
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Using Daikon to automatically estimate the
number of executed instructions - Internal

preliminary Report

Victor Braberman 2 Diego Garbervetsky 1 Sergio Yovine 3

Abstract

We present a proof of concept that combines static and dynamic analysis in or-
der to obtain symbolic expression that over-approximates the number of times an
statement is executed in object oriented languajes like Java. The tool leverages
existing dynamic analysis tools like Daikon, but guides it (via programm instru-
mentation) in order to obtain linear invariants that, after some tranformations, are
useful to generate the symbolic expressions. We show how this tool can be used to
over-estimate memory consumption in Java applications.

Key words: Program guidance, byte instrumentation,
Java,Run-time analysis.

1 Introduction

We present a proof of concept that combines static and dynamic analysis in
order to obtain symbolic expression that over-approximates the number of
times an statement is executed in object oriented languajes like Java. The
tool leverages existing dynamic analysis tools like Daikon, but guides it (via
programm instrumentation) in order to obtain linear invariants that, after
some tranformations, are useful to generate the symbolic expressions.

We use a technique based on computing linear invariants that relate pro-
gram variables to the number of times a statement is executed. Roughly
speaking, this is the number of integer points that satisfy the invariant. This
number is given in a parametric form as a polynomial where unknonws are

1 School of Computer Science, Universidad de Buenos Aires, Argentina. E-mail:
diegog@dc.uba.ar. Partially supported by projects ANCyT grant PICT 11738 and IBM
Eclipse Innovation Grants.
2 School of Computer Science, Universidad de Buenos Aires, Argentina. E-mail:
diegog@dc.uba.ar. Partially supported by projects ANCyT grant PICT 11738 and IBM
Eclipse Innovation Grants.
3 VERIMAG, France. E-mail: sergio.yovine@imag.fr. Partially supported by projects
DYNAMO (Min. Research, France) and MADEJA (Rhône-Alpes, France).

c©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Barberman, Garbervetsky, and Yovine

method input parameters. Our method does not require annotating the pro-
gram in any form and does produce non-linear parametric upper-bounds. The
polynomials are to be evaluated on program (or method) inputs to obtain the
actual bound.

The approach combines techniques used for performance analysis [11],
cache analysis [4], data locality [17], worst case execution time analysis [16],
and memory optimization [14,25].

2 Preliminaries

2.1 Notation for Programs

We define a program to be a set {C0, C1, . . .} of classes. Each class C has a
set {C.m0, C.m1, . . .} of Methods. A method has a list Pm of parameters and
a sequence of statements denoted by Bodym. Each statement in a program
is identified with a Label =def Method × IN which uniquely characterizes its
location by means of the stm mapping (stm : Label → Statement). When
stm(l) is a call statement argsl will denote the list of the call arguments.

A Call Graph of a method m is a directed graph CGm =< N, E > where
N = Methods represents the program methods and E = (Methods×Label×
Methods) represents the call relation. (c, l,m) ∈ E means that the method
c, at location l, calls method m. For simplycity, we will assume that we
can determine, by static analysis, for each call, exactly which method will be
invoked, not being able to have more than one possible invocable method.

When CGm is a DAG, a finite Call Tree CTm =< N,E > can be obtained
by unfolding the call graph. This unfolding is done by cloning the nodes that
have more than one parent. N = MethodsCT = Label+ ×Method represents
the path from the root node and E = (MethodsCT × Label ×MethodsCT)

Example

In Figure 1 we present one motivating example. It is a (very simple) im-
plementation of a dynamic array using a list of fixed sized nodes. We are
interested in the allocation statement located at newBlock.7. The number
of times this statement is executed when execution start by method addAll

depends on the size of the collection passed as a parameter. The execution
of this statement takes place in the method where a new block of memory is
request because the previous block is full. The Call Graph and Call Tree for
method m0 are depicted in Figure 2. 2

CallChainm denote the set of possible paths trough the call graph starting
from method m (i.e, following its egdes).

The CallChain sets for our example are the following:

2

Barberman, Garbervetsky, and Yovine

public class ArrayDim {
Vector list; int len;
final static int BSIZE = 5;
public ArrayDim() {

1: list= new Vector();
2: len = 0; }
public void add(Object o) {

1: Object[] block;
2: if (len % BSIZE == 0)
3: block = newBlock(BSIZE);

else
4: block=(Object [])

list.lastElement();
5: block[len % BSIZE] = o;

6: len++;
}
Object[] newBlock(int how) {

7: Object[] block=new Object[how];
8: list.add(block);
9: return block;
}
void addAll(Collection c) {

10: for(Iterator it=c.iterator();
it.hasNext();) {

11: add(it.next());
}

}
}

Fig. 1. Motivating example

Fig. 2. Call Graph for method ArrayDim.addAll of the proposed example

CallChainaddAll = {addAll.11, addAll.11.add.3, addAll.11.add.4}

CallChainadd = {add.3, add.4}

CallChainnewBlock = {}

CallChainList.lastElement = {}
A control flow graph (CFG) is a directed graph G =< N, E, entry, exit >

where N is the set of nodes and E is the set of edges. entry and exit are
specials nodes indicating unique start and ending points. Given a method m,
Gm is the CFG of m which includes transitively the CFG of every method
that m calls. Each node n ∈ N corresponds to one statement and has a
label l ∈ Label+. Notice that, since a called method is macro-expanded in
the control flow graph each time it is invoked, labels are composed by the
corresponding path in CGm and its relative location.

We call Instrumentation Site every place (defined by its Label) of the
program we want to analyze. We will define IS as the set of Instrumentation
Sites.

ISm denotes the set of instrumentation sites reachable from the entry point
of the method m control flow graph.

3

Barberman, Garbervetsky, and Yovine

ISm = {l ∈ Label+.l = cc.is ∧ cc ∈ CallChainm ∧ is ∈ IS}
Assuming that IS = {newBlock.7}:
ISaddAll = {addAll.11.add.3.newBlock.7}

ISadd = {add.3.newBlock.7}

ISnewBlock = {newBlock.7}

2.2 Symbolic analysis

An invariant for a program location is an assertion over the program variables
that holds whenever this location is reached in every program run. For our
work we consider an invariant I over the set of variables V as a set of linear
or non-linear constraints over V .

Given a method m and a program label l, Im
l denotes an invariant predicate

over the program variables, for the control flow graph of the method m, at
the node labelled l.

There is a lot of research on symbolic analysis techniques can be used to
compute invariants. For example, [7,6] propose an approach based on abstract
interpretation [5], where the invariants are convex polyhedrons; [18] proposes
the use non-linear constraint solving for obtaining linear invariants; [12] pro-
poses methods based on symbolic evaluation that can handle some non-linear
constraints. For java, languages for describing assertions are becoming popular
(e.g. JML [15]) and several method for synthesizing invariants were proposed
(for instance, [19],[10] and [13]).

In this paper, invariants will be generated using Daikon [10]. The middle
column of Table 1 shows some global invariants for some instrumentation
points reachable from method addAll.

is Im0
cs C(Im0

cs ,Pm0)

addAll.11 {it.counter >= 0, it.counter < size(c), this.len =
it.counter}

size(c)

addAll.11.add.5 {it.counter >= 0, it.counter < size(c), this.len =
it.counter}

size(c)

addAll.11.add.3.newBlock.7 {it.counter >= 0, it.counter < size(c), this.len =
it.counter, this.len%BSIZE = 0}

1
5
sizec+(per(sizec, [0, 4

5
, 3
5
, 2
5
, 1
5
])

Table 1
Some invariants and Ehrhart polynomials for addAll

Given set of constraints I, over a set of variables V = W] P , C(I, P)
denotes a symbolic expression over P that provides the number of integer
solutions for the remaining variables W . More precisely, C yields an expression
which is equivalent to λ~p.(#{ ~w | I [W/~w, P/~p] }).

4

Barberman, Garbervetsky, and Yovine

In general the resulting expression has the form:∑
1≤i≤k

γ(Condi(P)) ∗ Ei(P)

where γ is such that γ(Condi(P)) = 1 if Condi(P) = TRUE, 0 otherwise.

There are several techniques that obtain these symbolic expressions [3,11,20].
In [3], Ei’s are polynomials (called Ehrhart polynomials [9]) whose coefficients
vary depending on the parameters’ values. In [11], Eis are integer-valued
symbolic expressions that may consist of arbitrary divisions, multiplications,
subtractions, additions, exponentiations, and maximum and minimum. Its
operands can be parameters, integer constants and infinity symbols (∞, −∞).

The right column of Table 1 shows the Ehrhart polynomials that express
the number of times the statements is potentially executed for some instru-
mentation points reachable from method addAll in terms of its parameters.

3 Analysis Phases

Our aim is to compute a function that given a method m, it yields a symbolic
expression that over-approximates the number of times that a selected set of
statements are executed assuming execution starts at m. As detailed in [23]
it can be performed as stated in the following algorithm:

computeInstances(m, IS)

// returns an Expression (over Pm)
res:=0;

for each is ∈ ISm do

get Iis;

instances:=C(Iis, Pm);
res:=res + instances;

end for;
return res;

The algorithm receives a method and a set of instrumentation sites. Then,
they obtain a global invariant for each path in ISm. Finally, the invariant is
used to generate the symbolic expression.

In this section we will describe how to obtain the global invariant Iis. It
will be described in terms of the program variables, constants and method’s
parameters. If the creation is involved in one or several loops, the induction
variables (i.e., those which have different values at different loop iterations)
will appear in the invariant. The induction variables will belong to the set of
free variables which are used to count the number of solutions. These variables
have a direct impact on the counting phase because they influence the number
of integer solutions for the obtained invariant.

5

Barberman, Garbervetsky, and Yovine

3.1 Phase 1 - Program Instrumentation

In this phase, the application is instrumented in order to generate a new code
that behaves as the original one but assists Daikon [19] in obtaining linear
invariants. As Daikon discovers local invariants at method’s entry and exit
points and we are interesting in finding global invariants that reflex the valid
programs estates at the selected program points, a trick has to be performed.
This consist in generate dummy methods which has, as parameters, the vari-
ables we want to analyze. Then, we add a call to this method in program
point subject to analysis with the appropriate arguments. We also need to in-
struments all call sites, in order to afterwards bind all call chain local invariant
and generate the global one.

We are not interested in all program variables. We only need the ones that
impact in the number of execution of the desired statements. Then, in order
to avoid over-counting, we had to choose only the inductives variables.

We give a special treatment to iterator-driven cycles over collections. In
order to obtain linear invariants for this class of cycle, we instrument the
code in order to create a ”counter” that is associated with the iterator and is
incremented each time a Iterator.next is executed.

Finally, we need that linear invariants. To assist Daikon in finding them,
we adapt some variables that are not of Integer type (Collections, Strings,
Arrays) instrumenting information about their sizes.

We perform the following task:

Let IS ⊆ Label, V ar = {v1, v2, . . .} be the set of variables.

Given a class C, each method m is instrumented according to the following
algorithm:

instrumentMethod(m)
// instruments method m
// returns the set of created dummy method
ε = ∅;
IMs = ∅;
initCode:=codeInitParams(m);
insert(m,initCode);
for each l ∈ Bodym do

(iml, ε
′)= gen(l, ε);

code = instrument(l, iml, ε
′);

insertBefore(m,l,code);
IMs = IMs ∪ im
ε = ε′;

end for;
return IMs;

The algorithm first instruments code to record the original value of the
method parameters. They will be used later, when binding invariant via the

6

Barberman, Garbervetsky, and Yovine

assignment of parameters with arguments. Then, for each statement in the
method’s body generates code that will be inserted before.

All resulting set of methods IMs are appended to a class, that will be
passed to Daikon together with the application. The invariant at each iml

entry point will be the corresponding local invariant at location l.

The function gen : Label → Method × IP (V ar) is defined as follows (as-
suming l = (C.m, n)):

gen(l , ε)=(⊥, ε⊕ countit) if stm(l)=itDef it

gen(l ,ε) =(im, ε) if stm(l)=call m’

where pim = sizeParams(pm ∪ pInitm ∪ inductives(l) ∪ argscallm′ ∪ ε)

gen(l, ε) =(im, ε) if l ∈ IS

where pim = sizeParams(pm ∪ pInitm ∪ inductives(l) ∪ ε)

gen(l, ε)=(⊥, ε) if l /∈ IS

pInitm = {p init · p ∈ pm} refers to new special variables we use keep a
copy of their original value. pInitp refers to ”init variable that corresponds to
p.

The function sizeParams is responsible for obtaining the integer represen-
tatives of a list of variables.

sizeParams(pl) =
⋃

v∈(pl)

sizeVar(v)

The function sizeVar takes a variable of any type and yields its integer
representatives.

sizeVar(v) =


{sizev} if type(v) ∈ Sizeable

{v} if type(v) = Int⋃
f∈fields(v)

v sizevar(f) if type(v) v Object

v sizevar(f) is a notation to refer the set variables with is equal to
sizevar(f) but adding a “v ” to the name of each variable in the set.

The function codeInitParams Method → List[stm] takes a method a
yields the code that initializes the value of each variable in the pInit set.

codeInitParams(m) =
⊔

p∈pm

pInitP = p . codeForParams(pInitm)

The function instrument : Label × Method → List[stm] is defined as
follows (assuming l = (C.m, n)):

7

Barberman, Garbervetsky, and Yovine

instrument(l, ⊥, ε) =[countit=0] if stm(l)=itDef it

instrument(l, ⊥, ε) =[countit++] if stm(l)=itNext it

instrument(l, im, ε)=instr(pm ∪ inductives(l) ∪ argsl ∪ ε) if stm(l)=call m’

instrument(l, im, ε)=instr(pm ∪ inductives(l) ∪ ε) if l ∈ IS

instrument(l, im, ε)=[] if l /∈ IS

instr(pl, im) =codeForParams(pl).call im(sizeParams(pl))

The function codeForParams is responsible for obtaining the code neces-
sary to reflex its ”sizeable” information of a list of variables.

codeForParams(pl) =
⊔
v∈pl

codevar(v)

The function codeVar takes a variable of any type and yields the corre-
sponding code necessary to reflex its ”sizeable” information.

codevar(v) =


{if(v 6= null)codeSize(v) else sizev = 0} if type(v) ∈ Sizeable

{} if type(v) = Int⊔
f∈fields(v)

{if(v 6= null)codeV ar(v) else sizef = 0} if type(v) v Object

codeSize(v) =


sizev = v.size() if type(v) v Object

sizev = v.length if type(v) = Array

sizev = v.lengt if type(v) = String

Table 2 shows part of the instrumented code for the example. The set if
selected instrumented sites is IS = newBlock.7

3.2 Phase 2 - Finding local invariants

As we have explained previously, we use Daikon to obtain de local invariants
using the instrumented application and the new class of dummy methods. We
ask Daikon to only find invariants for this class. The obtained invariants will
have the information about all instrumented sites in the original code. In
order to formalize this procedure we define a function (that will be performed
by Daikon) that given an instrumentation site or a call site it will provide a
local invariant:

invariant: Label → Invariant
(∀l ∈ Label.l ∈ IS ∨ l ∈ CallSite)

Table 3 shows some obtained invariants for our example. They correspond
to the instrumentation site newblock.7 and the call sites addAll.7 and add.3

that belong to its call chain.

8

Barberman, Garbervetsky, and Yovine

public class ArrayDim {
Vector list; int len;

final static int BSIZE = 5;

public void add(Object o) {
Object[] block;
ArrayDim this init=this;

int this init list size, this init len;

int this list size, this len;

int ArrayDim BSIZE;

if(this init!=null) {
if(this init list!=null)

this init list size=this init list.size();

else this init list size = 0;

this init len = this init.len; }
else { this init list size = 0;

this init len = 0; }
if (len % BSIZE == 0) {

ArrayDim BSIZE = BSIZE;

if(this!=null) {
if(this list!=null)

this list size = this list.size();

else this list size = 0;

this len = this.len; }
else { this list size = 0;

this len = 0; }
IM.ArrayDim 3(this list size,this list len,

this init list size, this init len,

ArrayDim BSIZE);

block = newBlock(BSIZE);

}
else {

block=(Object [])list.lastElement(); }
block[len % BSIZE] = o;

len++; }
}
Object[] newBlock(int how) {

int how init = how;

ArrayDim this init=this;

int this init list size,this init len;

int this list size,this len;

int ArrayDim BSIZE;

this init = this;

if(this init!=null) {
if(this init list!=null)

this init list size=this init list.size();

else this init list size = 0;

this init len = this init.len; }
else { this init list size = 0;

this init len = 0; }
ArrayDim BSIZE = BSIZE;

if(this!=null) {
if(this list!=null)

this list size = this list.size();

else this list size = 0;

this len = this.len; }
else { this list size = 0;

this len = 0; }
IM.ArrayDim 7(how, how init,

this list size,this list len,

this init list size, this init len,

ArrayDim BSIZE);

Object[] block=new Object[how];

list.add(block);

return block;

}
void addAll(Collection c) {

Collection c init = c;

int c size, c init size;

if(c init!=null) c init size = c init.size();

else c init size = 0;

ArrayDim this init;

int this init list size, this init len;

int this list size, this len;

int ArrayDim BSIZE;

this init = this;

int it count;

if(this init!=null) {
if(this init list!=null)

this init list size=this init list.size();

else this init list size = 0;

this init len = this init.len; }
else { this init list size = 0;

this init len = 0; }
it count = 0;

for(Iterator it=c.iterator();

it.hasNext();) {
if(c!=null) c size = c.size();

else c size = 0;

it count++;

ArrayDim BSIZE = BSIZE;

if(this!=null) {
if(this list!=null)

this list size = this list.size();

else this list size = 0;

this len = this.len; }
else { this list size = 0;

this len = 0; }
IM.ArrayDim 11(it count, c size, c init size,

this list size,this list len,

this init list size, this init len,

ArrayDim BSIZE);

add(it.next());

}
}

}

Table 2
Instrumented code for the example

3.3 Phase 3 - Generating global invariants

We generate a global invariant for each instrumentation site. To do that, we
process all the call chains from m to each reachable method that contains
creations sites. Then, for every chain a global invariant is generated by bind-

9

Barberman, Garbervetsky, and Yovine

label invariant

addAll.11 BSIZE = 5, sizef this init list = 0, f this init len = 0, sizec init =
sizec, sizef this list >= 0, sizef this list < sizec, f this len >= 0, f this len <
sizec, sizef this list <= f this len, count it = f this len + 1, count it >= 1, count it <=
sizec

add.3 BSIZE = 5, sizef this list = sizef this init list, f this len =
f this init len, f this len%5 = 0, sizef this list <= f this len, sizef this list <
5, f this len = (sizef this list ∗ 5)

newBlock.7 BSIZE = 5, sizef this list = sizef this init list, f this len = f this init len, how =
how init, f this len%5 = 0, how = 5, sizef this list <= f this len, sizef this list <
how, f this len = (sizef this list ∗ how)

Table 3
Local invariants found by Daikon for two call sites and one instrumentation site

ing the local invariant of each call site (they can be many) and the creation
site,using a technique similar to [6].

To perform the call chain binding we associate the caller arguments with
the callee formal parameters. As the parameters value could have changed,
we use the artificially included pInit that represent the original value of the
formal parameters. Given (l = cc.is ∈ ISm), a call chain that finish with an
instrumentation site, I is defined as follows:

I: Label+ → Invariant

Icc.is =
⊔

i=1..length(cc)

(
inv(cc[i]) ∪ invCall(argscc[i], pInitmcc.is[i+1]

)
)
∪ inv(is)

invCall(args, params)=
⋃

i=1..length(args)

{args[i] = params[i]}

Tengo que decir que en realidad los invariantes de cada is son renombrados
antes (para evitar problemas de variables con el mismo nombre), y el binding
de parametros los engancha.

4 The tool

Given a Java application, a method m to analyze and a set of statements to
analyze, the tool generates a polynomial (over the method m parameters) that
over estimate the number of times that this statements would be potentially
executed.

The tool is composed by different components that are showed in figure 3.

(i) Code instrumentation (using soot [21]): It applies the technique ex-
plained in section 3.1.

The tool automatically (and conservatively) discover inductive vari-
ables for all instrumentation and call sites. By the moment we over-
approximates them by using the live variables at the instrumentation
point. The tools allow us to filter non desired variables via configura-
tions files.

(ii) Local invariants computation using Daikon [19]. The obtained invari-

10

Barberman, Garbervetsky, and Yovine

invariant

l11@sizef this init list = sizef this list, l11@f this init len = f this len, l11@sizec init = sizec

BSIZE = 5, l11@sizef this init list = 0, l11@f this init len = 0, l11@sizec init =
l11@sizec, l11@sizef this list >= 0, l11@sizef this list < l11@sizec, l11@f this len >=
0, l11@f this len < sizec, l11@sizef this list <= l11@f this len, l11@count it = l11@f this len +
1, l11@count it >= 1, l11@count it <= l11@sizec

l3@sizef this init list = l11@sizef this list, l3@f this init len = l11@f this len,

BSIZE = 5, l3@sizef this list = l3@sizef this init list, l3@f this len =
l3@f this init len, l3@f this len%BSIZE = 0, l3@sizef this list <= l3@f this len, l3@sizef this list <
BSIZE, l3@f this len = (l3@sizef this list ∗ BSIZE),

l7@sizef this init list = l3@sizef this list, l7@f this init len = l3@f this len, l7@how init = 5,

BSIZE = 5, l7@sizef this list = l7@sizef this init list, l7@f this len = l7@f this init len, l7@how =
l7@how init, l7@f this len%BSIZE = 0, l7@how = BSIZE, l7@sizef this list <=
l7@f this len, l7@sizef this list < l7@how, l7@f this len = (l7@sizef this list ∗ l7@how)

BSIZE = 5, count it >= 1, count it <= sizec count it = f this len + 1, f this len%BSIZE = 0

C(IaddAll
newBlock.7) = 1

5
sizec + (per(sizec, [0, 4

5
, 3
5
, 2
5
, 1
5
])

Table 4
Original and simplified global invariant for the call chain and the counting

expression for addAll.11.add.3.newBlock.7

ants for the generated dummy methods reflex the local invariant of each
creation or call site.

(iii) Global invariants computation: We generate a global invariant for each
instrumentation site in ISm. To do that, we process all the call chains
from m to each reachable method that contains Instrumentation sites.
Then, for every chain a global invariant is generated by binding the local
invariant of each call site (they can be many) and the creation site, using
a technique similar to [6].

(iv) Invariant simplification and computation of polynomials : Invariants are
simplified using the symbolic calculator SPPoC [1]. Finally, we use [24]
to generate Ehrhart polynomial for each instrumentation site.

The experiments were carried out on a significant subset of programs from
JOlden [2] and JGrande [8] benchmarks. In each one select the places in the
application where there are memory allocation (i.e. IS = {l Labelṡtm(l) =
new}. For each example, we analyzed the most relevant method according to
the number of allocations points. Although our current prototype does not
handle recursion in general, it is able to deal with some recursive patterns
such as tail recursion.

Table 5 shows the calculated polynomials and a comparison between real
executions and estimations obtained by evaluating the polynomials with the
corresponding values of parameters.

The last column shows the relative error ((#Obs - Estimation)/Estimation).

The studies showed that the technique was indeed very accurate, actu-
ally yielding exact figures in most benchmarks. In some cases, the over-
approximation was due to the presence of allocations sites associated with

11

Barberman, Garbervetsky, and Yovine

Fig. 3. Tool suite

exceptions (which did not occur in the real execution), or because the num-
ber of instances could not be expressed as a polynomial. For instance, in the
bisort example, the reason of the over-approximation is that the actual num-
ber of instances is always bounded by 2i−1 being i = dlog2 sizee. Indeed, the
estimation was exact for arguments power of 2. For the (*)health example,
it was impossible to find a non-trivial linear invariant. It actually turns out
that memory consumption happens to be exponential 4 (the given result was
calculated by hand). For fft, the argument n was required to be a power of
2 for not to throw an exception.

In [23] we show an application of this technique to estimate memory con-
sumption. In this case, we do not only care out the number of times an
allocation point is executed, but also we estimate the amount of memory re-
quested.

4 The JOlden programs not considered here also lead to exponential memory usage

12

Barberman, Garbervetsky, and Yovine

Example:Class.Method #CSm memAlloc Param.Val #Objs Estimation Err%

mst:MST.computeMST(g, nv) 1 nv − 1 10 9 9 0,00

20 19 19 0,00

100 99 99 0,00

1000 999 999 0,00

bh:Tree.createTestData(nb) 23 9nb + 14 10 104 104 0,00

20 194 194 0,00

100 914 914 0,00

1000 9014 9014 0,00

bisort (rec):Value.createTree(size,sd) 1 size− 1 10 7 9 22,22

20 15 19 21,1

200 127 199 36,2

64 63 63 0,0

128 127 127 0,0

256 255 255 0,0

power (rec):Root.<init> 14 23613 - 23403 23613 0,64

em3d:Bigraph.create(nN, nD) 32 8nN + 10 (10, 5) 90 90 0,00

(20, 6) 170 170 0,00

(100, 7) 810 810 0,00

(1000, 8) 8010 8010 0,00

(*)health (rec):Village.createVillage(l, label, back, seed) 8 8(4l − 1)/3 2 40 ∞ ∞

4 680 ∞ ∞

6 10920 ∞ ∞

8 174760 ∞ ∞

fft:FFT.test(n) 10 10 8 8 10 20,00

32 8 10 20,00

256 8 10 20,00

1024 8 10 20,00

heapsort:JGFHeapSortBench.JGFinitialise 2 2 - 2 2 0,00

crypt:JGFCryptBench.JGFinitialise 7 7 - 7 7 0,00

series:JGFSeriesBench.JGFinitialise 1 1 - 1 1 0,00

sparsematmult:JGFSparseMatmultBench.JGFinitialise 5 5 - 5 5 0,00

Table 5
Comparison between actual executions and estimations

5 Conclusions and Future Work

In this paper we show a technique to guide Daikon to obtain local linear
invariant. Then we show how to obtain global invariants from the locals ones.

We use those invariants to obtain symbolic expression of the number of
times a set of statements are executed.

We have developed a prototype tool that allowed us to experimentally
evaluate the accuracy of the method on several Java benchmarks. The results
were very encouraging.

We used this tool to generate estimator on memory consumption [23] and
we have obtained very promising results.

Other aspect to explore is the optimization of our method. Slicing tech-
niques [22] could help in reducing the number of variables and statements
considered when building the invariants.

13

Barberman, Garbervetsky, and Yovine

References

[1] P. Boulet and X. Redon. Sppoc: fonctionnemen et applications. Research
Report 00-04, LIFL, 2000.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching
linked data structures in java controller. In PACT 2001, pages 280–291, 2001.

[3] P. Clauss. Counting solutions to linear and nonlinear constraints through
ehrhart polynomials: Applications to analyze and transform scientific programs.
In ICS’96, pages 278–285, 1996.

[4] P. Clauss. Handling memory cache policy with integer points counting. In
Euro-Par’97, pages 285–293, 1997.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In
POPL 77, pages 238–252, 1977.

[6] P. Cousot and R. Cousot. Modular static program analysis, invited paper. In
CC 02, pages 159–178, Grenoble, France, April 6—14 2002. LNCS 2304.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL 78, pages 84–97, Tucson, Arizona, 1978.

[8] C. Daly, J. Horgan, J. Power, and J. Waldron. Platform independent dynamic
java virtual machine analysis: the java grande forum benchmark suite. In Java
Grande, pages 106–115, 2001.

[9] E. Ehrhart. Polynômes arithmetiques et methode des polyedres en
combinatorie. Series of Numerical Mathematics, 35:25–49, 1977.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In ICSE99,
pages 213–224, 1999.

[11] T. Fahringer. Efficient symbolic analysis for parallelizing compilers and
performance estimators. TJS, 12(3), 1998.

[12] T. Fahringer and B. Scholz. A unified symbolic evaluation framework for
parallelizing compilers. TPDS, 11(11), 2000.

[13] C. Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. LNCS, 2021:500+, 2001.

[14] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for multimedia
applications. In CODES/CASHE ’98, pages 145–149. IEEE, 1998.

[15] G.T. Leavens, K. Rustan M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA’00, pages
105–106, 2000.

14

Barberman, Garbervetsky, and Yovine

[16] B. Lisper. Fully automatic, parametric worst-case execution time analysis. In
WCET 03, 2003.

[17] V. Loechner, B. Meister, and P. Clauss. Precise data locality optimization of
nested loops. TJS, 21(1):37–76, 2002.

[18] H. B. Sipma M. A. Colon, S. Sankaranarayanan. Linear invariant generation
using non-linear constraint solving. In CAV’03, volume 2725, 2003.

[19] J. W. Nimmer and M. D. Ernst. Static verification of dynamically detected
program invariants:integrating Daikon and ESC/Java. In RV 2001,ENTCS.

[20] W. Pugh. Counting solutions to presburger formulas: How and why. In PLDI
94, pages 121–134, 1994.

[21] V. Sundaresan P. Lam E. Gagnon R. Vallée-Rai, L. Hendren and P. Co. Soot - A
java optimization framework. In CASCON’99, pages 125–135, 1999.

[22] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[23] D. Garbervetsky V. Braberman and S. Yovine. Synthesizing parametric
specifications of dynamic memory utilization in imperative object-oriented
programs. LCTES’05, 2005.

[24] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.
Analytical computation of ehrhart polynomials: enabling more compiler
analyses and optimizations. In CASES ’04, 2004.

[25] Y. Zhao and S. Malik. Exact memory size estimation for array computations
without loop unrolling. In DAC ’99, pages 811–816. ACM Press, 1999.

15

	Introduction
	Preliminaries
	Notation for Programs
	Symbolic analysis

	Analysis Phases
	Phase 1 - Program Instrumentation
	Phase 2 - Finding local invariants
	Phase 3 - Generating global invariants

	The tool
	Conclusions and Future Work
	References

