
fails(σ, env, this, Stmt), then σ, env, this 6|= P.

Proof. We are going to prove the theorem using induction over Stmt. Most of the cases are going to
use the definitions from Sections 4.2, 4.3 and 4.4. Since most of the statements from the base cases are
executed as a method call, remember the precondition premise (rule 5):

∀Spre •P(Spre)⇒ Pre[y/this, vali/pi](Spre)
That’s why if we prove that the method precondition is not satisfied (knowing that the fails predicate

holds), then we prove that σ, env, this 6|= P.

The base cases are:

• {P} x := new C() {Q}
Since the fails predicate does not hold for the allocation statement, the theorem is trivially valid.

• {P} o.field := x {Q}
First let’s recall the premise of the fails rule for the field write (rule 4.10):

κ 6= null and isAcyclicQual(ι) and σ(κ, Footprint)[ι] > 0

In order to verify if the operation precondition is not satisfied, we need to interpret (rule 9):

vs, vr, this |= o 6= null ∧ ((isAcyclicQual(o) ∧ x 6= null)⇒
isAcyclicQual(x) ∧ footprint(Spre, x, o) == 0̄)

Where vr maps the variable names to the references in σ, and vS = {Spre 7→ σ}
Taking each part of the formula:

– vs, vr, this |= o 6= null⇔ IRefvs,vr,this
(o) 6= IRefvs,vr,this

(null)⇔ o is not null

– vs, vr, this |= ((isAcyclicQual(o) ∧ x 6= null) ⇒ isAcyclicQual(x) ∧ footprint(Spre, x, o) ==
0̄)⇔

((vs, vr, this |= isAcyclicQual(o)) ∧ IRefvs,vr,this
(x) 6= IRefvs,vr,this

(null)) implies
INumvs,vr,this

(footprint(Spre, x, o)) = INumvs,vr,this
(0̄)⇔

(o type is annotated as acyclic and x 6= null) implies x type is annotated as acyclic and
σ(x, Footprint)[o] = 0

Since the fails predicate states that if o type is annotated as acyclic and x 6= null, then σ(x, Footprint)[o] >
0; and the operation precondition requires that σ(x, Footprint)[o] = 0, in consequence, σ, env, this 6|=
P.

• {P} x := o.field {Q}
When reading an object field, the fails predicate holds for (Figure 4.8):

o is null

The static precondition of a field read is requires o 6= null (Definition 8). Therefore σ, env, this 6|=
P.

• {P} id := e0.m(e1, ..., en) {Q}
From the fact that the fails predicate holds, we know that (rules in Figure 4.9):

C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

40 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

requires Pre; ensures Post;
{ Body }

ei, σ, env, this e
; ιi

env′ = [p1 7→ ι1, ..., pn 7→ ιn, ret 7→ null]

σ, env, this 6|= Pre

σ, env 6|= FootprintInvariant or σ′, env′ 6|= FootprintInvariant

Following the static invocation rule [6], first we need to analyze the precondition:

vs, vr, this |= ∀Spre •P(Spre)⇒ Pre[e0/this, ei/pi](Spre)∧
FootprintInvariant(Spre, e0) ∧ FootprintInvariant(Spre, ei)

Where vr maps the variables defined in env′ and vs = {Spre 7→ σ}.

vs, vr, this |= ∀Spre •P(Spre)⇒ Pre[e0/this, ei/pi](Spre)∧
FootprintInvariant(Spre, e0) ∧ FootprintInvariant(Spre, ei)⇔

vs[Spre 7→ h], vr, this |= P(Spre)⇒ Pre[e0/this, ei/pi](Spre)∧
FootprintInvariant(Spre, e0) ∧ FootprintInvariant(Spre, ei) for all h ∈ Store⇔

vs[Spre 7→ h], vr, this |= P(Spre) implies that vs[Spre 7→ h], vr |= Pre[e0/this, ei/pi]
and vs[Spre 7→ h], vr, this |= FootprintInvariant(Spre, e0)∧
FootprintInvariant(Spre, ei) for all h ∈ Store⇔

σ, env′, ι0 |= Pre and σ, env |= FootprintInvariant .

Contradicting the premise of the fails predicate. Therefore σ, env, this 6|= P.

• {P} skip{Q}
If Stmt is skip (the empty sentence), the theorem is valid trivially.

The inductive cases are:

• {P} stmt1; stmt2 {Q}
Recalling fails predicate premises for the sequencing of statements (rules 4.8):

fails(σ, env, this, stmt1), or

stmt1, σ, env, this ; σ′, env′ and fails(σ′, env′, this, stmt2)

The static semantics sequencing rule (Definition 10) states that:

{P1} stmt1 {Q1} {P2} stmt2 {Q2}
|= P⇒ P1 |= Q1 ⇒ P2 |= Q2 ⇒ Q

Therefore, using the inductive hypothesis, we know that:

If fails(σ, env, this, stmt1), then σ, env, this 6|= P1, implying that P is false

If fails(σ′, env′, this, stmt2), then σ′, env′, this 6|= P2, implying that Q1, P1 and P are false

Then σ, env, this 6|= P.

• {P} if (cond) {stmt1} else {stmt2} {Q}
Let’s break each case of the conditional.

The fails predicate premise defined for the true conditional case is (rules 4.8):

cond, σ, env, this e
; ι

ι 6= null and fails(σ, env, this, stmt1)

4.5. SEMANTICS SOUNDNESS 41

The static semantics rule for the conditional is (Definition 10):

{P1} stmt1 {Q1} {P2} stmt2 {Q2}
|= P ∧ expr 6= null⇒ P1 |= Q1 ⇒ Q
|= P ∧ expr == null⇒ P2 |= Q2 ⇒ Q

Using the inductive hypothesis we know that:

σ, env, this |= (P ∧ cond 6= null⇒ P1), contradicting the premise of the fails predicate

Then the false case is proven the same way:

The fails predicate premise defined for the false conditional case is (rules 4.8):

cond, σ, env, this e
; ι

ι = null and fails(σ, env, this, stmt1)

Using the inductive hypothesis and rule 10, we know that:

σ, env, this |= (P ∧ cond == null⇒ P2), contradicting the premise of the fails predicate

Then σ, env, this 6|= P.

Corollary 1. Theorem 1 is equivalent to prove that for all valid store σ, environment env, reference
this, and blocks {P} Stmt {Q}, if σ, env, this |= P, then fails(σ, env, this, Stmt) is not defined.

Theorem 2. For all valid Store σ, variables env and blocks {P} Stmt {Q}, if:

• σ, env, this |= P, and

• Stmt, σ, env, this ; σ′, env′

then {σ, σ′}, env′, this |= Q and σ′ is valid.

Proof. We are going to prove the theorem using induction over Stmt. Again, since most of the statements
from the bases cases are executed as a method call, remember the postcondition premise (simplified rule
5):

|= ∀Spre,Spos • (P(Spre) ∧ Pos[y/this, vali/pi, id/ret](Spre,Spos))⇒ Q(Spre,Spos)
then in those cases we only need to prove that the method postcondition is satisfied.

The base cases are.

• {P} x := new C() {Q}
In this case we need to ensure that the dynamic post-state implies the static postcondition. The
effect on the resulting state (σ′) is the following (rule in Section 4.2.1):

– σ′ = σ[ι 7→� f1 : null, ..., fn : null, Footprint : {ι : 1} �C]

– env′ = env[x 7→ ι]

Then we need to verify that (rule 7):

vs, vr, this |= x 6= null ∧ ¬alive(x,Spre) ∧ alive(x,Spos) ∧ footprint(Spos, x, x) == 1̄∧
(∀ref1 • ref1 6= x⇒ (footprint(Spos, x, ref1) == 0̄∧

footprint(Spos, ref1, x) == 0̄))

Where vr maps the variable names to the references in σ and σ′ (defined in env′), and vS = {Spre 7→
σ, Spos 7→ σ′}
Let’s analyze the expression by parts:

42 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

– vs, vr, this |= ¬alive(x,Spre)⇔ IRefvs,vr,this
(x) is not null and is not in the domain of IStorevs,vr,this

(Spre)⇔
ι is not and ι is not in the domain to σ, which is guaranteed because ι is fresh

– vs, vr |= alive(x,Spos)⇔ IRefvs,vr,this
(x) is null or is in the domain of IStorevs,vr,this

(Spos)⇔ ι is not
implies that ι is in the domain to σ′, which is guaranteed because σ′ =
σ[ι 7→� f1 : null, ..., fn : null�C]

– vs, vr, this |= footprint(Spos, x, x) == 1̄⇔ INumvs,vr,this
(footprint(Spos, x, x)) =

INumvs,vr,this
(1̄)⇔ σ′(ι, Footprint)[ι] = 1

– vs, vr, this |= (∀ref1 • ref1 6= x⇒ (footprint(Spos, x, ref1) == 0̄)∧
footprint(Spos, ref1, x) == 0̄)⇔

vs, vr[ref1 7→ ι1], this |= ref1 6= x⇒ (footprint(Spos, x, ref1) == 0̄ ∧
footprint(Spos, ref1, x) == 0̄) for all ι1 ∈ Ref ⇔

IRefvs,vr[ref1 7→ι1],this(ref1) 6= IRefvs,vr[ref1 7→ι1],this(x) implies that
INumvs,vr[ref1 7→ι1],this(footprint(Spos, x, ref1)) = INumvs,vr[ref1 7→ι1],this(0̄)
and INumvs,vr[ref1 7→ι1],this(footprint(Spos, x, ref1)) = INumvs,vr[ref1 7→ι1],this(0̄)
for all ι1 ∈ Ref ⇔

for all ι1, ι1 6= ι implies that σ′(ι, Footprint)[ι1] = 0 and
σ′(ι1, Footprint)[ι] = 0

This last condition is guaranteed because the dynamic semantics does not modify any reference
other than ι and ι’s multiset is initialized with 0’s.

• Since the new object is only accessible from itself and the key added to σ is newly created (not
null), this predicate makes the Store valid from x’s perspective

• Using the inductive hypothesis and considering that the rest of the elements of the Store and
footprint are untouched, the Store is valid for the remaining objects

Then we conclude that an allocation execution verifies its postcondition and the resulting Store is
valid.

• {P} o.field := x {Q}

For simplicity, let’s assume that x is not null. The effect on the state after the execution is the
following (rule 4.7):

σ′ = σ[o, field 7→ x]

σ(o, field) 6= null implies that for all ι1, ι2, σ(ι1, Footprint)[o] > 0 implies that
σ′(ι1, Footprint)[ι2] = σ(ι1, Footprint)[ι2]− σ(o, field)(Footprint)[ι2]

+σ(x, Footprint)[ι2]
σ(o, field) = null implies that for all ι1, ι2, σ(ι1, Footprint)[o] > 0̄ implies that

σ′(ι1, Footprint)[ι2] = σ(ι1, Footprint)[ι2] + σ(x, Footprint)[ι2]

Then we need to verify that (rule 9):

vs, vr, this |= x == Spos(o.field) ∧ ∀ref1, ref2 • ((footprint(Spre, ref1, o) > 0̄∧
Spre(o.field) 6= null)⇒ footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)

+̇footprint(Spre, x, ref2)−̇footprint(Spre,Spre(o.field), ref2))∧
((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) == null)⇒ footprint(Spos, ref1, ref2)

== footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2))

Where vr maps the variable names to the references in σ and σ′, and vS = {Spre 7→ σ, Spos 7→ σ′}
Breaking each part of the formula and taking into account that all the references in σ′ that are not
changed in the rule have the value from σ:

– vs, vr, this |= x == Spos(o.field)⇔ IRefvs,vr
(x) = IRefvs,vr,this

(Spos(o.field))⇔
x = IStorevs,vr,this

(Spos)(IRefvs,vr,this
(o), IFieldvs,vr,this

(field))⇔ x = σ′(o, field)⇔
x = σ[o, field 7→ x](o, field)⇔ x = x

4.5. SEMANTICS SOUNDNESS 43

– vs, vr, this |= ∀ref1, ref2 • ((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) 6= null)⇒
footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)+̇

footprint(Spre, x, ref2)−̇footprint(Spre,Spre(o.field), ref2))⇔
vs, vr[ref1 7→ ι1, ref2 7→ ι2], this |= ((footprint(Spre, ref1, o) > 0̄∧

Spre(o.field) 6= null)⇒ footprint(Spos, ref1, ref2) ==
footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2)−̇

footprint(Spre,Spre(o.field), ref2)) for all ι1, ι2 ∈ Ref ⇔
((INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, ref1, o)) > INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(0̄)∧

IRefvs,vr[ref1 7→ι1,ref2 7→ι2],this(Spre(o.field)) 6= IRefvs,vr[ref1 7→ι1,ref2 7→ι2],this(null))⇒
INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spos, ref1, ref2)) =
INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, ref1, ref2))+

INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, x, ref2))−
INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, IRefvs,vr[ref1 7→ι1,ref2 7→ι2],this(
Spre(o.field)), ref2))) for all ι1, ι2 ∈ Ref ⇔

for all ι1, ι2, σ′(ι1, Footprint)[o] > 0 and σ′(o, field) 6= null implies
σ′(ι1, Footprint)[ι2] = σ(ι1, Footprint)[ι2]− σ(o, field)(Footprint)[ι2]+

σ(x, Footprint)[ι2]

– vs, vr, this |= ∀ref1, ref2 • ((footprint(Spre, ref1, o) > 0̄ ∧ Spre(o.field) = null)⇒
footprint(Spos, ref1, ref2) == footprint(Spre, ref1, ref2)+̇

footprint(Spre, x, ref2))⇔
vs, vr[ref1 7→ ι1, ref2 7→ ι2], this |= ((footprint(Spre, ref1, o) > 0̄∧
Spre(o.field) == null)⇒ footprint(Spos, ref1, ref2) ==
footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2)) for all ι1, ι2 ∈ Ref ⇔

((INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, ref1, o)) > INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(0̄)∧
IRefvs,vr[ref1 7→ι1,ref2 7→ι2],this(Spre(o.field)) = IRefvs,vr[ref1 7→ι1,ref2 7→ι2],this(null))⇒
INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spos, ref1, ref2)) =
INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, ref1, ref2))+

INumvs,vr[ref1 7→ι1,ref2 7→ι2],this(footprint(Spre, x, ref2)))
for all ι1, ι2 ∈ Ref ⇔

for all ι1, ι2, σ′(ι1, Footprint)[o] > 0 and σ′(o, field) = null implies
σ′(ι1, Footprint)[ι2] = σ(ι1, Footprint)[ι2]

• The field write operation has a high impact on the validity of the Store. We are ensuring that
the Store remains valid by:

∗ Removing the elements of the previously stored field, since those references will not be
reached anymore
∗ Adding the new paths of the assigned reference
∗ Not adding a key to σ′

• Since the precondition states that o 6= null, we are ensuring that null is not defined in Spos
• Using the inductive hypothesis and considering that the rest of the elements of the Store and

footprint are untouched, the Store is valid for the remaining objects

Then we conclude that a field write execution verifies its postcondition and the resulting Store is
valid.

• {P} x := o.field {Q}
The effect on the state after the execution is (rules in Figure 4.6):

env′ = env[x 7→ o.field]

Then we need to verify that (rule 8):

– vs, vr, this |= x == Spre(o.field)

44 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

Where vr maps the variable names to the references in σ and σ′, and vS = {Spre 7→ σ, Spos 7→ σ′}

– vs, vr, this |= x == Spre(o.field)⇔ IRefvs,vr,this
(x) = IRefvs,vr,this

(Spre(o.field))⇔
σ(o.field) = σ(o.field)

The operation has no impact over the footprint nor σ, using the inductive hypothesis, the Store
remains valid.

Then we conclude that a field read execution verifies its postcondition and the resulting Store is
valid.

• {P} id := e0.m(e1, ..., en) {Q}
Recalling the dynamic semantics invocation rule and, using Corollary 1, that the fails predicate
does not hold (rules in Figures 4.8 and 4.9), we know that:

C.m =method m(p1 : T1, ..., pn : Tn) returns (ret : Tret)

requires Pre; modifies Mod; ensures Post;
{ Body }

ei, σ, env, this e
; ιi

For all emod,i in Mods, emod,i, σ, env
′, ι0

e
; ιmod,i

CheckFrame(σ, σ′, ιmod,0, ..., ιmod,n)

σ, env |= FootprintInvariant and σ′, env′ |= FootprintInvariant

env′ = [p1 7→ ι1, ..., pn 7→ ιn]

σ, env′, ι0 |= Pre

Body′, σ, env′, ι0 ; σ′, env′′

σ′, env′′, ι0 |= Post

Using the definition of the static invocation rule [6], we need to verify that:
vs, vr, this |= ∀Spre,Spos • ∃id′ • (P[id′/id](Spre)∧

HeapSucc(Spre,Spos,Mod[e0/this, id′/id, ei/pi])∧
Pos[e0/this, ei/pi, id′/id, id/ret](Spre,Spos) ∧ alive(id,Spos)∧
FootprintInvariant(Spos, e0)∧FootprintInvariant(Spos, ei))⇒ Q(Spre,Spos)⇔ vs[Spre 7→

hpre,Spos 7→ hpos], vr, this |= ∃id′ • (P[id′/id](Spre)∧
HeapSucc(Spre,Spos,Mod[e0/this, id′/id, ei/pi])∧
Pos[e0/this, ei/pi, id′/id, id/ret](Spre,Spos) ∧ alive(id,Spos)∧
FootprintInvariant(Spos, e0) ∧ FootprintInvariant(Spos, ei))⇒ Q(Spre,Spos)

for all hpre, hpos ∈ Store ⇔
σ′, env′′, ι0 |= Post , and CheckFrame(σ, σ′,Mods), and σ′, env′ |= FootprintInvariant . In

this case, σ is the Store that verifies the precondition
and σ′ the postcondition.

The validity of the resulting Store is guaranteed by:

– Ensuring that the footprint reflects that a reference reaches itself (from FootprintInvariant
macro):

(isAcyclicQual(ι) implies that σ(ι, Footprint)[ι] = 1) and
(¬isAcyclicQual(ι) implies that σ(ι, Footprint)[ι] ≥ 1)

– Ensuring that the footprint of a reference includes the ones of its fields (from FootprintInvariant
macro):

(for all f field in ι, σ(ι, Footprint)[σ(ι, f)] ≥ 1 and
(for all ι1 Ref, σ(ι, Footprint)[ι1] ≥ σ(σ(ι, f), Footprint)[ι1] and

FootprintInvariant(σ, σ(ι, f))))

– σ′ is the successor of σ

– The result of the body is in the domain of σ′ if it’s not null (vs, vr, val0 |= alive(id,Spos))

4.5. SEMANTICS SOUNDNESS 45

Then we conclude that a method invocation execution verifies its postcondition and the resulting
Store is valid.

• {P} skip{Q}
If Stmt is skip (the empty sentence), the theorem is valid trivially.

The inductive cases are:

• {P} stmt1; stmt2 {Q}
Using the inductive hypothesis, we know that {P1} stmt1; {Q1} and {P2} stmt2; {Q2} verify
their postconditions and result in a valid Store. Using the rule from definition 10:

{P1} stmt1 {Q1} {P2} stmt2 {Q2}
|= P⇒ P1 |= Q1 ⇒ P2 |= Q2 ⇒ Q

We also know that Q1 ⇒ P2 and Q2 ⇒ Q, so the resulting store σ’ (that verifies Q) will also be
valid.

• {P} if (cond) {stmt1} else {stmt2} {Q}
Using the inductive hypothesis, we know that {P1} stmt1; {Q1} and {P2} stmt2; {Q2} verify
their postconditions and result in a valid Store. Breaking each case of the conditional (taken from
rule 10):

– P ∧ cond 6= null ⇒ P1 and Q1 ⇒ Q, so the resulting store σ’ (that verifies Q) will also be
valid.

– P ∧ cond == null⇒ P2 and Q2 ⇒ Q, so the resulting store σ’ (that verifies Q) will also be
valid.

Definition 12. A valid Store is also acyclic when all the references whose class is annotated as acyclic
are reachable for only one path (itself). Taking into account that an acyclic class must have only acyclic
fields, this definition prevents from having cycles deeper in the reachable paths of the reference.

Theorem 3. If a store σ is valid and acyclic, then for all acyclic reference o:

• footprint(σ, ι, ι) == 1

• For all ι1, footprint(σ, ι, ι1) ≥ footprint(σ, ι.field, ι1) field ∈ fields(o)

Proof. Let’s prove each part of the theorem individually:

• footprint(σ, ι, ι) == 1
We start by assuming that footprint(σ, ι, ι) > 1. The hypothesis of the theorem states that σ is
valid, therefore there are more that 1 paths to reach ι from ι. We also know that σ is acyclic, so each
acyclic reference must only be reachable from itself. We can then conclude that o is not acyclic.
This is a contradiction, because o is acyclic, which comes from assuming that footprint(σ, ι, ι) > 1.
Therefore, footprint(σ, ι, ι) == 1.

• for all ι1, footprint(σ, ι, ι1) ≥ footprint(σ, ι.field, ι1) field ∈ fields(ι)
Let’s assume that footprint(σ, ι, ι1) < footprint(σ, ι.field, ι1). This would mean that there are less
paths from ι to ι1 than from ι.field to ι1 for any field. However the hypothesis of the theorem
states that σ is valid, which implies that the paths of a reference include the ones of its fields.
Therefore footprint(σ, ι, ι1) would be at least equal to the footprint value of its fields; reaching
a contradiction that comes form assuming that footprint(σ, ι, ι1) < footprint(σ, ι.field, ι1). Then
footprint(σ, ι, ι1) ≥ footprint(σ, ι.field, ι1).

46 CHAPTER 4. A LANGUAGE THAT ENFORCES ACYCLICITY

Theorem 4. For all valid and acyclic store σ, environment env, and blocks {P} Stmt {Q}, if:

• σ, env, this |= P, and

• Stmt, σ, env, this ; σ′, env′, and

• {σ, σ′}, env′, this |= Q

then σ′ is acyclic.

Proof. This proof is an extension of the Theorem 2 and we will follow a similar approach. The inductive
cases have the same demonstration as in Theorem 2, therefore we will focus on the relevant base cases:

• {P} x := new C() {Q}
The effect of the allocation execution is the following (rule in Section 4.2.1):

– σ′(ι, Footprint)[ι] = 1
Since the object is being created, it only has 1 reference that points to it (itself). Besides, no
other reference points to it. Since the operation only affects that reference, using the inductive
hypothesis the rest of the elements of the Store preserve the acyclicity.

Then we conclude that an allocation execution results in an acyclic Store.

• {P} o.field := x {Q}
The field write operation execution has the following impact on the Store (rule 4.7):

– σ(o, field) 6= null implies that for all ι1, ι2, σ(ι1, Footprint)[o] > 0 implies that
σ′(ι1, Footprint)[ι2] =

σ(ι1, Footprint)[ι2]− σ(o, field)(Footprint)[ι2] + σ(x, Footprint)[ι2]
σ(o, field) = null implies that for all ι1, ι2, σ(ι1, Footprint)[o] = 0 implies that

σ′(ι1, Footprint)[ι2] = σ(ι1, Footprint)[ι2] + σ(o, Footprint)[ι2]
This predicate only applies to the references that point to o (including o itself). It states
that the footprint must add the references of x and release the once of the previous value of
σ(o, field) (this does not apply when it is null). Notice that:
∗ If we are in the acyclic case, because of Corollary 1 we know that the fails predicate does

not hold (rule 4.10) it is guaranteed that σ(x, Footprint)[o] = 0 will still be equal to 1,
preserving the acyclicity of the resulting Store

∗ Since we are adding the footprint of the new assigned field, we are holding the second part
of the acyclicity definition (the footprint of a reference includes the ones of its fields)

Then we conclude that a field write execution results in an acyclic Store.

• {P} x := o.field {Q}
The field read operation has no effect over the Store (rule in Figure 4.6). Then, using the inductive
hypothesis the resulting Store is acyclic.

• {P} id := e0.m(e1, ..., en) {Q}
Because of Corollary 1 the fails predicate does not hold, therefore we can use the FootprintInvariant
in order to guarantee the acyclicity of the reference parameters in the execution. For each reference,
the execution has the following effect on the Store (rule in Figure 4.9):

– (isAcyclicQual(ι) implies that σ′(ι, Footprint)[ι] = 1)
Ensures that the reference is only reached from itself (in the acyclic case).

– (for all ι1 Ref, σ′(ι, Footprint)[ι1] ≥ σ′(σ′(ι, f), Footprint)[ι1] and
FootprintInvariant(σ′, σ′(ι, f)))

Ensures that the reference’s footprint includes the ones of its fields and verifies it recursively.

Then we conclude that a method invocation execution results in an acyclic Store.

Chapter 5

Implementation

In the previous chapter we went over the formal definition of the language we have presented in order to
enforce acyclicity. This chapter shows an insight on the implementation concepts and details. The first
part of the chapter explains the background aspects that are important to take into account in order
to understand the implementation. We start by analyzing how we can implement a static verification
system for object-oriented programs, in particular with an introduction to the Boogie programming
language[Lei08b]. Since it is important to understand its implementation and features, we describe the
whole verification language through grammar and semantics (presented as the Verification Conditions
formulas it generates). Since Boogie is a lower level language, it is usually used as an intermediate
language. For that reason, we then took Dafny as a reference, which is an open source experimental
language created at Microsoft Research that provides the basic support for verifying object-oriented
programs. Our implementation is based on Dafny’s compiler.

The second part of the chapter explains the implementation of our language. Following the grammar
and operational semantics presented in Chapter 4, we implemented the parser and translation to Boogie
that will be later passed to the prover. To understand the big picture of how the translation is performed,
also Dafny’s translation rules must be taken into account. The tool’s source code and binaries are available
at http://acycliclanguage.neisen.com.ar.

Figure 5.1 shows the architectural overview of the verifier implementation. With more or less detail,
this chapter will cover most of the modules. The first stage of the pipeline parses the program source code
and performs a simple type checking. The resulting syntax tree is then used to make a translation into
a verification intermediate language that formalizes the semantics and proof obligations of the program.
Using the translated program, we get the logical formulas that finally will be analyzed by the theorem
prover, searching for proofs or counterexamples. In particular, our work is located in the verification
language translation.

This section shows several technical details about Boogie and Dafny that are necessary to understand
the whole implementation. In Section 5.2.2 we present our contributions to the translation.

5.1 Background

Before analyzing the Implementation Details (in Section 5.2), we should cover some of the related work
over which we are building the tool we have created. First of all we will show how we have accomplished the
program verification, and then we introduce the experimental language in which we built our prototype.

5.1.1 Verifying Object-Oriented Programs using Boogie

One of the standard approaches to satisfy program verification is to transform a program into verification
conditions (often referred as VC), which are logical formulas whose validity implies that the program
satisfies the formulas under consideration. There are different approaches for that; one proven to be

47

http://acycliclanguage.neisen.com.ar

48 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Architecture of the implementation

successful in practice is the use of an intermediate language since it enables verification of several source
languages. There is some work around this [BCD+05] and the choice we have made is to translate the
program to BoogiePL[Lei08b].

BoogiePL is an effective intermediate language because it lacks the complexity of an Object-Oriented
language and incorporates the logical features needed to generate the Verification Conditions. BoogiePL
looks like a high-level assembly language, which consists of a theory and an imperative part. The theory
has declarations of types, constants, functions and axioms. The imperative part has declarations of
variables and procedures. A Boogie program has the following form:

Program ::= TypeDecl∗ | SimbolDecl∗ | V arDeclStmt∗ | AxiomDecl∗
| ProcedureDecl∗ | ImplementationDecl∗

The theory is declared like this:

TypeDecl ::= type typename;
SymbolDecl ::= ConstDecl | FunctionDecl
ConstDecl ::= const var : type;

type ::= bool | int | ref | name | any | typename | ArrayType
ArrayType ::= [type, type] type

FunctionDecl ::= function function(type∗) returns (type);
AxiomDecl ::= axiom Expr;

BoogiePL is strongly typed in order to improve readability and catch simple errors. However, all that
information is erased during the translation into Verification Conditions.

5.1. BACKGROUND 49

The expressions are formed like this:

Expr ::= Literial | var | UnOp Expr | Expr BinOp Expr | Expr[Expr,Expr]
| FuncApp | Quant | cast(Expr, type) | old(Expr)

Literal ::= false | true | null | integer
BinOp ::= ⇔ | ⇒ | ∨ | ∧ | <: | ≤ | < | ≥ | > | 6= | = | + | − | ∗ | / | %
UnOp ::= − | ¬

FuncApp ::= function(Expr∗)
Quant ::= (∀ V arDecl∗ Trigger∗ • Expr) | (∃ V arDecl∗ Trigger∗ • Expr)

V arDecl ::= var : type 〈where Expr〉?
Trigger ::= { Expr+ }

The old(E) expression is used in the postconditions and implementations to refer to the value of E
in the procedure’s pre-state. The where clause in a parameter signature forces a constraint, usually
referring to the parameter’s type. The Trigger is a directive that tells a theorem prover how to instantiate
quantifiers.

The imperative part of a BoogiePL program consists of global variable declarations, procedure headers
and procedure implementations:

V arDeclStmt ::= var V arDecl∗;
ProcedureDecl ::= procedure procname (V arDecl∗) 〈 returns (V arDecl∗)〉?

〈free? requires Expr; 〉∗ 〈modifies Expr; 〉∗ 〈free? ensures Expr; 〉∗
ImplBody?

ImplementationDecl ::= implementation procname (V arDecl∗) 〈 returns (V arDecl∗)〉?
ImplBody

ImplBody ::= { V arDeclStmt Block+ }
Block ::= 〈label :〉? Command∗ TransferCommand

The clauses marked with free mean that the expression is assumed, but not checked. This is useful when
encoding properties guaranteed by the language and we can prove that there is no correct code that can
violate them.

Finally, the implementation blocks are defined like this:

Command ::= Passive | Assign | Call;
Passive ::= assert Expr; | assume Expr;
Assign ::= var 〈[Expr,Expr]〉? := Expr; | havoc var+;
Call ::= call var∗ := procname(Expr∗);

TransferCommand ::= goto label+; | return | IfStmt | while (Expr) LoopInv∗Block ;
LoopInv ::= free? invariant Expr;

IfStmt ::= if (Expr) Block Else?

Else ::= else Block | else IfStmt

The havoc statement assigns its variables to an arbitrary value. The assume statement restricts
the execution to the Boogie program that satisfies its expression. We need to be careful when using it,
because if the expression evaluates to false, the execution will be infeasible (ie. it will trivially verify
the program). The assert statement forces a proof obligation, that when its expression is false, the
execution results in an unrecoverable error.

The challenge now is finding the right translation from our language into BoogiePL, ensuring that
the programs are correctly verified and the acyclicity is guaranteed (when applied).

5.1.2 Verification Conditions

One of the last steps when working on static program verification is generating verification conditions
from an input program (such as BoogiePL) and passes them to a theorem prover. As we have mentioned
earlier, a verification condition is a first-order logical formula whose validity implies that a program
satisfies its specification. This task has a great impact on the effectiveness of the verification[FS01].

50 CHAPTER 5. IMPLEMENTATION

Following the discussion in [BL05], the transformation applied is weakest precondition. The definition of
this wp[[.]] can be also considered as the semantics of BoogiePL.

Weakest precondition (wp[[C,Q]]) is a predicate transformer of sequential imperative programs [Dij97].
That is, given a statement C and postcondition Q, it constructs a precondition P such that {P} C {Q}
is valid and P is the weakest formula that can establish Q as a postcondition for C. By weakest, it means
that the precondition returned from wp[[C,Q]] imposes the fewest restrictions on the input of C so that
it guarantees Q. A simple example would be:

wp[[x := y − 5, x > 10]] = (y − 5 > 10) = (y > 15)

The wp[[.]] function in this work is defined as[BL05, Lei08a]:

wp[[xs := EE; , Q]] = Q[[EE/xs]]
wp[[havoc xs; , Q]] = (∀xs • Q)
wp[[assert E; , Q]] = E ∧ Q
wp[[assume E, Q]] = E ⇒ Q
wp[[S T, Q]] = wp[[S, wp[[T, Q]]]]
wp[[if (E) { S } else { T }, Q]] = (E ⇒ wp[[S, Q]]) ∧ (¬E ⇒ wp[[T, Q]])
wp[[while (E) invariant J ; { S }, Q]] =

J ∧ (∀xs • J ∧ E ⇒ wp[[S, J]]) ∧ (∀xs • J ∧ ¬E ⇒ Q)

The definition of procedure calls and definitions is a bit tricky. The calls must rely on the proce-
dure’s specification contract (essential for information hiding and modular verification[Par72]) and the
implementations are checked to satisfy its implementation. In the definition, lets consider the following
procedure template:

procedure P (ins) returns (outs);
requires Pre;
modifies mod;
ensures Post;
{ stmts }

wp[[call xs := P (EE); , Q]] =
wp[[ins′ := EE; assert Pre′;mod′ := mod; havoc mod, outs′; assume Post′;xs := outs′; , Q]]

wp[[P, Q]] = // P is a procedure definition
wp[[Axioms ⇒ wp[[assume Pre;mod′ := mod; stmts′; assert Post′; , true]], Q]]

More details on the Verification Conditions generation and theorems provers can be found in [Lei08b],
[BCD+05] and [dMB08].

5.1.3 Dafny language

Dafny [Lei08a] is an experimental language created by K. Rustan M. Leino that explores the dynamic
frames style of specifications in an object-based sequential setting. It provides a solid foundation in order
to generate the Verification Conditions that serve as input for a solver. The translation uses BoogiePL as
the intermediate language. The language implementation is open-source and it can be found at [Mic09b].
For those reasons we decided to use Dafny as the starting point of the implementation of our language.
Figure 5.2 shows the grammar of a Dafny program and Figure 5.3 its basic code skeleton. Notice that
the grammar is very similar to the one of the language we have defined in Figure 4.1.

It is worth mentioning that the dynamic frames are implemented using the footprint variable (which
is a set of objects). One of the features that underlie Dafny’s specification is the use of ghost fields, which
are intended to be used only for verification purposes and should not be included in a compiled program.
In Section 2.1 we referred to them as specification variables.

Following the grammar definition, it uses the Coco/R compiler generator[Ter04] in order to create the
scanner and parser that will be used to make the translation into BoogiePL discussed later.

5.1. BACKGROUND 51

Program ::= Class∗

Class ::= class Id {Member∗}
Member ::= Field | Method

F ield ::= var Id : Type
Type ::= bool | int | Id | object

Method ::= method Id(Param∗) returns (Param∗) Spec∗ { Stmt∗}
Param ::= Id : Type
Stmt ::= var x : Type;

| x := Expr;
| Expr.f := Expr;
| x := new Type;
| if (Expr){Stmt∗} else {Stmt∗}
| while (Expr) Invariant∗ {Stmt∗}
| call xs := Expr.Id(Expr∗);

Expr ::= x | this | Expr Op Expr | Expr.f | old(Expr) | fresh(Expr)
fresh(Expr) | ∀x • Expr

Spec ::= requires Expr; | modifies Expr; | ensures Expr;
Invariant ::= invariant Expr;

Figure 5.2: Dafny

class Coo {
var f o o t p r i n t : set<object>;
// o t her f i e l d s go here . . .
function Valid () : bool

reads this , f o o t p r i n t ;
{

this ∈ f o o t p r i n t // something more s u b s t a n t i a l goes here . . .
}

method I n i t ()
modifies this ;
ensures Valid () ∧ fresh (f o o t p r i n t−{ this }) ;

{
f o o t p r i n t := { this } ;
// more i n i t i a l i z a t i o n goes here . . .

}

method Mutate ()
requires Valid () ;
modifies f o o t p r i n t ;
ensures Valid () ∧ fresh (f o o t p r i n t−old (f o o t p r i n t)) ;

{
// mutat ions o f the o b j e c t go here . . .

}
}

Figure 5.3: Dafny code skeleton

52 CHAPTER 5. IMPLEMENTATION

Translation into BoogiePL

One of the most important contributions of Dafny to this work is the basic translation of an Object-
Oriented language into BoogiePL. This section presents an overview of Dafny’s translation implementa-
tion.

Dafny’s prelude declares some basic types and functions that will be used across the translation. It
also includes the declarations of classes, methods and functions declared in the Dafny program (the result
of Df[[.]] function):

type ClassName;
type Ref ;
type Set α = [α]bool;
type Seq α;
const null : Ref ;

Classes are translated as follows:

Decl[[class C{members}]] =
const unique class.C : ClassName;
Decl∗[[members]]

Types are translated using the Type[[.]] function:

Type[[bool]] = bool
Type[[int]] = int
Type[[Id]] = Ref
Type[[set < T >]] = Set Type[[T]]
Type[[seq < T >]] = Seq Type[[T]]

When modeling an object-oriented semantics in Boogie, it is important to analyze how to model the
memory (specially when we want to include dynamic object allocations and references). Some discus-
sions about this can be found at [Lei08a] and [Lei08b]. Dafny’s implementation of the heap consists of a
map which keys are a reference and a Field name, and the value is the field. Then, it declares a global
variable (named H) of type Heap. For that reason, the following declarations are added to the prelude:

type Field α
type HeapType = 〈α〉[Ref, F ield α]α
var H : HeapType;
const unique alloc : Field bool

Since the map domain is total, unreferenced objects are valid keys. For that reason, the boolean alloc
field is introduced, which given a reference returns if it is currently allocated.

As a consequence of the heap implementation, the fields must be encoded into unique names:

Decl[[var field : T ;]] =
const unique SomeClass.field : Field Type[[T]];

The expressions translation is defined by the Tr[[.]] function:

Tr[[x]] = x
Tr[[this]] = this
Tr[[E � F]] = Tr[[E]] � Tr[[F]]
Tr[[E.field]] = H[Tr[[E]], SomeClass.field]
Tr[[old(E)]] = old(Tr[[E]])
Tr[[fresh(E)]] = (∀o : Ref • o ∈ Tr[[E]]⇒ o = null ∨ ¬old(H)[o, alloc])
Tr[[∀x • E]] = (∀x • Tr[[E]])

The Df[[.]] function validates that a Dafny expression is well formed (it will be used when translating
the method statements):

5.1. BACKGROUND 53

Df[[x]] = true
Df[[this]] = true
Df[[E � F]] = Df[[E]] ∧ Df[[F]]
Df[[E.field]] = Df[[E]] ∧ Tr[[E]] 6= null
Df[[old(E)]] = old(Df[[E]])
Df[[fresh(E)]] = Df[[E]]
Df[[∀x • E]] = Df[[E]]

The translation of the method Foo in SomeClass is defined like this:

Decl[[method Foo(ins) returns (outs)requires Pre; modifies Mod; ensures Post; {stmts}]] =
procedure SomeClass.Foo(this : Ref,Decl∗[[ins]]) returns (Decl∗[[outs]])

free requires this 6= null ∧ GoodRef[[this, SomeClass,H]];
free requires IsAllocated∗[[ins]];
requires Tr[[Pre]];
modifies H;
free ensures IsAllocated∗[[outs]];
ensures Tr[[Post]];
free ensures (∀o : Ref, f : Field α)

(H[o, f] = old(H)[o, f] ∨ (o ∈ old(Tr[[Mod]]) ∨ ¬old(H)[o, alloc]);
free ensures (∀o : Ref)(old(H)[o, alloc]⇒ H[o, alloc]);

{
var Locals∗[[stmts]];
Stmt∗Mod[[stmts]];

}

Decl[[x : T]] = x : Type[[T]]
IsAllocated[[x : T]] = T is reference type⇒ GoodRef[[x, T,H]]

GoodRef[[t, T, h]] =
{
t = null ∨ (h[t, alloc] ∧ dtype(t) = class.T) if T is a class name
t = null ∨ h[t, alloc] if T is object

Notice that the translation makes the heap be modified in all the methods. The framing is controlled
by adding some postconditions at the end of the method contract.

For the translation of methods, we need to be aware that in Boogie all the local variables must be
declared at the beginning of the procedure. The Locals[[.]] function extracts the local variables defined in
each expression:

Locals[[var x : T]] = x : Type[[T]]
Locals[[x := E]] = // Empty
Locals[[E.f := E]] = // Empty
Locals[[x := new T]] = // Empty
Locals[[assert E]] = // Empty
Locals[[assume E]] = // Empty
Locals[[if (E){S0} else {S1}]] = Locals[[S0]], Locals[[S1]]
Locals[[call xs := E.M(E1)]] = // Empty
Locals[[while (E) invs {S}]] = prevHeap, Locals[[S]]

And the statements are translated using the StmtMod[[.]] function:

StmtMod[[var x : T ;]] =
havoc x;

StmtMod[[x := E;]] =
assert Df[[E]];
x := Tr[[E]];

StmtMod[[E0.f := E1;]] =
assert Df[[E0]] ∧ Df[[E1]];

54 CHAPTER 5. IMPLEMENTATION

assert Tr[[E0]] ∈ old(Tr[[Mod]]) ∨ ¬old(H)[Tr[[E0]], alloc];
H[Tr[[E0]], C.f] := Tr[[E1]];

StmtMod[[x := new T ;]] =
havoc x; assume x 6= null ∧ ¬H[x, alloc] ∧ dtype(x) = T ;
H[x, alloc] := true;

StmtMod[[assert E;]] =
assert Df[[E]];
assert Tr[[E]];

StmtMod[[if (E){S0} else {S1}]] =
Df[[E]];
if (Tr[[E]]){StmtMod[[S0]]} else {StmtMod[[S1]]};

StmtMod[[while (E) invariant J ; {S}]] =
prevHeap := H;
while (Tr[[E]])

invariant Df[[J]] ∧ Tr[[J]];
invariant Df[[E]];
free ensures (∀o : Ref, f : Field α)

(prevHeap[o, f] = old(prevHeap)[o, f]∨
(o ∈ old(Tr[[Mod]]) ∨ ¬old(prevHeap)[o, alloc]);

free ensures (∀o : Ref)(old(prevHeap)[o, alloc]⇒ prevHeap[o, alloc]);
{Stmt∗Mod[[S]]}

StmtMod[[call xs := E.M(EE);]] =
assert Df[[E]] ∧ Df∗[[EE]] ∧ Tr[[E]] 6= null;
assert (∀o : Ref)(o ∈ Tr[[modifies C.M [[EE/argsC.M]]]]⇒

(o ∈ old(Tr[[Mod]]) ∨ ¬old(H)[o, alloc]));
call xs := C.M(Tr[[E]],Tr∗[[EE]]);

Finally, since all Dafny’s functions are pures, the translation produces an axiom as follows:

Decl[[function F (ins) : T requires R; reads rd; {body}]]
axiom (∀H : HeapType, this : Ref,Decl∗[[ins]])

(this 6= null ∧ Df[[R]] ∧ Tr[[R]]⇒ C.F (H, this, ins) = Tr[[body]])

5.2 Implementation Details

Since Dafny’s implementation is open-source [Mic09b], we decided to build in top of it all the concepts
that we have presented in Chapter 4. This section describes how we accomplish that goal.

5.2.1 Footprint

One of the decisions for the language that we made was to provide an implicit support for a footprint, like
the one presented in Section 3.1. Since the footprint must be available for all the references, we decided
to store it in the H already defined in Dafny. For that reason, we included the following statements in
the prelude:

const unique Footprint : Field [ref]int;

And we include two axioms to enforce the valid state of the footprint. The checks added ensure that
the footprint value is always non-negative (a negative footprint value does not have any meaning) and
that when an object is reached (or its footprint value is positive), it is allocated:

axiom (∀H : HeapType, o : Ref, t : Ref :: {H[o, Footprint][t]})
(o 6= null⇒ H[o, Footprint][t] ≥ 0);

axiom (∀H : HeapType, o : Ref, t : Ref :: {H[o, Footprint][t]})
(o 6= null ∧H[o, alloc] ∧H[o, Footprint][t] > 0⇒ t 6= null ∧H[t, alloc]);

5.2. IMPLEMENTATION DETAILS 55

5.2.2 Additions to the Translation

This section introduces all the relevant work that we have done in the translation functions in order to
implement the acyclicity features that we are presenting. We will also show the traceability between the
implementation decisions, and the static semantics and failing executions defined in Sections 4.4 and 4.3.

Classes

When translating a class declaration, we need to include the implementation of the class footprint in-
variant (from Definition 2 of Chapter 3). Notice that the implementation is almost the same as the one
defined in the static semantics.

Decl[[{attrs}class C{members}]] =
const unique class.C : ClassName;
Decl∗[[members]]
function FootprintInvariant C(Heap : HeapType, this : Ref) returns (bool);
axiom (∀Heap : HeapType, this : Ref :: {FootprintInvariant C(Heap, this)})

(this 6= null⇒ FootprintInvariant C(Heap, this) =
((IsAcyclic[[attrs]]⇒ Heap[this, Footprint][this] = 1)∧
(¬IsAcyclic[[attrs]]⇒ Heap[this, Footprint][this] >= 1)∧
Heap[this, Footprint][null] = 0 ∧ FieldInv∗Heap[[this, IsAcyclic[[attrs]],members]]));

IsAcyclic[[attrs]] = acyclic ∈ attrs

FieldInvHeap[[this, isAcyclic,member]] =

Heap[this, C.field] 6= null⇒ if member is
Heap[this, Footprint][Heap[this, C.field]] ≥ 1∧ var field : T
(isAcyclic⇒ Heap[Heap[this, C.field], Footprint][this] = 0∧
Heap[Heap[this, C.field], Footprint] ≤ Heap[this, Footprint])∧
FootprintInvariant T (Heap,Heap[this, C.field])

true otherwise

We are also ensuring that the class is well formed with regards to its acyclic structure. Remember from
Definition 2 that an acyclic class must have all its fields acyclic too:

Df[[{attrs}class C{members}]] = IsAcyclic[[attrs]]⇒ IsAcyclicField∗[[members]]

IsAcyclicField[[member]] =
{

IsAcyclic[[attrsT]] if member is var field : T
true otherwise

Allocation

When a new instance is being allocated, we need to set all its fields to null and specify the effect of that
statement in all the footprints.

StmtMod[[x := new T ;]] =
⊕havoc x; assume x 6= null ∧ ¬H[x, alloc] ∧ dtype(x) = T ;
?assume (∀m : Ref :: {H[x, Footprint][m]})(x 6= m⇒ H[x, Footprint][m] = 0)∧

(∀n : Ref :: {H[n, Footprint][x]})(x 6= n⇒ H[n, Footprint][x] = 0)∧
H[x, Footprint][x] = 1;

InitField∗[[x, fieldsT]]
H[x, alloc] := true;

InitField[[x, field]] = H[x, field] := null;

Remembering the allocation operation static semantics definition, we are only implementing its post-
condition (rule 7):

56 CHAPTER 5. IMPLEMENTATION

⊕ is to enforce the new(Spre,Spos, x) property

? is the the translation of footprint(Spos, x, x) == 1̄ ∧ (∀ref1 : Ref • ref1 6= x⇒
footprint(Spos, x, ref1) == 0̄ ∧ footprint(Spos, ref1, x) == 0̄)∧
(∀ref1, ref2 : Ref • ref1 6= x ∧ ref2 6= x⇒

footprint(Spre, ref1, ref2) == footprint(Spos, ref1, ref2))

Assignment

The specification of the Boogie command H[E0, C.f] := E1 is not enough to enforce the acyclicity
verification when executing an assignment (introduced in Section 3.1). For that reason, we are translating
the assignment statement like this:

StmtMod[[E0.f := E1;]] =
assert Df[[E0]] ∧ Df[[E1]];
assert Tr[[E0]] ∈ old(Tr[[Mod]]) ∨ ¬old(H)[Tr[[E0]], alloc];
�assert IsAcyclic[[attrsC]]⇒ H[E1, Footprint][E0] = 0;
call assignField(E0, C.f, E1, IsAcyclic[[attrsC]]);
⊗assume H[E0, C.f] = E1;

And the assignField procedure is added in the prelude:

procedure assignField(this : Ref, field : Field Ref, data : Ref, acyclic : bool);
requires this 6= null;
∓requires data = null ∨ ¬acyclic ∨H[data, Footprint][this] = 0;
modifies H;
ensures H[this, field] = data;
‡ensures (old(H)[this, field] 6= null⇒ ((∀ref1 : Ref, ref2 : Ref :: {H[ref1, Footprint][ref2]})

(H[ref1, Footprint][this] > 0⇒ H[ref1, Footprint][ref2] =
old(H)[ref1, Footprint][ref2]− old(H)[old(H)[this, field], Footprint][ref2]+

H[data, Footprint][ref2]);
‡ensures (old(H)[this, field] = null⇒ ((∀ref1 : Ref, ref2 : Ref :: {H[ref1, Footprint][ref2]})

(H[ref1, Footprint][this] > 0⇒ H[ref1, Footprint][ref2] =
old(H)[ref1, Footprint][ref2] +H[data, Footprint][ref2]);

‡ensures (∀ref1 : Ref, ref2 : Ref :: {H[ref1, Footprint][ref2]})
(H[ref1, Footprint][this] = 0⇒ H[ref1, Footprint][ref2] = old(H)[ref1, Footprint][ref2]);

The assignment implementation can be traceable with the static semantics as follows (rule 9):

�∓ enforce that requires o 6= null∧((isAcyclic(o)∧x 6= null)⇒ isAcyclic(x)∧footprint(Spre, x, o) ==
0̄);. It is worth mentioning that the parser takes care syntactically that x is acyclic (when it applies).

⊗ is the translation of ensures x == Spos(o.field);

‡ is the translation of (∀ref1, ref2 : Ref • (footprint(Spre, ref1, o) == 0̄⇒
footprint(Spre, ref1, ref2) == footprint(Spos, ref1, ref2))∧
(footprint(Spre, ref1, o) > 0̄⇒ footprint(Spos, ref1, ref2) ==

footprint(Spre, ref1, ref2)+̇footprint(Spre, x, ref2)−̇
footprint(Spre,Spos(o.field), ref2)))

Methods

One of the goals of our work is to reduce the specification explosion that may occur when verifying
acyclicity. Considering that we are generating a footprint invariant and the operations verify it, we can

5.3. TRANSLATION EXAMPLE 57

improve the method’s declaration as follows:

Decl[[method Foo(ins) returns (outs)requires Pre; modifies Mod; ensures Post; {stmts}]] =
procedure SomeClass.Foo(this : Ref,Decl∗[[ins]]) returns (Decl∗[[outs]])

free requires this 6= null ∧ GoodRef[[this, SomeClass,H]];
free requires IsAllocated∗[[ins]];
⊕free requires RefInvariant∗[[ins]];
⊕requires Tr[[Pre]];
modifies H;
free ensures IsAllocated∗[[outs]];
�ensures Tr[[Post]];
�free ensures (∀o : Ref, f : Field α)

(H[o, f] = old(H)[o, f] ∨ (o ∈ old(Tr[[Mod]]) ∨ ¬old(H)[o, alloc]);
�free ensures (∀o : Ref)(old(H)[o, alloc]⇒ H[o, alloc]);
�free ensures RefInvariant∗[[ins]];
�free ensures RefInvariant∗[[outs]];

{
var Locals∗[[stmts]];
Stmt∗Mod[[stmts]];

}

RefInvariant[[ref]] ={
ref 6= null⇒ FootprintInvariant dtype(ref)(H, ref) if dtype(ref) is classtype
true otherwise

The implementation is based on the semantics (rule 6) as follows:

⊕ enforces that ∀Spre •P(Spre)⇒ (Pre[y/this, vali/pi](Spre)∧
FootprintInvariant(Spre, y) ∧ FootprintInvariant(Spre, vali))

� enforces that of ∀Spre,Spos • ∃xs′ • (P[xs′/xs](Spre)∧
HeapSucc(Spre,Spos,Mod[xs′/xs, y/this, vali/pi])∧
Pos[y/this, vali/pi, xs′/xs, xs/ret](Spre,Spos) ∧ alive(xs,Spos)∧
FootprintInvariant(Spos, y) ∧ FootprintInvariant(Spos, vali))⇒ Q(Spre,Spos)

Macros

The macros defined to reduce some of the verification clauses are:

Tr[[modifies footprintsWith(refs)]] =
free ensures (∀ref1 : Ref, ref2 : Ref :: old(H)[ref1, alloc]∧∨

o∈refs old(H)[ref1, Footprint][o] = 0⇒ H[ref1, Footprint][ref2] =
old(H)[ref1, Footprint][ref2]);

Tr[[JoinFootprints(base, connected)]] =
free ensures (∀ref1 : Ref, ref2 : Ref :: old(H)[ref1, alloc]∧

old(H)[ref1, Footprint][base] > 0⇒ H[ref1, Footprint][ref2] =
old(H)[ref1, Footprint][ref2] +

∑
o∈connectedH[o, Footprint][ref2]);

Tr[[Unreachable(base, target)]] =
H[base, Footprint][target] = 0

5.3 Translation Example

This section will present a simple example of the result of the translation of a method that modifies an
object structure. The input program is the following:

58 CHAPTER 5. IMPLEMENTATION

class { : acyclic } Node {
var next : Node ;

}

class Main {
method add (a : Node , b : Node)

requires a != null && b != null && a != b ;
requires Unreachable (b , a) ;
modifies a , footpr int sWith ({ a }) ;
ensures a . next == b ;
ensures Jo inFootpr int (a , b) ;
ensures a . f o o t p r i n t [b] >= 1 ;

{
a . next := b ;

}
}

Let’s analyze the translation of the add method. The resulting Boogie procedure definition is:

1 procedure Main . add (this : r e f where this != null && Heap [this , a l l o c] &&
2 dtype (this) == class . Main , a : r e f where
3 Heap [a , a l l o c] && dtype (a) == class . Node , b : r e f where
4 Heap [b , a l l o c] && dtype (b) == class . Node) ;
5 free requires a != null ==> Footpr int Invar iant Node (Heap , a) ;
6 free requires b != null ==> Footpr int Invar iant Node (Heap , b) ;
7 // user−d e f i n e d p r e c o n d i t i o n s
8 requires a != null && b != null && a != b ;
9 requires Heap [b , Footpr int] [a] == 0 ;

10 modifies Heap ;
11 free ensures a != null ==> Footpr int Invar iant Node (Heap , a) ;
12 free ensures b != null ==> Footpr int Invar iant Node (Heap , b) ;
13 ensures Heap [a , Node . next] == b ;
14 free ensures (f o ra l l o : r e f , m: r e f : : old (Heap) [o , Footpr int] [a]
15 > 0 ==> Heap [o , Footpr int] [m] == old (Heap) [o , Footpr int] [m] +
16 Heap [b , Footpr int] [m]) ;
17 ensures Heap [a , Footpr int] [b] >= 1 ;
18 // Macro : f o o t p r i n t s W i t h
19 free ensures (f o ra l l o : r e f , m: r e f : : old (Heap) [o , a l l o c] &&
20 old (Heap) [o , Footpr int] [a] == 0 ==> Heap [o , Footpr int] [m]
21 == old (Heap) [o , Footpr int] [m]) ;
22 // frame c o n d i t i o n
23 ensures (fora l l<alpha> o : r e f , f : F i e ld alpha : : { Heap [o , f] }
24 o != null && old (Heap) [o , a l l o c] && f != Footpr int ==>
25 Heap [o , f] == old (Heap) [o , f] | | o == a) ;
26 // b o i l e r p l a t e
27 free ensures HeapSucc (old (Heap) , Heap) ;

• Lines 5, 6, 11 and 12 enforce the FootprintInvariant

• Line 9 requires that b does not reach a in order to prevent a cycle when executing the assignment

• Lines 19 to 25 specify the effect over the resulting footprint, using the macros provided by the
language

Finally, the method implementation is:

5.4. EXPERIMENTS 59

1 implementation Main . add (this : r e f , a : r e f , b : r e f)
2 {
3 // −−−−− assignment s ta tement −−−−−
4 assert a != null ;
5 assert Heap [b , Footpr int] [a] == 0 ;
6 ca l l a s s i g n F i e l d (a , Node . next , b , true) ;
7 assume Heap [a , Node . next] == b ;
8 assume IsGoodHeap (Heap) ;
9 }

• Line 5 checks that b does not reach a before executing the assignment (in Line 6)

• Line 6 calls the assignField procedure (defined in Subsection 5.2.2), which specifies the impact of
the assignment in the state (including the footprint)

5.4 Experiments

The last stage of this thesis is the empirical evaluation of the implementation tool. For that, we elaborated
a set of sample programs to experiment our language with real world examples. We will not show
the source code of most of the samples because of their length, but the whole suite is available at
http://acycliclanguage.neisen.com.ar/experiments. The test cases are the following:

1. A simple acyclic linked list

2. An acyclic set implemented over a balanced binary tree

3. An acyclic dictionary implemented over the set from Item 2

The first experiment is presented in Figure 5.4. The linked list implementation is the one explained
in Section 5.3, but we extended it with the main method. This last method creates three nodes and uses
the add method to connect them.

The linked list sample code is very clean, considering that we did not add many predicates about
acyclicity or footprints. After running the verifier, we get a successful verification:

Now, in Figure 5.5 we modify the main method to produce a cycle adding the call add(n3, n1)
statement.

After running the verifier, we get the following error:

http://acycliclanguage.neisen.com.ar/experiments

60 CHAPTER 5. IMPLEMENTATION

class { : acyclic } Node {
var next : Node ;

}

class Cl i en t {
method add (a : Node , b : Node)

requires a != null && b != null && a != b ;
requires Unreachable (b , a) ;
modifies a , footpr int sWith ({ a }) ;
ensures a . next == b ;
ensures Jo inFootpr int (a , b) ;
ensures a . f o o t p r i n t [b] >= 1 ;

{
a . next := b ;

}

method main ()
{

var n1 : Node ;
var n2 : Node ;
var n3 : Node ;

n1 := new Node ;
n2 := new Node ;
n3 := new Node ;

ca l l add (n1 , n2) ;
ca l l add (n2 , n3) ;

}
}

Figure 5.4: Linked list experiment

method main ()
{

var n1 : Node ;
var n2 : Node ;
var n3 : Node ;

n1 := new Node ;
n2 := new Node ;
n3 := new Node ;

ca l l add (n1 , n2) ;
ca l l add (n2 , n3) ;
ca l l add (n3 , n1) ;

}

Figure 5.5: Linked list experiment producing a cycle

5.5. LESSONS LEARNED 61

The error shown in the console refers to a bpl file, which is the location of the Boogie translation
from the program original source code. The verifier indicates the precise Boogie line that fails and our
translation links each Boogie statement to the original source code line that it represents. Then, it is
easy to trace which line of the program is making the verification fail.

The next experiment is an implementation of an acyclic set over a balanced binary tree. The program
consists of the TreeNode and SetBBT classes. The TreeNode exposes its fields (right and left nodes)
and the SetBBT declares two methods (one adds an element and the other one is the inclusion). To
successfully verify the whole programs, we needed to write some complex predicates and, in consequence,
the program has 180 lines of code.

We had a similar experience when implementing an acyclic dictionary over the set from the previous
experiment. The Dictionary has method to add an entry and another one to retrieve the definition (by
a key). Recalling that one of our goals was to verify modular programs (from Chapter 1), we assumed
the validity of the set’s specification and developed the dictionary using it. Again, to verify the whole
program successfully, we needed to write 100 lines of code.

5.5 Lessons Learned

We have learned several lessons from the analysis of the results of the experiments from Section 5.4. We
examined the programming experience and the effort needed to successfully verify a program with acyclic
data structures.

One of the positive lessons learned is that we could verify the acyclic data structures that we intended.
The experiments show that our theoretical ideas are correct, and the tool can be used to create more
examples and work on future projects. Moreover, in simple programs we observed that the amount is
extra annotations in the contracts is small, since the semantic rules take care of the necessary proof
obligations.

The more complex experiments added some difficulties; in general we had to decipher the verifier’s
error messages to figure out the right predicate to add or change. Also, finding the right loops invariant
was quite difficult because we had to include predicates about the footprints. The lesson learned here is
that to achieve a successful verification of complex programs, the programmer must have some skills in
specifying algorithms and contracts. Leino reported a similar experience when he wrote the Schorr-Waite
algorithm in Dafny[Lei10]. In the end, he comments that this task (specifying the algorithm) is not yet
for non-experts.

The experience of programing modular programs was also a bit tedious. The modular composition
of classes adds some proof obligations needed in the methods contracts. In consequence, we lose some

62 CHAPTER 5. IMPLEMENTATION

precision in the footprints after a method invocation. The language semantics (like the footprint invariant)
and the macros we propose help to reduce the annotations for the specification of the footprint changes.
A potential solution would be to perform inline expansions[Ser97] of small methods.

Chapter 6

Conclusions and future work

We started the work in this thesis researching on the design of modular languages, with the goal of
incorporating new features that can allow programmers to write better programs with formal guarantees.
There are a number of possible ideas in this area and we decided to ask how a language can guarantee
that a set of memory references are acyclic.

After analyzing the related work in the subject and discussing about acyclicity, we presented a toy
language that enforces it, defining the syntax and operational semantics. The language supports method
specification with pre/post condition contracts using first order formulas. Then we defined the static
semantics that verifies the programs and we prove that a successful verification implies that the program
is sound and does not fail.

Finally, we implemented a prototype tool to present our theoretical ideas in a real environment.
The tool is a verifier that translates the programs into Boogie[Lei08b] and analyzes the result with the
Z3 solver[dMB08]. Using it, we were able to make some experiments and study the results. The lessons
learned were both positive and negative. From the positive side, we were able to confirm that our theories
are correct by implementing several acyclic data structures from the real world. On the other hand, we
experienced that as the programs we write get bigger, the annotation burden becomes more tedious and
complex. Even though the language semantics and the use of macros reduce the number of annotations,
some experiments needed complex method contracts and proof obligations in the code. A future project
of work can try to reduce the proof obligations by inferring the effects in the footprints with regards
to the verifications written by the programmer. Another useful technique is to produce the method
preconditions based on the statements it executes. Doing experiments with Separation Logic[PB08] may
deliver some interesting results too.

Most of the work that we have done in this thesis tries to deal with the problem of verifying modular
object oriented programs and their side effects. We focused on the study of verifying acyclicity properties
of objects over a subset of a Java based language, but we left some open issues for future work. A
first enhancement to our language could be the support of inheritance. Since the language semantics
assumes static binding, it must be changed to support dynamic binding ([SJPS08] presents a solution to
that problem). Besides, dealing with invariant in a modular way is difficult with inheritance[BCD+05].
Other interesting features to include are inline method and classes implementations, and multithreading
programming; to mention a few. Probably each of those features might require an individual research
work, but some of the related work materials provide a good starting point.

There are some scenarios where we could have supported controlled cycles, because there are cyclic
data structures used in the real world that can be turned into acyclic (or acyclic enough) without efficiency
loss. Doubly-Linked lists might be a good starting point to work on. An interesting code to show would
be the Windows Device Driver presented in [LQG+09].

Singularity Project[HLA+05] presented an experimental work on how to create an operating system
from scratch, using contracts and advanced programming techniques to accomplish a more reliable system.
That experience can lead to an interesting path of future work to create a memory management system
that understands the acyclicity property of memory objects, and therefore use a cheaper garbage collection

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

algorithm. Minix[Tan10] should be enough to create a proof-of-concept. The results on the performance
of the memory management system will serve to complete our study of acyclic objects.

Bibliography

[App09] Apple. Memory management programming guide for Cocoa. http://developer.apple.com/
iphone/, 2009.

[AS96] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 1996.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

[BCD+05] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO, volume
4111 of Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

[BL05] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
PASTE ’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 82–87, New York, NY, USA, 2005. ACM.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview, 2004.

[Boy03] John Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static
Analysis: 10th International Symposium, volume 2694 of Lecture Notes in Computer Science,
pages 55–72, Berlin, Heidelberg, New York, 2003. Springer.

[Bro75] Fred P. Brooks. The mythical man-month. In Proceedings of the international conference on
Reliable software, page 193, New York, NY, USA, 1975. ACM.

[CKP+08] Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana Sokolova, Horst Stadler, and
Robert Staudinger. A compacting real-time memory management system. In ATC’08:
USENIX 2008 Annual Technical Conference, pages 349–362, Berkeley, CA, USA, 2008.
USENIX Association.

[CPN98] David Clarke, John Potter, and James Noble. Ownership types for flexible alias protection.
SIGPLAN Notes, 33(10):48–64, 1998.

[Dij97] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver, volume 4963/2008 of
Lecture Notes in Computer Science, pages 337–340. Springer Berlin, April 2008.

[DVE00] Sophia Drossopoulou, Tanya Valkevych, and Susan Eisenbach. Java type soundness revisited,
2000.

[Ern08] Michael D. Ernst. Type Annotations specification (JSR 308). http://types.cs.washington.
edu/jsr308/, 2008.

65

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

66 BIBLIOGRAPHY

[FFA99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In
PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, pages 192–203, New York, NY, USA, 1999. ACM.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and implementation, pages 234–
245, New York, NY, USA, 2002. ACM.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Proceedings
of a Symposium on Applied Mathematics, volume 19 of Mathematical Aspects of Computer
Science, pages 19–31, Providence, 1967. American Mathematical Society.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating compact
verification conditions. SIGPLAN Not., 36(3):193–205, 2001.

[HK00] Kees Huizing and Ruurd Kuiper. Verification of object oriented programs using class in-
variants. In FASE ’00: Proceedings of the Third International Conference on Fundamental
Approaches to Software Engineering, pages 208–221, London, UK, 2000. Springer-Verlag.

[HLA+05] Galen Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel Fahn-
drich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David
Tarditi, Ted Wobber, and Brian D. Zill. An Overview of the Singularity Project. Technical
Report MSR-TR-2005-135, October 2005.

[Hoa83] Tony Hoare. An axiomatic basis for computer programming. Commun. ACM, 26(1):53–56,
1983.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Kas06] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM, volume 4085
of Lecture Notes in Computer Science, pages 268–283. Springer, 2006.

[Kas08] Ioannis T. Kassios. A theory of object oriented refinement. PhD thesis, University of Toronto,
2008.

[Koc03] Stephen Kochan. Programming in Objective-C. Sams, Indianapolis, IN, USA, 2003.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design,
1999.

[Lei08a] K. Rustan M. Leino. Specification and verification of object-oriented software. Marktoberdorf
International Summer School, lecture notes, 2008.

[Lei08b] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML 178, 2008.

[Lei10] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
Manuscript KRML 203, 2010.

[LG86] Barbara Liskov and John Guttag. Abstraction and specification in program development. MIT
Press, Cambridge, MA, USA, 1986.

[LLM07] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Formal Aspects of Computing, 19(2):159–189,
2007.

[LM09] K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded programs. In
ESOP ’09: Proceedings of the 18th European Symposium on Programming Languages and
Systems, pages 378–393, Berlin, Heidelberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 67

[LMS09] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of concurrent programs with
Chalice. In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, FOSAD, volume
5705 of Lecture Notes in Computer Science, pages 195–222. Springer, 2009.

[LP04] Yi. Lu and John Potter. On Reachability and Acyclicity. University of New South Wales,
School of Computer Science and Engineering, 2004.

[LQG+09] Shuvendu K. Lahiri, Shaz Qadeer, Juan P. Galeotti, Jan W. Voung, and Thomas Wies. Intra-
module inference. In CAV ’09: Proceedings of the 21st International Conference on Computer
Aided Verification, pages 493–508, Berlin, Heidelberg, 2009. Springer-Verlag.

[Mey91] Bertrand Meyer. Design by Contract, in Advances in Object-Oriented Software Engineering.
Prentice Hall, 1991.

[Mey92] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1992.

[Mic09a] Microsoft. Code contracts. http://research.microsoft.com/en-us/projects/
contracts/, 2009.

[Mic09b] Microsoft. Microsoft Research Boogie. http://boogie.codeplex.com/, 2009.

[Par72] David L. Parnas. A technique for software module specification with examples. Commun.
ACM, 15(5):330–336, 1972.

[PB08] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance.
In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 75–86, New York, NY, USA, 2008. ACM.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential Java. In ESOP
’99: Proceedings of the 8th European Symposium on Programming Languages and Systems,
pages 162–176, London, UK, 1999. Springer-Verlag.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,
2002.

[Ser97] Manuel Serrano. Inline expansion: When and how? In PLILP ’97: Proceedings of the 9th In-
ternational Symposium on Programming Languages: Implementations, Logics, and Programs,
pages 143–157, London, UK, 1997. Springer-Verlag.

[SJP08] Jan Smans, Bart Jacobs, and Frank Piessens. Vericool: An automatic verifier for a concurrent
object-oriented language. In FMOODS ’08: Proceedings of the 10th IFIP WG 6.1 international
conference on Formal Methods for Open Object-Based Distributed Systems, pages 220–239,
Berlin, Heidelberg, 2008. Springer-Verlag.

[SJP09] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In Genoa: Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, pages 148–172, Berlin, Heidelberg, 2009.
Springer-Verlag.

[SJPS08] Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic verifier for
Java-like programs based on dynamic frames. In José Luiz Fiadeiro and Paola Inverardi,
editors, FASE, volume 4961 of Lecture Notes in Computer Science, pages 261–275. Springer,
2008.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems (TOPLAS), 24(3):217–298,
2002.

[Tan10] Andrew Tanenbaum. Minix. http://www.minix3.org/, 2010.

[Ter04] Pat D. Terry. Compiling with C# and Java. Addison Wesley, October 2004.

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://boogie.codeplex.com/
http://www.minix3.org/

	1 Introduction
	1.1 What this thesis is about
	1.2 Related Work
	1.3 Thesis Structure

	2 Dynamic Frames
	2.1 Overview
	2.2 Implementations based on Dynamic Frames

	3 Dealing with acyclicity in an Object-Oriented language
	3.1 Enforcing acyclicity by construction

	4 A language that enforces acyclicity
	4.1 Syntax
	4.2 Dynamic Operational Semantics
	4.3 Failing Executions
	4.4 Static Semantics
	4.5 Semantics Soundness

	5 Implementation
	5.1 Background
	5.2 Implementation Details
	5.3 Translation Example
	5.4 Experiments
	5.5 Lessons Learned

	6 Conclusions and future work
	Bibliography

