
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Síntesis de especi�caciones paramétricas
de utilización de la memoria dinámica

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires
en el área Ciencias de la Computación

Diego Garbervetsky

Director de tesis: Dr. Víctor Braberman
Co-director: Dr. Sergio Yovine

Buenos Aires, 2007

Síntesis de especi�caciones paramétricas de utilización de la
memoria dinámica

Resumen: En los últimos años se ha visto un gran interés en las comunidades de
sistemas de tiempo real y embebidos en el uso de de lenguajes orientados a objetos
tipo Java en sistemas embebidos y de tiempo real. Los motivos de este interés se
deben en parte a que este tipo de tecnologías facilitan la encapsulación de abstrac-
ciones y la comunicación mediante interfaces bien de�nidas. Otro aspecto importante
es la gran comunidad de desarrolladores y la cantidad de bibliotecas y herramientas
de desarrollo disponible.

Sin embargo, para poder adoptar lenguajes de este tipo en ambientes embebidos y
de tiempo real hay que solucionar al menos dos grandes problemas: la impredictibil-
idad temporal dada por las interrupciones relacionadas con la colección de objetos
(garbage collector) y poder analizar requerimientos de memoria de las aplicaciones.

Ha habido un número importante de trabajos donde se intenta atacar el prob-
lema de impredictibilidad temporal de los administradores de memoria automáticos
desde distintos enfoques tales como garbage collector con ciertas garantías tempo-
rales o directamente utilizando modelos alternativos de administración de memoria.
Sin embargo, no ha habido muchos avances con respecto al estudio cuantitativo de
requisitos de memoria.

En esta tesis abordamos el problema de predecir automáticamente certi�cados
de utilización y requisitos de memoria. Para ellos presentamos primero una técnica
que permite obtener expresiones paramétricas de los pedidos de memoria dinámica
sin considerar ningún mecanismo de colección de objetos. Luego proponemos un
esquema alternativo de administración de memoria junto con una técnica que permite
la transformación de código Java convencional en otro con la misma funcionalidad
pero adaptado para la nueva política de manejo de la memoria. Bajo este nuevo
esquema proponemos una técnica que permite determinar de manera paramétrica la
cantidad de memoria necesaria para correr el programa o parte de él.

Todas estas técnicas fueron implementadas en un prototipo que nos permitió
analizar automaticamente un conjunto interesante de aplicaciones siendo los resul-
tados iniciales bastante promisorios.

palabras clave: Administración de memoria dinámica, consumo de memoria,
sistemas embebidos, análisis estático, análisis de escape.

Parametric speci�cations of dynamic memory utilization

Abstract: Current trends in the embedded and real-time software industry are
leading towards the use of object-oriented programming languages such as Java.
From the software engineering perspective, one of the most attractive issues in object-
oriented design is the encapsulation of abstractions into objects that communicate
through clearly de�ned interfaces.

However, in order to be able to successfully adopt languages with object oriented
features like Java in embedded and real-time systems, is necessary to solve at least
two problems: eliminate execution unpredictability due to garbage collection and
automatically analyze memory requirements.

There has been some work trying to deal with the �rst problem but the problem
of computing memory requirements is still challenging. In this thesis we present our
approach to tackle both problems by presenting solutions towards more predictable
memory management and predicting memory requirements. The e�ort is mainly
focused in the latter problem as we found it hard, less explored, strongly relevant for
all kinds of embedded systems and its applicability and usefulness is beyond real-time
applications.

This thesis presents a series of techniques to automatically compute dynamic
memory utilization certi�cates. We start by computing a technique that produces
parametric speci�cations of memory allocations without consider any memory re-
claiming mechanism. Then, we approximate object lifetime using escape analysis
and synthesize a scoped-based memory organization where object are organized in
regions that can be collected as a whole. We propose a technique to automatically
translate conventional Java code into code that safely adopts this memory manage-
ment mechanism. Under this new setting we infer parametric speci�cations of the
size of each memory regions. Finally, we predict the minimum amount of dynamic
memory required to run a method (or program) in the context of scoped memory
management by computing parametric speci�cations of the size of memory regions
and by modeling the potential con�gurations of the regions in run time.

We develop a prototype tool that implemented the complete chain of techniques
and allow us to experimentally evaluate the e�ciency and accuracy of the method
on several Java benchmarks. The results are very encouraging.

keywords: dynamic memory management, memory consumption, embedded
systems, static analysis, escape analysis.

Agradecimientos

A toda mi familia, especialmente a mis padres y hermanas por todo el apoyo y
afecto que me dieron durante todos estos años.

A mis amigos y autoridades de la Escuela Técnica ORT por los buenos tiempos,
por haber comenzado a de�nir mi interés por la computación y en especial por la
investigación cientí�ca. Un agradecimiento especial a la profesora Clara Freud ya
que in�uyo fuertemente en que �nalmente me decida a estudiar en la FCEyN.

A la Universidad de Buenos Aires, primero por brindarme la posibilidad de
obtener una educación de calidad tanto desde lo académico como desde lo humano
y luego por permitir desarrollar mi vocación docente y cientí�ca. La UBA es una
universidad pública, gratuita, gobernada y administrada por estudiantes, graduados
y docentes, donde a pesar de las di�cultades económicas muchos ponen lo mejor de
ellos mismos para el bien de la comunidad universitaria y de la población en general.
Espero poder colaborar a convertirla en un lugar aún mejor.

A Víctor y Sergio mis directores por ayudarme, guiarme y aguantarme durante
todos estos años. A Víctor un especial agradecimiento por saber ser mi amigo en
momentos difíciles y por incentivarme a investigar cuando aún no estaba decidido.
A Sergio por haberme invitado a realizar las pasantías en Verimag donde surgieron
las principales ideas de esta tesis.

A mis estudiantes �estrella� Diego Piemonte, Andrés Ferrari, Federico Fernández
y Guido de Caso por colaborar en partes importantes de mi trabajo y a todos los
presentes y pasados integrantes de Dependex/Laphis por los gratos momentos en la
mega o�cina.

A los amigos que conoci en la facu: Nico K, Dani, Sergio M, Chapa , Esteban,
Public, Mariela, Laura G, Ariel C, Ariel D, Diego FS, Sergi D, Techas, Greg, Pablo
M, Charly LP, Charly LH, Juan Pablo, Flavia, Guille, y los que me olvide en este
momento...

A mis amigos de afuera de la facu: Patu (Groc), Diego S, Juanjo, Fede, Luigi,
Diego Q, Ruben, Eli, todos sus novias\os esposas\os, y todos los que me olvido en
este momento...

Al CONICET, la fundación YPF Estenssoro y Microsoft Research por su ayuda
económica durante parte del doctorado así como a la Agencia Nacional de Promoción
Cientifíca y Tecnológica, Microsoft Research e IBM por �nanciar algunos de nuestros
proyectos.

Finalmente, una dedicación especial a MAGDA por todo su amor, dulzura y
paciencia in�nita.

v

Contents

Abstract i

Contents vii

1. Introduction 1

1.1. Motivation . 1
1.2. About this work . 2
1.3. Overview . 3
1.4. Dynamic memory utilization analysis 5

1.4.1. Identifying allocation sites . 7
1.4.2. Computing invariants . 8
1.4.3. Counting the number of visits 10
1.4.4. Computing memory consumption expressions 11
1.4.5. Computing set of inductive variables 11
1.4.6. Some Experiments . 12

1.5. Scoped Memory Inference and Management 13
1.5.1. Inferring method regions . 14
1.5.2. An API for a Region-Based memory manager 15
1.5.3. Escape Analysis . 16
1.5.4. Tool support for region editing and program transformation . 18
1.5.5. Computing region sizes . 19

1.6. Predicting dynamic-memory requirements 21
1.6.1. Maximizing region memory sizes 24
1.6.2. Some Experiments . 26

1.7. Summary of Contributions . 27
1.8. Some limitations and weaknesses of our approach 28

1.8.1. Limitations . 28
1.8.2. Weaknesses . 29

1.9. Related Work . 30
1.9.1. Type Based Checking . 31
1.9.2. Cheking using program logics 32
1.9.3. Memory consumption inference 32

1.10. Thesis Structure . 34

vii

viii Synthesis of parametric speci�cations of dynamic memory utilization

2. Synthesizing of Dynamic Memory Utilization 35

2.1. Introduction . 35
2.1.1. Related Work . 36

2.2. Preliminaries . 37
2.2.1. Counting the number of solutions of a constraint 37
2.2.2. Notation for Programs . 39
2.2.3. Representing a program state 40
2.2.4. Counting the number of visits of a control state 42

2.3. Synthesizing memory consumption 42
2.3.1. Memory allocated by a creation site 42
2.3.2. Memory allocated by a method 44

2.4. Applications to scoped-memory . 46
2.4.1. Memory that escapes a method 46
2.4.2. Memory captured by a method 47

2.5. Method Validation . 47
2.5.1. Tool . 48
2.5.2. Experiments . 49

2.6. Discussion and Future Work . 51
2.6.1. Dealing with recursion . 51
2.6.2. Beyond classical iteration spaces 51
2.6.3. Improving method precision 52
2.6.4. Hybrid technique . 53

2.7. Conclusions . 53

3. A region-based memory manager 55

3.1. Introduction . 55
3.2. Preliminaries . 57
3.3. Scoped memory management . 58

3.3.1. Inferring scopes . 59
3.3.2. Synthesizing memory regions 60
3.3.3. API and program transformation 61
3.3.4. Properties of the code instrumentation 62

3.4. Run-time analysis . 63
3.4.1. Intra-region fragmentation . 63
3.4.2. Inter-region fragmentation . 64

3.5. Prototype tool . 64
3.6. Conclusions and Future Work . 65

4. A simple static analysis from region inference 69

4.1. Introduction . 69
4.2. The algorithm . 70

4.2.1. Properties . 70
4.2.2. The rules . 73

4.3. Empirical results . 75

5. Annotations for more precise points to analysis 79

5.1. Introduction . 79
5.1.1. The Problem . 80
5.1.2. Structure . 82

5.2. Salcianu's Analysis . 82
5.2.1. Extensions for the .NET Memory Model 83
5.2.2. Extensions for Non-analyzable Methods 84

CONTENTS ix

5.3. Annotations . 86
5.4. Experimental Results . 88
5.5. Related work . 89
5.6. Conclusions and Future Work . 91

6. JScoper: A tool for region edition and code generation 93

6.1. Introduction . 93
6.2. Scoped Memory Management . 94
6.3. Eclipse Plug-in: JScoper . 95

6.3.1. Usage and Features . 95
6.3.2. Design and Implementation 97

6.4. Conclusions and Future Work . 100

7. Computing memory requirements certi�cates 101

7.1. Introduction . 101
7.2. Problem statement . 102
7.3. A Peak Overapproximation for Scoped-memory 105

7.3.1. Memory required to run a method 106
7.3.2. De�ning the function rSize 108

7.4. Computing rSize and memRq . 111
7.4.1. Computing rSize . 111
7.4.2. Evaluating memRq . 112

7.5. Experiments . 115
7.6. Discussion . 116

7.6.1. Sources of imprecision . 116
7.6.2. About the parameterization of memRq 117
7.6.3. Dealing with recursion and complex data structures 118

7.7. Related Work . 119
7.8. Conclusions and Future work . 119

8. Conclusions 121

8.1. Concluding remarks . 121
8.2. Future Work . 122

8.2.1. Improving Precision . 122
8.2.2. Usability and Scalability . 123

Bibliography 125

A. Tool Support 135

A.1. Dynamic utilization analyzer . 135
A.1.1. Application Instrumentator 136
A.1.2. Invariant Globalizer . 138
A.1.3. Symbolic Polyhedra Calculator 139

A.2. Region inference . 139
A.3. Memory requirements calculation . 140

B. Instrumentation for Daikon: An example 143

B.1. Example . 143

C. Symbolic Bernstein Expansion over a Convex Polytope 147

C.1. Bernstein Expansion over an Interval 147
C.2. Bernstein Expansion over a Convex Polytope 149
C.3. Bounding a Polynomial over a Parametric Domain 152

x Synthesis of parametric speci�cations of dynamic memory utilization

List of Figures 155

List of Tables 157

CHAPTER 1

Introduction

1.1. Motivation

Current trends in the embedded and real-time software industry are leading to-
wards the use of object-oriented programming languages such as Java. From the
software engineering perspective, one of the most attractive issues in object-oriented
design is the encapsulation of abstractions into objects that communicate through
clearly de�ned interfaces.

Because programmer-controlled memory management inhibits modularity, object
oriented languages like Java, provide built-in garbage collection (GC) [JL96], that
is, the automatic reclamation of heap-allocated storage after its last use by a pro-
gram. Dynamic memory management is a serious challenge for real-time embedded
systems based on Java technology. Unlike the standard Java paradigm, garbage
collection is rarely used in such real-time environments, since execution times and
memory occupancy become di�cult to predict and thus signi�cantly complicates
the implementation of real-time scheduling policies. Many di�erent garbage collec-
tion algorithms have been developed and they achieve very good performance (e.g.
[BCGV05, BCG04, Hen98, HIB+02, RF02, Sie00]), but they all have a very high
worst-case complexity. As the GC can stop the application program at any time,
and for an unpredictable amount of time, it seems impossible to use it in a real-time
context. Still, several projects like Metronome [BCR03], and JamaicaVM [Sie99] ad-
dress the problem of building a real-time GC. In addition to an optimized design, the
key idea of these algorithms is to use a statistical model of the application program
behavior: the GC is then scheduled according to application-dependent parameters,
such as the allocation rate, and more importantly, the garbage generation rate.

An interesting approach is to change the memory organization model, and to
group objects in regions [TT97, GA01]. The idea behind region-based memory man-
agement is to group objects of similar lifetimes: within a region, one cannot deal-
locate any individual object, but must wait until the region can be destroyed as a
whole. There are several variants of this memory model: the regions may either have
a �xed size, or be allowed to expand when they become full; inter-region pointers
may either be allowed or not; etc. The common point is to trade object deallocation,
which is accurate but time-unpredictable, for region destruction, which presents a
better temporal behavior, at the expense of some space overhead. Several approaches
[GA01, SHM+06] propose to add region constructs to an existing language, but the

1

2 Synthesis of parametric speci�cations of dynamic memory utilization

resulting programming model is still very di�cult to use, because the programmer
must decide in which region to place each object, and when to create and destroy re-
gions. Regions are advocated by the Real-time Speci�cation for Java (RTSJ) [GB00].
It proposes several extensions to the syntax and semantics of Java that aim at making
the execution more predictable. To get rid of the garbage collector for time-critical
tasks, the RTSJ o�ers lexically scoped memory regions called ScopedMemory areas.
This environment is appealing, as it guarantees constant-time memory operations,
but it is very restrictive for the programmer: the size of the regions is �xed, and must
be decided at programming time. Moreover, RTSJ includes assignment rules that
forbid an object in a short-lived region to be referenced by an older object. However,
programming for the RTSJ is thus very di�cult [PFHV04], as it makes it impossible
to reuse any old code (even the Standard Library has to be fully rewritten), and it
forces the programmer to adopt new coding habits and to reason in a new paradigm
quite di�erent from Java.

Still, in order to develop e�cient region-based memory managers, as stated in
the RTSJ, it is necessary to give (to the memory manager) upper-bounds of the
amount of memory to be allocated in each region. However, automatically evalu-
ating quantitative memory requirements becomes inherently hard. Indeed, �nding
a �nite upper-bound on memory consumption is undecidable [Ghe02]. This is a
major drawback since embedded systems have (in most cases) stringent memory
constrmuaor are critical applications that cannot run out of memory.

In summary, in order to be able to successfully adopt languages with object
oriented features like Java, is necessary to solve at least two problems:

1. Eliminate execution unpredictability due to garbage collection

2. Automatically analyze memory requirements

There has been some work trying to deal with the �rst problem but the problem
of computing memory requirement is still challenging.

In this thesis we present our approach to tackle both problems by presenting
solutions towards more predictable memory management and predicting memory
requirements. The e�ort is mainly focused in the latter problem as we found it hard,
less explored, strongly relevant for all kinds of embedded systems and its applicability
and usefulness is beyond real-time applications.

1.2. About this work

We try to tackle the problem of the GC by adopting a scoped-memory managed
discipline and by proposing a series of techniques that allow programmers to auto-
matically produce scope-memory managed code from conventional Java code. Given
a standard Java program we divide the dynamic memory space in regions that are
associated with its computing units (i.e. methods, threads). Region inference is
done by escape analysis [Bla03, SYG05, SR01], for which we propose two di�erent
techniques [SYG05, BFGL07a] (see chapters 4 and 5) and using a tool that allow
manual editing of memory regions [FGB+05] (see chapter 6).

The main focus of this thesis is in trying to solve the problem of predicting mem-
ory requirements. Our aim is to have a technique that allows us to reason about
memory consumption in order to know a priori the amount of memory required to
safely run a program (or part of it). We also deal with the problem of automati-
cally computing the size of memory regions. We develop a series of techniques for

Chapter 1. Introduction 3

computing parametric upper-bounds of the amount of dynamic memory utilization
in Java-like imperative object-oriented programs (see chapter 2).

Our �rst technique quanti�es the explicit dynamic allocations made by a method.
Given a methodm with parameters p1, . . . , pk we exhibit an algorithm that computes
a non-linear expression over p1, . . . , pk which over-approximates the amount of mem-
ory requested during the execution of m. By requested we mean the amount of
memory that is solicited to the system (i.e. a virtual machine or operating system)
through "new" statements, without considering any kind of collection mechanism.

This technique is insensitive to any memory management mechanism. Neverthe-
less, it serves as a basis for solving the problem of computing region sizes. Combining
this algorithm with static pointer and escape analyses, we are able to compute mem-
ory region sizes to be used in scope-based memory management. Given a method
m with parameters p1, . . . , pk, we develop two algorithms that compute non-linear
expressions over p1, . . . , pk which over-approximate, respectively, the amount of mem-
ory that escapes from and is captured by m. The prediction of the amount of memory
captured is directly related with the size of memory region as objects captured by
the method are not live after the scope of that method. Thus it can be safely allo-
cated in its associated region. On the other side, the objects that escape the method
have to be captured by some method in the outer scope, so following scoping rules,
they have to be allocated in another region. As a consequence, the prediction of the
amount of memory escaping serves as a measure of the residual memory that will
remain occupied after the execution of the method.

Finally, we propose a new technique to over-approximate the amount of memory
required to run a method (or a program). Given a method m with parameters
p1, . . . , pk we obtain a polynomial upper-bound of the amount of memory necessary
to safely execute the method and all methods it calls, without running out of memory.
This polynomial can be seen as a pre-condition stating that the method requires that
much free memory to be available before executing, and also as a certi�cate engaging
the method is not going to use more memory than the speci�ed.

1.3. Overview

The long term goal of our work is to have a tool that is able to start from
conventional Java code and automatically produce equivalent Java code that runs
under a more predictable memory management together with certi�cates of memory
requirements to guarantee proper execution.

In this work we use a simple but useful scoped-based memory manager in which
objects are allocated in regions that are associated with methods. Consequently, a
region is created at method's entry and is destroyed at its end. When an object is
created it has to be allocated in one region but when a region is collected all the
objects within that region are also collected.

Under this setting our prototype tool is capable of predicting the size of the
memory regions and the amount of memory required to run an application without
crashing because running out of memory. This initial prototype is able to analyze
single-threaded Java programs provided they do not feature recursion.

A view of the most important functional components that appear in our solution
is shown in Fig. 1.1. Every component in the diagram is related with a technique
we developed or adapted during this work. We can divide the components in two
main categories: Region Inference related components and techniques and Memory
speci�cation related components and techniques.
Region inference related components:

4 Synthesis of parametric speci�cations of dynamic memory utilization

Region Inference

• Escape Analysis: to automatically approximate object lifetime (see sec-
tion 1.5.3).

• Memory Region Inference: to produce memory regions from escape anal-
ysis information (see section 1.5.4).

Region Management

• Region-based API: to interact with a region-based memory manager (see
section 1.5.2).

• Region-based Code Generator: to translate conventional code to region-
based code using the computed region information (see section 1.5.4).

Memory speci�cation related components:

Dynamic Memory utilization analyzer: to obtain parametric speci�cations of
the amount of memory requested by a method (see section 1.4).

Region Size inference: to obtain parametric information about the size of a
memory region (see section 1.5.5).

Memory requirements inference: to obtain parametric certi�cates of the amount
of the dynamic memory required to safely run a method (see section 1.6).

Local Invariant generation: to the generate invariants required by the memory
prediction techniques (see section 1.4.2).

Figure 1.1: Main functional components of our solution.

The most conceptually challenging problems are the Dynamic memory utilization
analysis and the Memory requirements inference and represent the core of this thesis
work. The former approximates total allocations made by the application without

Chapter 1. Introduction 5

considering any kind of collection mechanism. The latter computes memory require-
ments taking into account that there might be some collection mechanism. As we
will see later, both techniques require program invariants. That is why an important
part of the work is involved in solving the problem of producing useful invariants.

For region inference we develop two escape analysis techniques and implement
also a tool to visualize and re�ne the inferred region information. Using this region
information we are able to produce Java code that uses a Region-based API that
bypasses the standard Java memory manager. An interesting aspect of the API is
that is uses the register/subscriber paradigm that eases the task of object allocation
(see section 1.5.2).

Hereinafter, we overview the main contributions of this thesis. More technical
details are provided later in the respective chapters.

1.4. Dynamic memory utilization analysis

As we have mentioned, one of the main contributions of this thesis is a technique
to obtain parametric upper bounds of dynamic memory utilization. By dynamic
memory utilization we mean an expression that approximates the amount of dynamic
memory requested to the system (or virtual machine) during the execution of the
application (or selected method) in terms of its parameters.

To get a �avor of the approach, consider for instance the following program1:

void m1(int k) {

1: for(int i=1;i<=k;i++) {

2: A a = new A();

3: m2(i);

}

}

void m2(int n) {

4: for(int j=1;j<=n;j++) {

5: B b = new B();

}

}

For m2, our technique computes the expression:

size(B) · n

which is the amount of memory requested if the program starts at m2. For m1, the
computed expression is:

size(A) · k + size(B) · 1
2

(k2 + k)

because starting at m1, the program will invoke m2 k times and, at each invocation
i ∈ [1, k], m2(i) will request i instances of B, resulting in a total amount of:

k∑
i=1

i =
1
2

(k2 + k)

instances of B, which have to be added to the k instances of A directly allocated by
m1.

Our general technique to infer dynamic memory requests relies on the following
idea: The amount of memory requested is closely related to the number of visits to
new statements. Using a combinatorial approach, this can be related to the num-
ber of possible valuations of variables that it might feature at its control location.

1We assume that calls to constructor are analyzed like any other call. In this example, the
constructor has no code to analyze.

6 Synthesis of parametric speci�cations of dynamic memory utilization

Furthermore, this can be related to the number of integer solutions of a predicate
constraining variable valuations at its control location (i.e. an invariant). For linear
invariants, the number of integer solutions is equivalent to the number of integer
points which can be expressed as an Ehrhart polynomial [Cla96].

φ ≡ {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

Figure 1.2: Invariant representing the iteration space at the statement new B()

In Fig. 1.2 we show an invariant which is used to model the potential valuations
of variables for a program state at the control location 5 (creation of an object of
type B) and called from the control location 2. On the right we show its geometrical
representation showing the number of integer points inside the triangle represented
by variables i and j.

Assuming that k is a �xed value (i.e. a parameter) the number of integer points
for this invariant is expressed by the polynomial:

k∑
i=1

i =
1
2

(k2 + k)

Observe that in the invariant also appears the variables of method m1 since we want
to count allocations made by runs starting at m1 and the invariant must represent
the global state when the parameters of method m1 and method m2 binded in some
way.

Our approach is basically the following:

1. Identify every allocation site (new statement) reachable from the method under
analysis (MUA).

2. Generate linear invariants describing possible variables valuations at each al-
location site.

3. Count the number solutions for the invariant in terms of MUA parameters (#
of visits to the allocation site)

4. Adapt those expressions to take into account the size of object allocated (their
types).

5. Sum up the resulting expressions for each allocation site.

A detailed view of the components involved in the tool that implements this
approach is shown in Fig. 1.3.

Allocation site identi�cation is done by the Creation Site �nder.

Invariants are generated by combining local invariants obtained from the Local
Invariant Generator and the Control State Invariant generator.

The Symbolic Polyhedral Calculator provides techniques and tools to produce
polynomials that represent parametric expressions of the number of solutions
of the given invariants.

Chapter 1. Introduction 7

Figure 1.3: View of the components of the dynamic memory requests inference engine

Polynomials evaluator allows us to manipulate and evaluate the resulting poly-
nomials.

Our work is inspired in techniques appearing in the �eld of parallelizing and
optimizing compilers where the use of linear constrains to model iteration spaces
were traditionally applied to works on performance analysis, cache analysis, data
locality, and worst case execution time analysis [Fah98, LMC02, Cla97, Lis03]. As far
as we know, the combination of such techniques to obtain speci�cations that predict
dynamic memory utilization is novel and most of the existing work (see related work
in section 1.9) is focused on functional languages using type inference mechanism
[HP99, USL03, HJ03], or abstract interpretation based approaches [USL03]. The
use of linear invariants allows us to produce non-linear easy-to-evaluate expressions
keeping the acceptable computational cost and tool support of linear programming
(against other approaches that rely on Presburger arithmetic or polynomial algebra).

In Fig. 1.4 we present an slightly more complex example that we use to introduce
the di�erent aspects of the technique.

1.4.1. Identifying allocation sites

In order to obtain more precise bounds we distinguish program locations not
only by a �method-local� control location but also by the di�erent control stack
con�gurations that lead to that location. Speci�cally, we identify allocation sites by
the call chain starting from the MUA and �nishing in a new statement.

We call these chains Creation Sites and are a particular case of Control States
which are basically a sequence of program locations that models the control part of
call stack con�gurations. The data counterpart of a control state is the Control State

8 Synthesis of parametric speci�cations of dynamic memory utilization

void m0(int mc) {

1: m1(mc);

2: B[] m2Arr=m2(2 * mc);

}

void m1(int k) {

3: for (int i = 1; i <= k; i++) {

4: A a = new A();

5: B[] dummyArr= m2(i);

}

}

B[] m2(int n) {

6: B[] arrB = new B[n];

7: for (int j = 1; j <= n; j++) {

8: arrB[j-1] = new B();

9: C c = new C();

10: c.value = arrB[j-1];

}

11: return arrB;

}

Figure 1.4: An example program with its detailed call graph

Invariant which are used to model sets of states for a given of control state.
As creation sites represent a traversal trough several methods, we use global

invariants to model the potential set of valid states of control state (i.e. the data
part of the call stack).

For instance: m0.2.m2.6 is a creation site that represent the program location
m2.6 with control stack m0.2. m0.1.m1.5.m2.6 is a creation site that represent the
program location m2.6 with control stack m0.1.m1.5

Example 1.1. In this example the creation sites reachable from m0, m1 and m2
are:

CSm0 = {m0.1.m1.4, m0.1.m1.5.m2.6, m0.1.m1.5.m2.8, m0.1.m1.5.m2.9,
m0.2.m2.6, m0.2.m2.8, , m0.2.m2.9}

CSm1 = {m1.4, m1.5.m2.6, m1.5.m2.8, m1.5.m2.9 }
CSm2 = {m2.6, m2.8, m2.9 }

To accurately compute call chains and to get all allocation sites reachable from
the application under analysis we rely on computing a precise call graph. Call graphs
are obtained with Soot [VRHS+99].

Please note that to compute control states we are making two strong assumptions

1. There is no recursion and all allocation sites in the application can be reached
by static analysis.

2. The amount of �hidden� memory allocated by native methods or by the virtual
machine itself cannot be quanti�ed with this technique.

For those cases that violate these assumptions, we will assume that a memory
utilization speci�cation is given.

1.4.2. Computing invariants

Our technique relies on having invariants that constrmuathe possible variable
assignments of a speci�c program point. Control state invariant are fundamental for

Chapter 1. Introduction 9

our approach as they not only are used to model the potential variables valuation
at a control state, they also are used to bind the parameters of the MUA with the
di�erent variables in the global state.

Local Invariants

Local invariants can be either provided by programmer assertions �à la� JML
[LLP+00], or computed using general analysis techniques [CH78, CC02] or Java-
oriented ones[NE01, FL01, ECGN99, CL05].

Local invariants can be computed using static analysis, e.g., [PG06, CH78, IS97],
or dynamic analysis, e.g. [EPG+07]. In our work, we have explored both alternatives.

Dynamic invariant generation We have �rst used Daikon for dynamic detection
of �likely� invariants by executing the program over a set of test cases. Even
if the properties generated by Daikon have a high probability of being true in
all runs, that is, being invariants, they might not be. In our experiments, we
have manually veri�ed all properties to be invariants (see section 2.5). Our
tool �guide� Daikon in the search for invariants [Gar05] (see section A.1). Ba-
sically we generate new method variables for expressions we presumed may
have impact in the number of times allocation sites are visited (e.g, integer
class �elds, size of collections, length of arrays and strings, etc) and we pro-
duce a dummy method before every point of interest (call site and allocation
sites) whose arguments are the variables we detected as relevant for that point
of interest. Using that procedure the precondition of the generated method
contains a invariant for the instrumented program point which predicates only
about the speci�ed variables.

Static invariant generation More recently, we have implemented and extended
Hallwachs and Cousot�s seminal work [CH78] based on abstract interpretation
to support method calls (interprocedural analysis), and to conservatively model
the heap (points-to information) an some characteristics of Java language such
as inclusion polymorphism. We develop a tool as we could not get a freely
available static analysis tool which this capacity. We call this tool JInvariant
[PG06]. However, we found several scalability and precision issues that com-
plicate the use of this approach. Operating with linear invariants is costly, and
a data�ow analysis requires lots of operation on this data structure. Another
issue is the loss of precision in the presence of loops. This is due to the widening
operation that makes the resulting invariants inappropriate for the posterior
counting phase. We found that in practice the Daikon based dynamic invari-
ant generation was able to compute more precise invariants than the static
counterpart. Thus, we decided not to include details about this tool in this
document. JInvariant is still a work in progress and we plan to improve it in
the future.

Control State Invariants

None of the techniques for computing invariants deal with our concept of control
state invariant since they only compute local invariants. Thus, the tool builds a
control state invariant by computing the conjunction of the local invariants that
hold in the control locations along the path. That task is performed by the Control
State Invariant Generator.

Example 1.2. Consider the following local invariants for the example in Fig. 1.4.

10 Synthesis of parametric speci�cations of dynamic memory utilization

Im0
m0.1 = {k = mc}

Im1
m1.5 = {1 ≤ i ≤ k, n = i}

Im2
m2.8 = {1 ≤ j ≤ n}

Then, the invariant for the control states are:

Im0
m0.1.m1.5 = {k = mc, 1 ≤ i ≤ k, n = i}

Im1
m1.5.m2.8 = {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

Im0
m0.1.m1.5.m2.8 = {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

1.4.3. Counting the number of visits

Recall that the number of visits at a control state (in particular a creation site)
is related to the number of solutions of an invariant that describes (typically over-
approximates) all valuations of variables for that point (the iteration space). The
Symbolic polyhedral calculator represents a tool that can manipulate linear invariants.
It consist of the algorithms used to count the number of solutions of a given invariant
[Cla96]. To count the number of solutions of a predicate we need to select which
variables are �xed (parameters) and which are free.

Example 1.3. Consider the following invariant for the creation site:

Im0
m0.1.m1.5.m2.8 = {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

Let mc be the parameter since it is the MUA parameter. Then the number of
solutions (visits) for I in terms of mc is

C(Im0
m0.1.m1.5.m2.8,mc) = #{(k, i, j, n) | k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

=
1
2

(mc2 +mc)

In the case of linear invariants we can use a technique due to Ehrhart [Ehr77].
Roughly speaking, it generates a polynomial whose variables are the parameters of
the invariants. We compute Ehrhart's polynomials by the aid of Polylib [Pol] and
a technique based on Barvinok's work [VSB+04].

Note that for this example the invariant mention and constrain all variables visible
in the control state. Producing such invariants can be di�cult to do automatically
or may require careful annotations if provided manually. Nevertheless, in general
invariants do not need to predicate about every variable in a global state. We explain
later (see section 1.4.5) that it is enough to constrain the set of inductive variables
which are the variables that have a real impact in the number of visits that the
analyzed control location may have.

Chapter 1. Introduction 11

1.4.4. Computing memory consumption expressions

To get the expressions that bound the amount of memory requested by a method
we �rst compute a function called S(mua, cs) (see chapter 2) that given a creation
site cs yields an expression in terms of mua parameters that bounds the amount
of memory requested by cs. To compute that function we simply need to multiply
the number of visits of a creation site by the size corresponding to the type of the
allocated object. For arrays the computation is a little bit trickier (see section 2.3).

Once we compute the size of all creation sites we can compute the total amount
of memory requested by a method. We simply need to sum the size expression for
all creation sites reachable from the method.

Example 1.4. For instance, the total amount of memory requested by m0 is the
following:

memalloc(m0)(mc) =
∑

cs∈CSm0

S(m0, cs)

= S(m0,m0.1.m1.4)(mc)

+
(
S(m0,m0.1.m1.5.m2.6)(mc)

+S(m0,m0.1.m1.5.m2.8)(mc)

+S(m0,m0.1.m1.5.m2.9)(mc)
)

+
(
S(m0,m0.2.m2.6)(mc) + S(m0,m0.2.m2.8)(mc)

+S(m0,m0.2.m2.9)(mc)
)

= (size(B[]) + size(B) + size(C))(
1
2
mc2 +

5
2
mc)

+size(A)mc

Note that the precision of our analysis depends on the accuracy of both invariant
and call graph generation techniques (specially in the presence of dynamic binding).
The technique gets a counting expression for every allocation site assuming that
allocation sites that cannot appear in the same iteration (e.g, else and then branches
of if statements) are constrained by the corresponding invariant. Weak invariants
and infeasible calls make our technique over-approximate too much. In section 2.6.3
we show some ideas in order to try to mitigate this problem. In particular it is
fundamental to discover what we call set of inductive variables.

1.4.5. Computing set of inductive variables

As we mentioned, we do not need to constrain the valuations of each variable in
a global state. A key concept for our characterization of iteration spaces is the set
of inductive variables for a control location. That is, a subset of program variables
which cannot repeat the very same value assignment in two di�erent visits of the
given control state (except in the case where the program loops forever).

An invariant that only involves parameters and a set of inductive variables is
called an inductive invariant. As we associate the number of visits to statements
with the number of solutions, relying on inductive invariants guarantees soundness.
An invariant that does not constrain the values of an inductive variable would lead

12 Synthesis of parametric speci�cations of dynamic memory utilization

to an over approximation of the upper bounds. However, selecting a smaller set of
inductive variables might lead to invalid bounds.

To compute inductive variables we developed a conservative data�ow analysis
that combines a live variables analysis augmented with �eld sensitivity with a loop
inductive analysis [NNH99]. This problem has been studied for programs that make
use of iteration patterns composed of for and while loops with simple conditions.

Example 1.5. The inductive set of variables for the creation site m0.1.m1.5.m2.8
is {mc, k, i, j, n}.

Handling more complex iteration patterns and types beyond integers is a chal-
lenging issue related to �nding variant functions for the iteration. In 2.6.2 we brifely
discuss our general strategy and we show how the tool currently deals with an itera-
tion pattern pervading Java applications as it is the case of looping over collections.

Indeed, while not dealing with recursive programs is an underlying limitation
of the approach, handling complex data-structures (such as collections) is not pre-
cluded, but it is a challenge for building good linear invariants.

1.4.6. Some Experiments

The initial set of experiments were carried out on a signi�cant subset of programs
from JOlden [CM01] and JGrande [DHPW01] benchmarks. It is worth mentioning
that these are classical benchmarks and they are not biased towards embedded and
loop intensive applications � the target application classes we had in mind when we
devised the technique. That is why we could not analyze some of the programs since
they were highly recursive and our technique at the moment cannot handle recursion.

The tool was able to synthesize very accurate and non-trivial estimators for the
number of object instances created (and memory allocated) in terms of program pa-
rameters for several examples that do not feature recursion. In contrast to [CNQR05],
all these results were achieved using the original code as input for the method and
reducing human intervention to a minimum (i.e., creation of test cases for Daikon,
strengthening some of the automatically detected invariants and reducing some of
automatically detected inductive sets of variables). Remaining obstacles that prevent
fully automatic analysis of some examples are complex data-structures which must
be considered part of any set of inductive variables and thus, an integer interpretation
of them should be provided by the user to build a useful linear invariant.

In order to make the result more readable, the tool computes the number of
object instances created when running the selected method, rather than the actual
memory allocated by the execution of the method2. Also, we set aside analyzing the
standard Java library in order to keep examples manageable.

Table 1.1 shows the computed polynomials and the comparison between real
executions and estimations obtained by evaluating the polynomials with the corre-
sponding values of parameters. The last column shows the relative error ((#Obs -
Estimation)/Estimation).

These experiments shows that the technique is indeed e�cient and very accurate,
actually yielding exact �gures in most benchmarks. For the (*)health example, it is
impossible to �nd a non-trivial linear invariant. It actually turns out that memory
consumption happens to be exponential.

More details about the benchmarks can be found in chapter 2.

2By memory allocated we consider the amount of memory occupied by the objects, not the
actual memory reserved by a particular memory manager for internal accounting purposes. In this
setting, we assume for simplicity that the function size(T)=1 for all type T

Chapter 1. Introduction 13

Example:Class.Method Static Analysis Precision Analysis

#CSm memAlloc Param. #Objs Estim. Err%

mst:MST.main(nv) 13 (2+[14 , 0, 0, 0]nv)nv2 10 240 245 2,00
+4nv + 5 20 940 985 5,00

100 22700 22905 1,00
1000 2252000 2254005 0,09

mst:MST.computeMST(g, nv) 1 nv − 1 10 9 9 0,00
20 19 19 0,00
100 99 99 0,00
1000 999 999 0,00

mst:Graph.Graph(nv) 6 (2+[14 , 0, 0, 0]nv)nv2 10 230 230 0,00
+3nv 20 920 960 4,17

100 22600 22800 0,88
1000 2251000 2253000 0,09

mst:Graph.addEgdes(nv) 2 2nv2 10 180 200 10,00
20 760 800 5,00
100 19800 20000 1,00
1000 1998000 2000000 0,10

Em3d.main(nN, nD) 28 6nD ·nN +4nN +14 (10, 5) 350 354 1,13
(20, 6) 810 814 0,49
(100, 7) 4610 4614 0,09
(1000, 8) 52010 52014 0,01

(*)health: (recursive) 8 11(4l − 1)/3 2 55 ∞ ∞
Village.createVillage(l, lab, b, s) 4 935 ∞ ∞

6 15015 ∞ ∞
8 240295 ∞ ∞

Table 1.1: Experimental results

1.5. Scoped Memory Inference and Management

Scoped-memory management is based on the idea of allocating objects in regions
associated with the lifetime of a computation unit, i.e., its scope. A computational
unit can be a method, a thread, etc. When a computational unit �nishes its execu-
tion, its objects are automatically collected.

For instance, the Real-Time Speci�cation for Java (RTSJ) [GB00] proposes a new
memory hierarchy which incorporates this kind of memory management. In partic-
ular it proposes several kinds of memory models: Heap memory (garbage collected),
Immortal memory and Scoped memory. Neither Immortal nor Scoped memory use
garbage collection. Objects allocated in Immortal memory are never collected and
live throughout program lifetime. This approach imposes restrictions on the way
objects can reference each other in order to avoid the occurrence of dangling refer-
ences. An object o1 belonging to region r references an object o2 only if one of the
following conditions holds: o2 belongs to r; o2 belongs to a region that is always
active when r is active; o2 is in the Heap; o2 is in Immortal (or static) memory.
An object o1 cannot point to an object o2 in region r if: o1 is in the heap; o1 is in
immortal memory; r is not active at some point during o1's lifetime.

From \ To Heap Immortal Scoped
Heap Yes Yes No

Immortal Yes Yes No
Scoped Yes Yes if active

Table 1.2: Scoped-memory reference rules.

At runtime, region activity is related to the execution of computational units
(e.g., methods or threads). In a single-threaded program, if each region is associated
with one method, then there is a region stack where the number and ordering of
active regions corresponds exactly to the appearances of each method in the call
stack. In a multi-threaded program, where regions are associated with threads and
methods, there is a region tree whose branches are related to each execution thread.

We adopted this kind of memory management mechanism because it is useful
to overcome the problem of predictability of garbage collector (the same motivation

14 Synthesis of parametric speci�cations of dynamic memory utilization

that made the real-time and embedded community adopt similar approaches like the
RTSJ) but also because it imposes an order in the allocation and the deallocation of
objects we will leverage to predict memory requirements. In particular, we assume
that, at method invocation, a new region is created which will contain all objects
captured by this method. When it �nishes, the region is collected with all its ob-
jects. We will call this kind of region associated with a method an m-region. An
implementation of scoped memory following this approach is described in chapter 3.

As mentioned, the main contributions of this thesis are related with automatic
prediction of quantitative memory requirements. We also present some interesting
results for the automatic generation of scoped-memory based Java code.

1.5.1. Inferring method regions

Programming using region-based allocation is very di�cult [PFHV04], as it makes
it impossible to reuse any old code (even the Standard Library has to be fully rewrit-
ten), and it forces the programmer to adopt new coding habits and to reason in a
new paradigm quite di�erent from Java.

In Fig. 1.5 we show a graph representing part of the heap space. Each box in
the graph represents the potential objects created at the indicated program loca-
tion. The �rst graph shows how objects point-to each other. The second graph
represents the same heap but organized in m-regions. Regions are associated with
method lifetimes. Thus, the lifetime of region M0 is longer than the lifetime of
region M1 which is longer than M2. In this particular case, the organization does
not respect the scoping rules since long-lived objects represented by the creation
site m0.1.m1.5.m2.6 in region M1 may point-to short lived objects represented by
creation site m0.1.m1.5.m2.8 in region M2. This may lead to a dangling reference
because regionM2 is freed before regionM1. The third graph shows an organization
which respects the scoping rules and can run safely. Notice that to solve the problem
we enlarge the lifetime of objects represented by the creation site m0.1.m1.5.m2.8
by moving it to an outer region.

Figure 1.5: First: a graph showing the points-to relation between objects. Each box
represents the potential set of objects created at that location. Second: An invalid
region assignment because long lived objects may refer to short lived objects. Third:
A valid region assignment.

In order to take advantage of the region-based memory model without having to
su�er from the above mentioned di�culties that arise from the manual operation of
regions, we propose to automatically infer memory region from program code based
on escape analysis [BGY04] (see chapter 3).

Chapter 1. Introduction 15

Intuitively, an object escapes a method m when its lifetime is longer than m's
lifetime. It cannot be safely collected when this unit �nishes its execution. An
object is captured by the method m when it can be safely collected at the end of the
execution of m.

It is possible to synthesize a memory organization that associates a memory
region (called m-region) with each method m in such a way that scoped-memory
restrictions (like RTSJ) are ful�lled by construction. It can be done by allocating in
each m-region the object that are captured by its associated method.

Example 1.6. Using escape analysis we can infer the creation sites that escape and
are captured by m0, m1, and m2 in the example presented in Fig. 1.4. The objects
referred to by the allocation site m2.9 do not escape the scope of m2 provided they
are referenced from outside m2 by any parameter or return value.

The objects referred-to by the allocation site m2.6 are pointed-to by arrB which
is returned by m2 escaping its scope. The same happens with the objects referred-to
by m2.8 which are pointed-to by arrB[i] which is referenced-to by arrB.

The object referred-to by m1.4 is allocated in method m1 and is not referenced
from outside. Since dummyArr refers to the objects returned by m2 this variable
has references to objects referred-to by m2.6 and m2.8. Since dummyArr is a local
variable not referenced by a variable or �eld reachable from outside, those objects
do not escape the scope of method m1. In fact, all objects reachable from m1 are
captured by this method.

The same procedure is applied to m0. The resulting escape and capture infor-
mation is the following:

escape(m0) = {}
capture(m0) = {m0.2.m2.6,m0.2.m2.8}
escape(m1) = {}
capture(m1) = {m1.4,m1.5.m2.6,m1.5.m2.8}
escape(m2) = {m2.6,m2.8}
capture(m2) = {m2.9}

Using this information we can safely infer the following regions:

region(m0) = {m0.2.m2.6,m0.2.m2.8}
region(m1) = {m1.4,m1.5.m2.6,m1.5.m2.8}
region(m2) = {m2.9}

1.5.2. An API for a Region-Based memory manager

In order to perform scoped-memory management at program level, we propose
an API where memory scopes are bound to methods (m-regions).

The API is shown in Table 1.3. This API has constructs to create and destroy
m-regions and proposes a registration mechanism to inform the memory manager
that an m-region wants to allocate a set of objects in its region. At object creation,

16 Synthesis of parametric speci�cations of dynamic memory utilization

the object identi�es itself by presenting its id. The memory manager checks whether
that id is registered by one m-region. Then, the manager allocates the object in the
last one that register the object or, by default, in the active region. More details can
be found in chapter 3.

enter(r) push r into the region stack
enter(r, CS) push r into the region stack and indicate

that creation sites identi�ed by l ∈ CS
have to be allocated in r

exit() collect the objects in top region
current() return the top region
determineAllocationSite(CS) indicate that creation sites identi�ed by

l ∈ CS have to be allocated in the cur-
rent region

newInstance(l,c) create an object of class c identi�ed by l
newAInstance(l,c,n) same but for arrays of dimension n

Table 1.3: Scoped-memory API.

1.5.3. Escape Analysis

The idea, as already said, is to apply pointer and escape analysis techniques (e.g.,
[SR01, Bla03, SYG05, BFGL07a]) to the conventional program to synthesize scopes
[SYG05].

In this work we extend two existing points-to and escape analysis techniques: a
lightweight but less precise analysis and a more precise but expensive technique.

A simple escape and fast escape analysis for region inference

In 4 we extend an algorithm for escape analysis inspired by Gay and Steensgaard
work [GS00]. One of the original objectives of G&S's analysis was to determine which
objects can be allocated in the stack. Our goal is to determine in which regions to
allocate objects.

The original analysis computes two boolean properties for each local variable u
of reference type. The property escaped(u) is true if the variable holds references
that may escape due to assignment statements or a throw statement. The property
returned(u) is true if the variable holds references that escape by being returned
from the method in which u is de�ned. Other properties are introduced to identify
variables that contain freshly allocated objects and methods returning freshly allo-
cated objects. vfresh(u) returns a Java reference type if u is assigned to a freshly
allocated object and mfresh(m) is a boolean indicating whether a method m re-
turns a fresh object. Once these properties are computed the analyzes determines
(for each method) which object can be allocated on the stack by checking if fresh
object are referenced only by variables that do not escape.

We perform basically two extensions. One is focused on improving the preci-
sion when computing escape(u) by performing an interprocedural analysis and by
computing a local points-to graph to keep track of some points-to information (for
instance to be able to determine to which object an expression like u.f may refer
to).

The second extension consist in computing for each variable u where objects
pointed to by u live. We call this property side(u) where side(u) = INSIDE means
that objects pointed to by u are captured by m and can be allocated in m's region

Chapter 1. Introduction 17

or if they are created by callees, m can ask for them to be allocated in its region.
On the contrary side(u) = OUTSIDE, means that objects pointed to by u live longer
than m. If they are created by m, they must be allocated outside its stack frame.

The analysis is a tradeo� between performance and precision. It is more precise
that the Steensgaard's escape analysis because it actually computes more properties
but trying to keep its simplicity and locality. The main sources of imprecision are
because the analysis is �ow and context insensitive, and because of the decision of
keeping only local information in the points-to graphs. Nevertheless, the analysis
is precise enough to determine the same regions we showed in example 1.6 for our
example of Fig. 1.4 (see Table 1.4) but in general it tends to be conservative in the
sense that most objects go to regions that have a larger lifetime.

loc var escape def points-to graph side
m0.2 m2Arr BOTTOM RETVAL [m2.6→ m2.8] INSIDE

m1.4 a BOTTOM NEW [m1.4] INSIDE
m1.5 dummyArr BOTTOM RETVAL [m2.6→ m2.8] INSIDE

m2.6 arrB RETURNED NEW [m2.6→ m2.8] OUTSIDE
m2.8 tmp FIELD NEW [m2.8] OUTSIDE
m2.9 c BOTTOM NEW [m2.9] INSIDE

Table 1.4: Output of our escape analysis for the example given in Fig. 1.1

Program Lines Allocation INSIDE G&S's analysis
sites variables sites stackable variables

bh 1128 41 34 21 23
bisort 340 10 7 7 7
em3d 462 26 13 11 11
health 562 28 18 13 10
mst 473 16 8 8 7
perimeter 745 13 7 7 7
power 765 21 9 9 5
treeadd 195 11 6 6 6
tsp 545 12 7 7 7
voronoi 1000 35 34 20 31

Table 1.5: Analysis results

Table 1.5 presents the results of our algorithm on the Jolden benchmarks [CM01]
comparing with the original G&S's analysis [GS00]. The �rst two columns are the
size of the program in lines, and the number of allocation sites. The last three
columns give the number of INSIDE variables and allocation sites, as computed by
our algorithm, and the number of stackable variables, as computed by our implemen-
tation of G&S's analysis [GS00]. Information about the time spent by the analysis
can be found in Table 4.1.

Our analysis is more precise than [GS00] as it subsumes all its rules. That is, all
stackable variables in the sense of [GS00] are INSIDE variables, but the converse is
not true.

In our experiments, we did not use any inlining of analyzed code. As noted in
[GS00], both analyses will bene�t from method inlining.

It is worth to mention that analysis is currently implemented in our tool (see
Fig. 1.1). More details about the technique can be found in chapter 4.

A more precise but expensive points-to, escape and purity analysis

In chapter 5 we extended a well known points-to and escape analysis by Salcianu
and Rinard [SR05]. This is a �ow sensitive, interprocedural analysis that computes
for each method a summary points-to graph and information about write e�ects.
This analysis is more precise than our previous analysis but it is more expensive

18 Synthesis of parametric speci�cations of dynamic memory utilization

because the points-to information is transferred from callees to callers leading to a
more costly interprocedural analysis and larger points-to graphs.

The original analysis to be precise requires a detailed call graph and to be able to
analyze all methods reachable by the application. The technique is not very precise
in dealing with non-analyzable methods. A method is non-analyzable when its code
is not available either because it is abstract (an interface method or an abstract class
method), it is virtual and the callee cannot be statically resolved, or because it is
implemented in native code (as opposed to managed bytecode).

We extend the analysis to increase the precision for calls to non-analyzable meth-
ods3 (see chapter 5). For such methods, we introduce extensions that model poten-
tially a�ected heap locations. We also propose an annotation language that increases
the precision of a modular analysis.

The annotation language allows concise speci�cation of points-to and read/write
e�ects. They are applied at the interface level. For instance we can declare that
objects returned by the method are fresh, the objects pointed-to by a parameter
may escape in some way, or some restrictions on the e�ects as objects pointed by a
parameters are readonly or can be written by some particular objects.

At analysis time, when a non-analyzable method is called, the analysis trusts the
provided annotations. Later, when the code of the non-analyzable code is available,
it is analyzed to verify if it complies with its annotations.

Our initial experiments show that adding a small amount of annotations in the
most commonly used libraries actually increases the precision of the analysis The
experiments (see section 5.4) were focused in evaluation the of precision of the tech-
nique in inferring purity of methods, but this precision relies on the ability of the
analysis in computing accurate points-to and escape information. For the example we
annotate some typical library classes, like collections, iterators, and most frequently
accessed methods like equal, hashCode, etc. Using annotations we were able to in-
fer (and to prove were an annotation was given) the purity of more methods and
allows us, in some cases, to improve the speed of the analysis by performing only the
intraprocedural analysis relying on annotations in case of methods calls.

Although, in this work we focus on computing method purity the analysis can
be used to compute m-regions.

1.5.4. Tool support for region editing and program transformation

Figure 1.6: On the left: the callgraph browser window. On the right: the Region
Manager.

3This work has been done as part of an internship at Microsoft Research with the original goal
of having a points-to and e�ects analysis to check for method purity.

Chapter 1. Introduction 19

Determining precise object lifetime is undecidable. This forces static analysis
to be conservative, which in practice may lead to overly large regions. Therefore,
we advocate a semi-automatic approach by making the programmer participate in
the analysis and the transformation process. For this, we have developed JScoper

[FGB+05] (see chapter 6), an Eclipse plug-in providing visualization, navigation
and editing of the results generated at di�erent stages of the process (call graph
generation, escape analysis, region synthesis, program instrumentation, etc.).

Figure 1.7: A side by side view of the two code editors. Left: the standard Java
Editor. Right: the Scoped-Memory Java Editor.

JScoper provides a graphical interface to display call graph information enriched
with information about allocation sites (see left picture on Fig. 1.6). This can be
used for program understanding but more importantly to manipulate memory re-
gions. Regions can be created or edited by moving allocation sites from the call
graph to a region or by moving them between from one region to another (see right
picture on Fig. 1.6). Of course manual region editing may be unsound as an invalid
assignment of an allocation sites to a short-live region may produce dangling refer-
ence. Nevertheless, we assume that the programmer knows what he/she is doing or
simply wants to experiment with the e�ect of moving some object from one region
to another in terms of memory consumption, performance, etc.

Once regions are de�ned, the tool runs the code generator that basically in-
strument by inserting the corresponding calls to an API for region-based memory
management (see chapter 3). The tool provides syntax highlighting for the generated
code and special links that allow the user to move back and forth to the original code
(see Fig. 1.7) and the application call graph.

Fig. 1.8 shows the region-based code that is automatically generated for the
example in Fig. 1.4. The generated code uses the API presented in 1.5.2 to allocate
objects in regions. More details about the tool can be found in chapter 6.

1.5.5. Computing region sizes

Recall that, we have �xed the memory model to a region-based one where regions
are associated with the lifetime of methods and we have proposed a technique to infer
those memory m-regions relying on escape analysis. In this setting, m-regions are
de�ned by the set creation sites that are captured by a m. Thus, the size of the
m-region is directly associated with the size and the number of objects it captures.

20 Synthesis of parametric speci�cations of dynamic memory utilization

class CSs {

public static final String m1_4 = "m1.4";

public static final String m2_6 = "m2.6";

public static final String m2_8 = "m2.8";

public static final String m2_9 = "m2.9";

}

class Regions {

public static final Region rm0 =

new Region("m0",new String[] {

CSs.m2_6, CSs.m2_8});

public static final Region rm1 =

new Region("m1",new String[]

{CSs.m1_4, CSs.m2_6, CSs.m2_8});

public static final Region rm2 =

new Region("m2",new String[]

{CSs.m2_9});

}

public class TestIntroRegions {

void m0(int mc) {

ScopedMemory.enter(Regions.rm0);

m1(mc);

B[] m2Arr = m2(2 * mc);

ScopedMemory.exit();

}

void m1(int k) {

ScopedMemory.enter(Regions.rm1);

for (int i = 1; i <= k; i++) {

A a =(A)ScopedMemory.

newInstance(CSs.m1_4, A.class);

B[] dummyArr = m2(i);

}

ScopedMemory.exit();

}

B[] m2(int n) {

ScopedMemory.enter(Regions.rm2);

B[] arrB = (B[])ScopedMemory.

newAInstance(CSs.m2_6, B.class,n);

for (int j = 1; j <= n; j++) {

arrB[j - 1] = (B)ScopedMemory.

newInstance(CSs.m2_8, B.class);

C c = (C)ScopedMemory.

newInstance(CSs.m2_9, C.class);

c.value = arrB[j - 1];

}

ScopedMemory.exit();

return arrB;

}

}

2

Figure 1.8: Instrumented version of the example of Fig. 1.4

Since our memory utilization analysis uses creation sites as input to its algorithm,
we can reuse the same technique to obtain parametric upper-bounds of region sizes
by simply applying the technique to the set of creation sites captured by a method.

Notice that the prediction is parametric in terms of method parameters. That
means, the size of the region will not be a �xed value and it will vary according to
the calling context, matching the real memory region size. In a similar way, we can
compute the amount of memory that escapes the method and has to be collected by
methods that precede it in the call stack.

Example 1.7. For the example presented in Fig. 1.4 and using the synthesized
capture information (see example 1.6), the size of regions for m0, m1, and m2 can
be approximated as:

memCaptured(m0)(mc) = S(m0,m0.2.m2.6)(mc) + S(m0,m0.2.m2.8)(mc)
= (size(B[]) + size(B)).(2mc)

memCaptured(m1)(k) = S(m1,m1.4)(k) + S(m1,m1.5.m2.6)(k)
+S(m1,m1.5.m2.8)(k)

= size(A)k + (size(B[]) + size(B)).(
1
2
k2 +

1
2
k)

memCaptured(m2)(n) = S(m2,m2.9)(n) = size(C).n

Chapter 1. Introduction 21

Some Experiments

Table 1.6 shows the polynomials that over-approximate the amount of memory
captured by methods of the MST and Em3d examples from the JOlden benchmark.
We show only methods that capture some creation sites. For the others, the estima-
tion yields 0 as they do not allocate objects or they escape their scopes.

m #CSm memCaptured(m)

mst
MST.main(nv) 13 size(mst.Graph) + (size(Integer) + size(mst.HashEntry)) · nv2 +

[1/4, 0, 0, 0]nv · size(mst.Hashtable) · nv2 + (size(mst.Vertex) +
size(mst.Vertex[])) · nv + 5 · size(StringBuffer)

MST.parseCmdLine() 2 size(java.lang.RuntimeException)+size(Integer)

MST.computeMST(g, nv) 1 size(mst.BlueReturn) · (nv − 1)

em3d
Em3d.main(nN,nD) 26 size(em3d.BiGraph) + nN · (2 · size(em3d.Node) + 4 ·

size(em3d.Node[]) · nD + 2 · size(double[]) · nD) + 8 ·
size(em3d.Node1Enumerate) + 4 · size(java.lang.StringBuffer) +
size(java.util.Random)

Em3d.parseCmdLine() 6 3 · size(Integer) + 3 · size(java.lang.Error)
BiGraph.create(nN,nD) 2 size(em3d.Node[]) · nN

Table 1.6: Capturing estimation for MST and Em3d examples.

1.6. Predicting dynamic-memory requirements

Now, we address the problem of computing memory requirements. We propose
a technique to over-approximate the amount of memory required to run a method.
Given a method we obtain a polynomial upper-bound of the amount of memory
necessary to safely execute the method and all methods it calls, without running
out of memory. This polynomial can be seen as a pre-condition stating that the
method requires that much free memory to be available before executing, and also as
a certi�cate ensuring the method is not going to use more memory than the speci�ed
amount.

As a �rst approach we can be tempted to try to use directly the memalloc es-
timator presented in section 1.4. However, using this technique we would obtain
overly conservative upper bounds because it does not consider any kind of memory
reclaiming mechanism.

Our strategy is to leverage on our knowledge about how to infer memory regions,
how to compute their sizes and the fact that we know where (and when) regions are
created and destroyed. Speci�cally, assuming our particular scoped-memory based
memory model we know that objects captured by a method m are collected after it
�nishes its execution and escaping objects have to be collected by some other method
in the call stack. Thus, an algorithm for computing dynamic-memory requirements
should take into account region activations and deactivations that may occur during
method execution.

To compute the amount of memory necessary to safely run a method we need
to consider every potential region-stack con�guration starting from the MUA and
consider the largest size m-regions can get. We want this estimation to be expressed
in terms of the formal parameters of MUA but the amount of memory required
may depend also on the requirements of the callees which are expressed in terms of
their own parameters. Therefore, there is a need of some sort of binding between
MUA parameters and callees parameters. We do that binding leveraging on program
invariants as we have done when computing consumption for creation sites. We call

22 Synthesis of parametric speci�cations of dynamic memory utilization

those invariants binding invariants since they are control state invariants for control
states �nishing in the entry of a method.

Given a method mua we know how to compute the size of its mua-region (see
section 1.5.5). But this is not enough: to compute the amount of memory required
to run a method we need to include also the sizes of all m-regions of every method
that may be called during the execution of mua. There are two important facts to
take into account:

1. There are some region stack con�gurations that cannot happen at the same
time.

2. Although a method can be potentially invoked several times, there will be at
most one active m-region instance for m whose size may change depending of
the values assigned to its parameters each time it is invoked.

To illustrate the �rst fact, consider the example of Fig. 1.4. In this example,
method m0 calls to m1 which calls m2 several times. As we associated an m-region
to each method there will be at most 3 active regions (i.e. m2 running and m0
and m1 in the stack). Later, when method m1 returns the control to m0, the only
active region is an m0-region. Afterwards, when m0 calls m2 a new m2-region is
activated. As it is shown in Fig. 1.9 there are some regions that cannot be active
when other regions are. In this example, the regions corresponding to the call chains
m0 1→ m1 5→ m2 and m0 2→ m2 share only the m0-region. Since, both region stacks
cannot live together, it su�ces to consider the amount of memory required by the
con�guration that requires more space.

Figure 1.9: Potential regions stack con�gurations

Now, consider again the call chain m0 1→ m1 5→ m2. The method m2 will be
called k times (k = mc) with n assigned to i ranging from 1 to k. At each invocation
a new m2-region is created which is collected when m2 returns the control to m1.
That means that it will be at most only one active m2-region and its size varies
according to the value of n. Thus, when analyzing memory requirements it su�ces
to take the maximum size that am2-region may reach considering the calling context
given by the call chain m0 1→ m1 5→ m2.

We call rSizeπ.mmua the function that yields an expression in terms of the MUA
parameters of the size of the largest m-region created by any call to m with control
stack π in a program starting at method mua. π represents the calling context used
to restrict the maximization.

Chapter 1. Introduction 23

Suppose we can compute rSize for each method in each call chain. Then, to
compute the amount of memory required to run a method mua, we basically need
to consider the size of its own region and add the amount of memory required to run
every method it calls. Since every call (a branch in the call graph) lead to an indepen-
dent region stack, we can select the branch the would require the maximum amount
of memory. This procedure is applied recursively by traversing the application call
graph.
In general, this function can be de�ned as follows:

memRqπ.mmua(pmua) = rSizeπ.mmua(pmua) +
max{memRqπ.m.l.mimua (pmua) | (m, l,mi) ∈ edges(CGmua ↓ π.m)}

where CGmua ↓ π.m is a projection over the path π.m of the call graph of the
program starting at method mua and edges is the set of its edges.

Note that this recursive de�nition lead to an evaluation tree (see Fig. 1.10) where
leaves are related with rSize problems and nodes withmax or sum operations. Since
our objective is to evaluate this formula in run-time (i.e. when method parameters
are instantiated) we would like to make the evaluation as fast as possible. That is
why is it important to simplify the underlying evaluation tree as much as possible.

Figure 1.10: Evaluation tree for memRqm0
m0

In order to properly de�ne memRq we must rule out recursive calls. In other words,
the underlying evaluation tree has to be �nite4.

Finally, in order to safely predict the amount of memory required by the MUA,
we need to consider the objects that were allocated during its execution but cannot
be collected when it �nished. Since the escape property is absorbent is enough
to consider only objects escaping the MUA (see section 7.3). Thus, we de�ne the
function that approximates memory requirements as follows:

memRqmua(pmua) = memEscapes(mua)(pmua) + memRqmua
mua(pmua)

Example 1.8. Assume we call rSizem0...m′
m0 to the size of the maximum m′-region

in terms of m0 for a control stack given by a path starting from m0 and �nish in a
method m′. We can compute the size of memory required to run m0 as follows:

4 Mutually recursive methods have to be removed by program transformation or provide one
requirement speci�cations for every strongly connected component in the call graph (i.e. treat every
set of mutually recursive methods as one method)

24 Synthesis of parametric speci�cations of dynamic memory utilization

memRqm0(mc) = memEscapes(m0)(mc) + rSizem0
m0(mc)

+max{rSizem0.1.m1
m0 (mc) + rSizem0.1.m1.5.m2

m0 (mc),
rSizem0.2.m2

m0 (mc)}

1.6.1. Maximizing region memory sizes

As mentioned, we need to model the fact that the size of every m-region may
vary according to its calling context. Thus, for every method m′ reachable from the
MUA, we need to get an expression that represents the maximum size an m′-region
may reach restricted by a call chain π starting from the MUA (rSize). As we did for
the technique presented in 1.5.5, we use invariants to bind the methodm′ parameters
with the MUA parameters (e.g. m0 in the example) and to constrain the valuation
of variables according to the calling context.

Let mua...m′ a path starting from mua �nishing in a method m′. We can model
the size maximum region as follows:

rSizemua...m′
mua (Pmua) = Maximize memCaptured(m′)(Pm)

subject to Imua...m′
mua (Pmua , Pm,W)

memCaptured(m′) (the size of anm′-region) is a polynomial in terms ofm′ param-
eters and the invariant Imua...m′

mua binds m′ parameters with the MUA parameters5.
This formula characterizes a non-linear maximization problem whose solution is

an expression in terms of MUA parameters. Since our goal is to avoid expensive
run-time computations we need to perform o�-line reduction as much as possible
at compile time. O�-line calculation also means that the problem must be stated
parametrically.

To solve this parametric maximization problem we resort to an approach based
in a technique presented by Clauss [CT04] which proposes the use of the Bernstein
expansion [Ber52, Ber54] for handling parameterized multivariate polynomial con-
sidered over a parametric polyhedron. Roughly speaking, given a polynomial and a
restriction given by a parametric polyhedron the technique provides a set of polyno-
mials candidates which bound the original polynomial in the domain given by the
parametric polyhedron. The most interesting aspect of the technique is that obtained
polynomials are in terms of the parameters of the restriction.

In our case, the polynomial is given by the memCaptured estimator (see sec-
tion 1.5.5) and the restriction is given by a binding invariant. The maximization
problem can be therefore solved by picking the maximum Bernstein coe�cient.

Example 1.9. For our example, the expression for rSize for each possible region

5Actually the invariant binds the parameters of all the sequence of methods that appears in the
call chain.W are local variables appearing in the other methods in the call chain.

Chapter 1. Introduction 25

is:

rSizem0.2.m2
m0 (mc) = Maximize

(
size(C).n

)
subject to {n = 2mc}

= (size(C))2mc
rSizem0.1.m1.5.m2

m0 (mc) = Maximize
(
size(C).n

)
subject to {k = mc, 1 ≤ i ≤ k, n = i}

= (size(C))mc

rSizem0.1.m1
m0 (mc) = (size(B[]) + size(B)).(

1
2
mc2 +

1
2
mc) + size(A)mc

rSizem0
m0(mc) = (size(B[]) + size(B))2mc

Once we are able to obtain a bound of every region in terms of the MUA, the
problem of computing the memory requirement is reduced to traverse all paths start-
ing from the MUA and applying basically max and sum operations.

Example 1.10. Let's assume (for simplicity) that the size of all types is 1. In this
case, the amount of memory required to safely run m0 is:

memRqm0(mc) = memEscapes(m0)(mc) + rSizem0
m0(mc)

+max(rSizem0.1.m1.5)
m0 (mc)

+rSizem0.1.m1.5.m2
m0 (mc), rSizem0.2.m2

m0 (mc))

= 0 + 2(2mc) +max(2(
1
2
mc2 +

1
2
mc) + 1mc+ 1mc, 2mc)

= 4mc+max{mc2 + 3mc, 2mc}
= mc2 + 7mc

Figure 1.11: Computed memory requirements against actual memory consumption

In Fig. 1.11 we show a run of the example of Fig. 1.4 together with the evolution
of the size of regions for m0, m1 and m2 and the computed approximation of the

26 Synthesis of parametric speci�cations of dynamic memory utilization

amount of memory required to safely run m0, called memRq in the �gure. The
prediction is accurate for our region-based memory management since the expression
exactly matches the actual value that an execution using m-regions will require to
run.

In this case there is an overhead in the memory usage that comes from the use
of m-regions instead of using a more aggressive collection mechanism (represented
by ideal in the �gure). The overhead comes from the fact that in the m0-region we
reserve the amount of memory necessary to allocate the objects escaping from m2.
However, that space is only needed when m0 calls m2 near the end of its execution.
This overhead is produced because the granularity of the regions is at the method
level.

Notice that this approach obtains safe bounds even for other memory reclaiming
mechanisms (see chapter 7). The intermediate region inference generation adds an
additional level of over-approximation.

Figure 1.12: Components of our approach for predicting memory requirements

In Fig. 1.12 we show the main components of a tool that computes the memory
requirements. As we have mentioned, we generate an evaluation tree by traversing
all methods reachable from the MUA by following the application call graph. To
compute rSizeπmua we need to provide invariants which are obtained using the same
ideas we show in 1.4.2. The evaluation tree can be simpli�ed o�-line in order to try
to reduce the size of the memory requirements expressions. Finally, this expression
can be translated to code for evaluation in runtime.

1.6.2. Some Experiments

The initial set of experiments were carried out on a subset of programs from
JOlden [CM01] benchmarks. Again we only select programs that are not recursive or
the set of recursive methods is treatable by eliminating the recursion or by proposing
consumption speci�cations.

In order to make the result more readable, we show the number of object in-
stances created when running the selected method, rather than the actual memory

Chapter 1. Introduction 27

allocated by the execution of the method. Table 1.7 shows the computed peak ex-
pressions, and the comparison between real executions and estimations obtained by
evaluating the polynomials. The last column shows the relative error ((#Objs -
Estimation)/Estimation).

Example memRq Param. #Objs Estimation Err%

MST(nv) 1 + 9
4
nv2 + 3nv + 5 + max{nv − 1, 2} 10 253 270 6%

20 943 985 4%
100 22703 22905 1%
1000 2252003 2254005 0%

Em3d(nN, nD) 6nN.nD + 2nN + 14 + max{6, 2nN} (10,5) 344 354 3%
(20,6) 804 814 1%
(100,7) 4604 4614 0%
(1000,8) 52004 52014 0%

BiSort(n) 6 + n 10 13 16 19%
20 21 26 19%
200 69 135 45%
64 69 70 1%
128 133 134 1%

Power() 32656 - 32420 32656 1%

Table 1.7: Experimental evaluation of memory requirements prediction

These experiments show that the technique produced quite accurate results, ac-
tually yielding almost exact �gures in most benchmarks. In some cases, the over-
approximation was due to the presence of allocations associated with exceptions
(which did not occur in the real execution), or because the number of instances
could not be expressed as a polynomial. For instance, in the bisort example, the
reason of the over-approximation is that the actual number of instances is always
bounded by 2i−1, with i = blog2nc. Indeed, the estimation was exact for arguments
power of 2.

1.7. Summary of Contributions

As we have mentioned, the most important contributions are a set of techniques
in the realm of predicting memory requirements. Nevertheless, we also make some
contributions in escape analysis, region inference and scope-based region manage-
ment. Summarizing:

A technique to compute parametric expressions of dynamic memory allocations
(see chapter 2).

An application of the technique to compute region sizes in a scoped memory
management setting (see chapter 2).

A region-based memory manager that allows programmers to allocate objects
in regions using a simple API and a technique to automatically produce region-
based code by the aid of escape analysis (see chapter 3).

Two techniques to compute points-to and escape information which can be used
to infer memory regions. One is an extension of an e�cient but not very precise
escape analysis ([GS00]) and the other is an extension of a precise points-to and
escape analysis ([SR01]) which incorporates points-to and e�ects annotations
to try to keep precision even in the case of call to native or virtual methods
(see chapters 4 and 5).

A tool that is able to edit memory regions and to translate conventional Java
code to Java code that runs in an scoped memory management setting (see
chapter 6).

28 Synthesis of parametric speci�cations of dynamic memory utilization

A technique that is able to predict parametric certi�cates of dynamic memory
requirements to ensure that applications will have enough space to run (see
chapter 7).

A proof of concept tool able to compute the memory utilization certi�cates.
The tool implements and integrate solutions for invariant discovery, escape
analysis, polyhedral manipulation and non-linear optimization techniques and
include other analysis techniques such as program instrumentation, data�ow
analysis, inductive variable set inference, points-to analysis, call graph compu-
tation, etc. (see chapter A).

1.8. Some limitations and weaknesses of our approach

This work was one of the �rst ones to predict dynamic memory requirements
in imperative languages6 (see related work in section 1.9) since when we started
our research, there were only very few works on the topic, mainly focused on �rst-
order functional languages [HP99, USL03, HJ03]. Our main application domain is
embedded and real-time systems where applications tend to be implemented using
imperative languages and avoiding recursive method calls. We believe that the ability
to compute polynomial approximation of memory consumption from program invari-
ants is an interesting contribution to cope with the problem of quantifying memory
requirements. However, our approach su�ers from some intrinsic limitations and
weaknesses that we would like to address in the near future (see section 8).

1.8.1. Limitations

Restrictions on the input

Our techniques cannot analyze any kind of program. Here we brie�y describe
some features that our techniques cannot handle.

Recursion: Our approach does not support recursive method calls. This is in prin-
ciple acceptable for our application domain where programs tend to avoid recursion.
However, we found this limitation an important obstacle to apply our approach to a
broader spectrum of applications.

Implicit allocations: We only account for allocations made by the methods we
can actually analyze. Allocations made by native methods or internal allocations
made by the runtime system (virtual machine) are not considered.

Data Structures: Our analysis is better suited to deal with programs that operate
with arrays and integer variables but we also showed that it can handle some iteration
patterns like based on collections and iterators. However, memory consumption is
not always directly related with method parameters but to some values stored in
complex data structures (e.g a database, a graph, etc.) which are not always possible
to model using linear invariants.

6Some object oriented features such as polymorphic calls are also supported if they can be solved
at compile time computing a detailed call graph.

Chapter 1. Introduction 29

Restrictions on the output

Polynomials: We believe that one of the most important features of our technique
is the generation of polynomials which are easy-to-evaluate non-linear parametric
expressions. However, many programs require an exponential amount of dynamic
memory which cannot be bounded by polynomials. In general, exponential memory
consumption is produced by recursive programs which anyway are not supported by
our approach.

1.8.2. Weaknesses

Here, we discuss some weaknesses of the approach we have followed.

Theoretical

Linear invariants: It is impossible to capture all the potential variable valuations
of program locations using linear invariants. Non-linear expressions have to be ig-
nored or approximated. That means the output of the technique will be inevitably
approximated.

Complexity: Our approach relies on two techniques that manipulate polyhedra
and polynomials. The �rst technique is Ehrhart [Ehr77] used to count the number
of solutions of invariants. It �rst implementation [Cla96] was exponential in the
number of variables but nowadays a polynomial solution exists [VSB+04]. The second
technique is Bernstein [Fer06, CFGV06] which computational complexity has not
been determined yet, although we found it quite e�cient in practice. However, both
techniques are theoretically computationally expensive in terms of the number of
variables. Moreover, the number of times they are called is related with the number
of paths in the application call graph. For instance, we call Ehrhart for every creation
site where the number of creation sites is determined by the number of paths that
lead to allocation sites. In a similar fashion, we call Bernstein for every call chain that
leads to a region. Theoretically, the number of paths in a graph can be exponential.
Nevertheless, we found that in practice, the number of paths in call graphs is usually
not large.

Practical

Multiple sources of imprecision: Our techniques rely on obtaining program
invariants to count visits to creation sites and to constrain method calls (binding
invariants). We assume they can be automatically inferred or manually attached
by programmers to allocation and call sites using appropriate annotations7. We
implemented tools (see section 1.4.2) to automatically compute them. However,
automatically generated invariants can be too imprecise and would require manual
intervention in order to improve their quality. This can be a burdensome task for real-
world applications. Something similar occurs with the discovery of sets of inductive
variables which has an impact on the precision of the counting mechanism. In the
case of the computation of peak-memory requirements, another source of imprecision
comes from escape analysis which is used to infer memory regions.

Moreover, our prototype tool suite (see section A) integrates several tools like in-
variant generation tools, static analyzers to compute call graphs and object lifetime

7In our prototype tool we use our own annotation language, but other languages like [LLP+00,
BLS05] can be used as well

30 Synthesis of parametric speci�cations of dynamic memory utilization

information, linear programming tools, polyhedra calculation, polynomial maximiza-
tion, etc. Every analysis may introduce some sort of approximation impacting the
�nal precision of our analysis and in the overall cost of our techniques.

Scalability: We need further experimentation to assess how the analysis performs
in real-world applications. For Jolden and Java Grande benchmarks it took between
5 to 30 seconds to obtain memory consumption expressions. We observed that an
important part of that time was spent in inferring the invariants. As mentioned,
assuming invariants are already given, the cost of the analysis is directly related
with the number of paths in the application call graph and the cost of Ehrhart and
Bernstein implementations whose complexity is a function of the number of variables.
The latter can be considerably reduced in practice by simplifying invariants using
inductive variables.

The problem of the number of creation sites remains since it is related to the
number of paths leading to allocations sites which is exponential in the number
of methods in the worst case. Although it was not an issue in the (small) set of
benchmarks we have analyzed, it may cause problems in real-world applications. To
cope with this, the idea would be to resort to a more modular approach (see 8.2).

1.9. Related Work

There has been a lot of work in escape analysis and region inference techniques.
Some discussion about them can be found in chapters 3, 4, 5 and 6. In this section
we focus on the most relevant related work regarding dynamic memory consump-
tion analysis. Additional discussion about related work can be also found in the
corresponding chapters.

Most of the related work is focused in ensuring that programs do not violate re-
source policies which are enforced by using an enriched type system [HJ03, CNQR05,
HP99] or by using a program logic [AM05, BHMS04, CEI+07, BPS05]. We found
just a few works focused in the inference of dynamic memory consumption [Ghe02,
HJ03, CJPS05, USL03, AAG+07]. Most of these approaches are based in type in-
ference [HJ03, CNQR05, HP99], by program transformation [USL] or by abstract
interpretation [AAG+07].

To our knowledge, the use of program invariants to automatically synthesize
method-centric parametric non-linear over-approximations of memory consumption
is novel. We also believe that modeling the memory requirement as a non-linear
problem and its symbolic solution using Bernstein basis is also novel. Our approach
combines techniques appearing in the �eld of parallelizing and optimizing compilers.
They are traditionally applied to works on performance analysis, cache analysis, data
locality, and worst case execution time analysis [Fah98, LMC02, Cla97, Lis03]. The
use of linear invariants allows us to produce non-linear expressions but keeping the
manipulability of linear constrains together with their tool support and acceptable
computational cost of linear programming (against other approach like Presburger
or polynomial algebra).

In Table 1.8 we present a chronological overview of the works that we believe are
the most relevant in dynamic memory consumption analysis. We include also our
contributions to situate them in this timeline. For every work, we highlight the year
of publication, the target language paradigm (functional, imperative, etc.), the main
purpose of the analysis (inference, checking, veri�cation, etc), the kind of expressions
the analysis can handle, the kind of memory reclaiming mechanism that it supports
and the benchmarks used to text to test the approach. It is noticeable that most

Chapter 1. Introduction 31

of the techniques have not been tested using well known benchmarks, specially in
the case of inference techniques. In particular the most complicated benchmark used
was indeed Jolden which was been applied by us and by Chin et al. [SYG05] but in
their case only for veri�cation purposes (not for inference).

Work Year Target Purpose of Type of GC Benchmarks
Language Analysis Expressions

Hughs & Pareto
[HP99]

99 Functional
(ML)

Checking
(Type Based)

Presburger Regions No

Gheorghioiu [Ghe02] 02 Imperative
(Java Like)

Inference
(Abs.Int.)

Non-linear No No

Hofman &Jost [HJ03] 03 Functional
(First
Order)

Inference
(Type Based,
Linear Prog)

Linear Explicit No (some
examples)

Unnikrishnan et al.
[USL03]

03 Functional
(First
Order)

Inference
(Transforma-
tion)

Non-Linear
(recursive
function)

Reference
Counting

Ad hoc
(list
manipula-
tion)

Garbervetsky et al.

[BGY04, BGY05]
04, 05 Imperative

(Java like)
Inference
(Invariants)

Non-linear No Jolden,
Java
Grande

Chander et al.
[CEI+07]

05, 07 Imperative Checking
(static and dy-
namic, SMT)

Linear No No

Cachera et al.
[CJPS05]

05 Imperative
(Java like)

Inference
(Abs.Int)

< Linear No Ad hoc

Barthe et al. [BPS05] 05 Imperative
(Java like)

Checking
(SMT)

Non-linear No No

Chin et al. [CNQR05] 05 Imperative
(MemJ)

Checking
(Type Based)

Presburger Explicit Jolden,
RegJava
(trans-
lated)

Garbervetsky et al.

[BGY06, BFGY07]
06, 07 Imperative

(Java like)
Inference
(Bernstein)

Non-linear Regions Jolden

Albert et al.
[AAG+07]

07 Imperative Inference
(Abs.Int.)

Non-Linear
(recurrence
equations)

No No

Table 1.8: Dynamic memory consumption's chronology

First, we overview the most relevant work focused in checking memory consump-
tion by type checking or by using theorem provers and then we compare more thor-
oughly works that infer dynamic memory consumption.

1.9.1. Type Based Checking

In general, the idea behind type based approaches is to enforce memory consump-
tion properties by typing rules meaning that well typed programs do not consume
more memory than speci�ed.

Hughes and Pareto [HP99] proposed a variant of ML extended with region con-
structs [TT97] together with a type system based on the notion of sized types [HPS96]
(Presburger constrains), such that well typed programs are proven to execute within
the given memory bounds given as linear constrains. Although, their work is meant
for �rst-order functional languages, they also rely on regions to control objects deal-
location.

The method proposed by Chin et al. [CKQ+05, CNQR05] relies on a type system
and type annotations, similar to [HP99]. It does not actually infer memory bounds,
but statically checks whether size annotations (Presburger's formulas) are veri�ed.
It is therefore up to the programmer to state the size constraints, which are indeed
linear, and to include aliasing and object deallocation information. One interesting
feature is that they specify individual object deallocation which allows them to check
precise bounds. We do not support that feature since, in our case that will require

32 Synthesis of parametric speci�cations of dynamic memory utilization

the ability of inferring lower bounds, a feature that we do not support up to the
moment. Nevertheless, we do support region deallocation and we can infer non-
linear speci�cations of method consumption whereas they are limited only to linear
ones.

1.9.2. Cheking using program logics

Beringer et al. [BHMS04] proposes a program logic for verifying heap consump-
tion of a low-level imperative program which is based on a general purpose program
logic for resource veri�cation proposed by Aspinall et al. [ABH+04] designed for
a proof-carrying code scenario. It basically allows the same reasoning as in their
previous work that uses a linear type system [HJ03] (see later in this section) but
in an imperative setting. The work presented in the paper is more focused in the
formal presentation of the technique and no benchmarking is available to assess the
impact of this technique in practice.

Chander et al. [CEI+07] explored combinations of static and dynamic meth-
ods by proposing a language extended with idioms for reserving and consuming
resources. �Reserve� statements are checked dynamically and �consume� statements
are checked statically assuming reserve statements as valid assertions. The approach
requires programmers to annotate the programs with loop invariants, pre and post
conditions for methods and reserve statements. The veri�cation is performed using
SMT8 SAT solvers. The technique is presented using one interesting example (a
simpli�ed version of tar) but no benchmarking is available.

Barthe et al. [BPS05] described a technique for proving memory consumption of
programs using a program logic for bytecode which is a variant of JML [LLP+00].
Roughly speaking, they introduce a special variable to the speci�cation language
that denotes the amount of memory utilized and extend the semantics of allocation
statements (i.e. new statements) to update this variable accordingly. The ability of
proving consumption predicates is constrained only by the power of the veri�cation
tool that is behind. One drawback of the technique is it lack of support of some
garbage collection mechanism.

1.9.3. Memory consumption inference

The technique of Gheorghioiu [Ghe02] manipulates symbolic memory-consumption
expressions on unknowns that are not necessarily parameters, but added by the anal-
ysis to represent, for instance, the number of loop iterations. The analysis basically
computes a memory-consumption expression for each method by traversing its code
and assigning a cost to each instructions. For method calls the analysis instanti-
ates the pre-computed method consumption of the callee. For loops and recursive
calls the analysis introduces new unknowns to model the number of times they are
performed. The resulting formula has to be evaluated on an instantiation of the un-
knowns left to obtain the upper-bound. Although it is di�cult to analyze this work
due to the lack of examples, it seems not to be suitable for programs with dynami-
cally created arrays whose size depends on loop variables. In such cases, it yields an
over approximation similar to multiplying the maximum array size by the number
of loop iterations. In contrast, our approach produces more accurate estimates for
dynamic memory creation inside loops. No benchmarking is available to assess the
impact of this technique in practice and object deallocation is not considered.

Hofmann and Jost [HJ03] proposed a solution to obtain linear bounds on the heap
space usage of �rst-order functional programs. Closer to our spirit, their work stat-

8Satis�ability Modulo Theories

Chapter 1. Introduction 33

ically infers, by typing derivation and linear programming, easy-to-evaluate expres-
sions that depend on function parameters to predict memory consumption. However,
their work di�ers from ours in many aspects. The technique is stated for functional
programs running under a special memory mechanism (free list of cells and explicit
deallocation in pattern matching where memory recovery can be supported within
each function, but not across functions in general. The obtained bound are linear
bounds expression involving the sizes of various part of data. In particular, the size
of the freelist required to evaluate the function is an expression on the input, while
the freelist left is an expression on the result. On the other hand, our approach
is meant for imperative languages with high level memory management and relies
on pointer and escape analysis to infer objects lifetimes and it does not require ex-
plicit declaration of deallocations. The obtained bounds are polynomials in terms of
methods parameters instead of linear expressions.

The technique proposed by Unnikrishnan et al. [USL03] computes memory re-
quirements considering garbage collection. It consists in a program transformation
approach that, given a function, constructs a new function that symbolically mimics
the memory allocations of the former. The function encodes a reference counting
collection mechanism. The computed function has to be executed over a valuation
of parameters to obtain a memory bound for that assignment. The evaluation of
the bound function might not terminate, even if the original program does. In any
case the cost of evaluation can be expensive and di�cult to predict beforehand. Our
approach computes easy-to-evaluate expressions allocations are modeled as solutions
to program invariants meaning that, even in case of non-terminating programs, our
analysis always �nishes (returns in�nite).

Cachera et al. [CJPS05] proposed a constraint-based memory analysis for a Java
like bytecode. For a given program their loop-detecting algorithm can detect methods
and instructions that execute an unbounded number of times, thus can be used to
check whether the memory usage is bounded or not. The analysis trade precision for
e�ciency since it is meant to run in small embedded system such as smartcards.

More recently Alter et al. [AAG+07] propose a technique for parametric cost
analysis for sequential Java code. The code is translated to a recursive representation
with a �attened stack. Then, they infer size relations which are similar to our
linear invariants. Using the size relation, and the recursive program representation
they compute cost relations which are set of recurrent equation in term of input
parameters. Applied to memory consumption the bounds that this technique is able
to infer are not limited to polynomials. However, solving recurrence equations is not
a trivial task and is not always possible to obtain closed form solutions for a set of
recurrence equations. They outline some proposals to approximate solutions. Object
deallocation is not considered.

All those works are also related with seminal works on automatic asymptotic
complexity analysis such as the work of Rosendahl [Ros89] which proposes an ap-
proach based on abstract interpretation or the work of Le Métayer [M�88] based on
computing a cost function by program transformation.

We �nd a similar approach to us in [GBD98, ZM99]. Both use the counting tech-
nique to address the problem of �nding memory size bounds in array computations
for DSP and multimedia processing. However, their aim is to optimize the num-
ber of memory cells used in (potentially parallel) array intensive applications which
typically involve several nested loops. Our approach was meant to deal with dy-
namic memory allocation (dynamically created object instances and dynamic array
creation) and extended to support memory deallocation.

34 Synthesis of parametric speci�cations of dynamic memory utilization

1.10. Thesis Structure

In chapter 2 we present the techniques related with Dynamic Memory Utilization
analysis and for Region size inference. They were published in the �Journal of Object
Oriented Technologies (JOT06)� [BGY06] and is based in the work presented in
�Formal Techniques for Java like Languages (FTFJP05)� [BGY05] and a technical
report [BGY04].

Chapters 3,4, 5 and 6 are focused in the necessary analyses and transformations
from conventionally garbage-collected Java code to a new region-based Java code.
In chapter 3 we present our region-based memory model, and a technique to auto-
matically infer scoped-regions using escape analysis. We also present a technique
for automated transformation of standard Java code to region-based code. This
work was presented in the �International Workshop of Runtime Veri�cation (RV04)�
In chapter 4 we propose an extension of an existing escape analysis technique that
make it for suitable for region inference. It was published in the �First Workshop of
Abstract Interpretation for Object Oriented Languages (AIOOL05)�. In chapter 5
we extend a points-to and e�ect analysis to support a small annotation language that
enables speci�cations about points-to, escape, e�ect and ownership. It was published
in �International Workshop of Aliasing, Con�nement and Ownership (IWACO07)�.
Finally in chapter 6 we present our tool that integrates region edition and visualiza-
tion with program transformation. It was presented in � eclipse Technology eXchange
Workshop at OOPSLA (eTX 2005)�.

In chapter 7 we present the technique developed for Memory requirement infer-
ence. This work is currently published as a technical report [BFGY07] and has been
sent for publication. It is based on preliminaries ideas published in a technical report
[BGY04] and some work we have done during a Master Thesis by Federico Fernandez
[Fer06] that I co-advised where we implemented the Bernstein basis to partially solve
the non-linear maximization problem of computing rSize.

In chapter 8 we present our conclusions and future work. Finally, in appendixes
A and B we discuss some implementation details about of our prototype tool and
also present some details about how we deal with the problem of Local invariant
generation.

CHAPTER 2

Computing Parametric speci�cations of dynamic memory utilization

In this chapter we present a static analysis for computing a parametric upper-
bound of the amount of memory dynamically allocated by (Java-like) imperative
object-oriented programs. We propose a general procedure for synthesizing non-
linear formulas which conservatively estimate the quantity of memory explicitly al-
located by a method as a function of its parameters. We have implemented the
procedure and evaluated it on several benchmarks. Experimental results produced
exact estimations for most test cases, and quite precise approximations for many of
the others. We also apply our technique to compute usage in the context of scoped
memory and discuss some open issues1.

2.1. Introduction

The embedded and real-time software industry is leading towards the use of
object-oriented programming languages such as Java. This trend brings in new
research challenges.

A particular mechanism which is quite problematic in real-time embedded con-
texts is automatic dynamic memory management. One problem is that execution
and response times are extremely di�cult to predict in presence of a garbage col-
lector. There has been signi�cant research work to come up with a solution to
this issue, either by building garbage collectors with real-time performance, e.g.
[BCG04, Hen98, HIB+02, RF02, Sie00], or by using a scope-based programming
paradigm, e.g. [GB00, CR04, GNYZ04, GA01]. Another problem is that evaluating
quantitative memory requirements becomes inherently hard. Indeed, �nding a �nite
upper- bound on memory consumption is undecidable [Ghe02]. This is a major draw-
back since embedded systems have (in most cases) stringent memory constraints or
are critical applications that cannot run out of memory.

In this work we propose a novel technique for computing a parametric upper-
bound of the amount of memory dynamically allocated by Java-like imperative
object-oriented programs. As the major contribution, we present a technique to
quantify the explicit dynamic allocations of a method. Given a method m with pa-
rameters p1, . . . , pk we exhibit an algorithm that computes a non-linear expression

1 This chapter is based on the results published at the �Journal of Object Technology� (JOT)
[BGY06]. A preliminary version was frist published in Formal Techniques for Java like Pro-
grams�(FTFJP'05) [BGY05].

35

36 Synthesis of parametric speci�cations of dynamic memory utilization

over p1, . . . , pk which over-approximates the amount of memory allocated during the
execution of m.

Roughly speaking, our technique works as follows. For every allocation statement,
we �nd an invariant that relates program variables in such a way that the amount of
consumed memory is a function of the number of integer solutions of the invariant.
This number is given in a parametric form as a polynomial where unknowns are
method parameters. Our technique does not require annotating the program in
any form and produces parametric non-linear upper-bounds on memory usage. The
polynomials are to be evaluated on program (or method) inputs to obtain the actual
bound.

To get a �avor of the approach, consider for instance the following program:

void m1(int k) {

for(int i=1;i<=k;i++) {

A a = new A();

m2(i);

}

}

void m2(int n) {

for(int j=1;j<=n;j++) {

B b = new B();

}

}

For m2, our technique computes the expression size(B) · n which is the amount of
allocated memory if the program starts at m2 2. For m1, the computed expression
is size(A) · k + size(B) · 1

2(k2 + k) because starting at m1, the program will invoke
m2 k times and, at each invocation i ∈ [1, k], m2(i) will allocate i instances of B,
resulting in a total amount of

∑k
i=1 i = 1

2(k2 + k) instances of B, which have to be
added to the k instances of A directly allocated by m1.

Combining this algorithm with static pointer and escape analyses, we are able
to compute memory region sizes to be used in scope-based memory management.
Given a method m with parameters p1, . . . , pk, we develop two algorithms that com-
pute non-linear expressions over p1, . . . , pk which over-approximate, respectively, the
amount of memory that escapes from and is captured by m.

These techniques can be used to predict explicit memory requirements, both dur-
ing compilation and at runtime. Applications are manyfold, from improvements in
memory management to the generation of parametric memory-allocation certi�cates.
These speci�cations would enable application loaders and schedulers (e.g., [KNY03])
to make decisions based on available memory resources and the memory-consumption
estimates.

It should be noted that our analysis only copes with allocations explicitely made
by a program through new statements in its code. The amount of �hidden� memory
allocated by native methods or by the virtual machine itself cannot be quanti�ed
with this technique. This is a very important issue that deserves further research.

2.1.1. Related Work

The problem of dynamic memory estimation has been studied for functional lan-
guages in [HJ03, HP99, USL03]. The work in [HJ03] statically infers, by typing
derivation and linear programming, linear expressions that depend on function pa-
rameters. The technique is stated for functional programs running under a special
memory mechanism (free list of cells and explicit deallocation in pattern matching).
The computed expressions are linear constraints on the sizes of various parts of data.
In [HP99] a variant of ML is proposed together with a type system based on the

2For simplicity, we assume here the constructor B() does not allocate memory. This issue will
be handled later when we present the technique in detail.

Chapter 2. Synthesizing of Dynamic Memory Utilization 37

notion of sized types [HPS96], such that well typed programs are proven to execute
within the given memory bounds. The technique proposed in [USL03] consists in,
given a function, constructing a new function that symbolically mimics the memory
allocations of the former. The computed function has to be executed over a valuation
of parameters to obtain a memory bound for that assignment. The evaluation of the
bound function might not terminate, even if the original program does.

For imperative object-oriented languages, solutions have been proposed in [CKQ+05,
CNQR05, Ghe02]. The technique of [Ghe02] manipulates symbolic arithmetic ex-
pressions on unknowns that are not necessarily program variables, but added by the
analysis to represent, for instance, loop iterations. The resulting formula has to be
evaluated on an instantiation of the unknowns left to obtain the upper-bound. No
benchmarking is available to assess the impact of this technique in practice. Never-
theless, two points may be made. Since the unknowns may not be program inputs, it
is not clear how instances are produced. Second, it seems to be quite over-pessimistic
for programs with dynamically created arrays whose size depends on loop variables.
The method proposed in [CKQ+05, CNQR05] relies on a type system and type an-
notations, similar to [HP99]. It does not actually synthesize memory bounds, but
statically checks whether size annotations (Presburger's formulas) are veri�ed. It is
therefore up to the programmer to state the size constraints, which are indeed linear.

Our approach combines techniques used for performance analysis [Fah98], cache
analysis [Cla97], data locality [LMC02], worst case execution time analysis [Lis03],
and memory optimization [GBD98, ZM99]. To our knowledge, their use to auto-
matically synthesize method-centric parametric non-linear over-approximations of
memory consumption is novel.

Outline

In Section 2.2 we introduce useful de�nitions, notations, and some already de-
veloped techniques we rely on. In Section 2.3, we explain our general method for
calculating memory consumption. In Section 2.4 we show our method for region-size
estimation in scope-based memory management. In section 2.5 we show the results
of applying our technique to some well known benchmarks. Section 2.6 discusses
some extensions and future work. Section 2.7 presents some conclusions.

2.2. Preliminaries

2.2.1. Counting the number of solutions of a constraint

Let I be an arithmetic constraint over a set of integer variables V = W] P
where P represents a set of distinguished variables (called parameters) and W is the
remaining set of variables. We write v, p and w to denote assignments of values to
variables. I(v) is the result of evaluating I in v.
C(I, P) denotes the symbolic expression over P which provides the number of

integer solutions of I for the set of variables W , assuming P has �xed values. More
precisely:

C(I, P) = λp. #{ w ∈ Z|W | | I(w,p) }

There are several techniques which can be used to obtain these symbolic expres-
sions, e.g., [Cla96, Fah98, Pug94, VSB+04]. Here, we will brie�y present the one
described in [Cla96, VSB+04] which applies to linear constraints.

38 Synthesis of parametric speci�cations of dynamic memory utilization

A linear parametric set SP is de�ned as SP = { w ∈ Q|W | | Aw ≥ Bp + c }
where A and B are integer matrices, and c is an integer vector. SP is called a
parametric polytope whenever the number of points in SP is �nite for each p.

A |P |-periodic number is a function U : Z|P | → Z for which there exists r ∈ N|P |
such that U(p) = U(p′) whenever pi ≡ p′i mod ri, for 1 ≤ i ≤ |P |. The least
common multiple of all ri is called the period of U .

A quasi-polynomial in |P | variables is a |P |-dimensional polynomial in variables
over |P |-periodic numbers. That is, the coe�cients of a quasi-polynomial depend
periodically on the variables.

Ehrhart [Ehr77] showed that C(SP , P) for a parametric polytope SP , can be
represented as a quasi-polynomial, provided SP can be represented as a convex com-
bination of its parametric vertices, where each vertex is an a�ne combination of
the parameters with rational coe�cients. This result can be extended to unions of
parametric polytopes de�ned as { w ∈ Q|W | | Aw ≥ Bp + c , Mw mod d ≥ e },
where M is an integer matrix, and d, e are integer vectors.

Example Consider, for instance, the linear parametric set S1 = {w | I1(w,p)},
where I1 is de�ned as follows:

I1 = {k = mc, 1 ≤ i ≤ k, 1 ≤ j ≤ i, n = i}

where W = {k, i, j, n}, and P = {mc}. The corresponding Ehrhart polynomial is:

C(S1,mc) =
1
2
mc2 +

1
2
mc

For the linear parametric set S2 = {w | I2(w,p)}, with

I2 = {k = mc, 1 ≤ i ≤ k, 1 ≤ j ≤ i, n = i, j mod 3 = 0}

the Ehrhart polynomial is:

C(S2,mc) =
1
6
mc2 −

1
6
mc+

[
0, 0,−

1
3

]
mc

where the period is 3 and the last coe�cient of the polynomial depends periodically
on mc as follows: [

0, 0,−
1
3

]
mc

=

 −1
3

when mc mod 3 = 2

0 otherwise

The following illustration depicts the result of evaluating C(S2,mc) in the interval
[1, 6].

mc C(S2,mc)
1 0
2 0
3 1
4 2
5 3
6 5

Chapter 2. Synthesizing of Dynamic Memory Utilization 39

When mc ∈ {1, 2}, the are no solutions, therefore C(S2,mc) = 0. For mc = 3, there
is only one solution given by k = mc = j = i = n = 3 (blue box), and C(S2,mc) = 1.
For mc = 4, there are two solutions (C(S2,mc) = 2), given by k = mc = 4, j = 3,
and i = n ∈ {3, 4} (cyan box). For mc = 5, the number of solutions is three
(C(S2,mc) = 3): k = mc = 5, j = 3 and i = n ∈ {3, 4, 5} (red box). For mc = 6, the
solution space is non-convex and contains C(S2,mc) = 5 points (magenta box).

Several algorithms have been proposed for computing Ehrhart polynomials. The
�rst one is discussed in [Cla96]. This algorithm is not complete and has exponential-
time complexity, even when the number of variables in the inequalities is �xed. This
happens because the periods are only bounded by the values of the coe�cients in the
linear inequalities of the input. A more e�cient algorithm proven to have polynomial-
time complexity for �xed dimensions has been developed in [VSB+04]. Still, the
output polynomials can be relatively large in some degenerate cases. Recently, a fast
algorithm for computing Ehrhart polynomials that over-approximate C(SP , P) has
been proposed in [Mei04]. All these algorithms are implemented in the Polyhedral
Library PolyLib [Pol] used in this article. Computing Ehrhart polynomials is quite
involved as it resorts to very technical results in discrete mathematics which are out
of the scope of this work. The interested reader is referred to [Cla96, Mei04, VSB+04]
for a detailed explanation.

2.2.2. Notation for Programs

We de�ne a program as a set {m0,m1, . . .} of methods. A method has a list Pm
of parameters (pm will denote the method arguments when m is called by another
method m′) and a sequence of statements.

Programs are sequential and non-recursive. We assume that there is no variable
name clashing including formal parameters, local and global variable names. For
the sake of the presentation, we assume that method parameters are of integer type.
This restriction is, however, not essential as later discussed in Section 2.6.

Example In Figure 2.1 we present the program we will use throughout the paper
to illustrate our approach. The program creates two arrays: a (bi-dimensional) and
e, whose cells can contain an Integer (new Integer) or an array of Integers (newA
Integer) depending on an expression evaluated over a loop variable.

Each statement in a program is identi�ed with a control location ` = (m,n) ∈
Label =def Method×N (a method and a position inside the method) which uniquely
characterizes the statement via the stm mapping (stm : Label → Statement). We
write mth(`) to denote m.

The call graph G ⊆ Method × Label × Method of a program is such that
(m, `,m′) ∈ G whenever ` = (m,n) and stm(`) is a method call to m′. A (�nite)
path π in G is a sequence m1.`1. . . .mk.`k.mk+1, k ≥ 1, such that (mi, `i,mi+1) ∈ G.
|π |= k is the length of π. For j ∈ [1, |π |], we de�ne π...j to be the sub-sequence
m1.`1. . . .mj .`j of π, and we write ploc(π, j) to denote the control location `j . For
j ∈ [1, |π| +1], pmth(π, j) denotes the method mj .

Example The call graph of our example is {(m0, 2,m1), (m0, 3,m2), (m1, 5,m2)}
(see Fig. 2.2). m0.2.m1.5.m2 is a path. For simplicity, in the examples we will only
use the position of the control location rather than the label.

40 Synthesis of parametric speci�cations of dynamic memory utilization

void m0(int mc) { Object[] m2(int n, RefO s) {

1: RefO h = new RefO(); 1: int j;

2: Object[] a = m1(mc); 2: Object c,d,e;

3: Object[] e = m2(2*mc,h); 3: Object[] f = newA Object[n]

}

Object[] m1(int k) { 4: for(j=1;j<=n;j++) {

1: int i; 5: if(j % 3 == 0) {

2: RefO l = new RefO(); 6: c = newA Integer[j*2+1];

3: Object[] b = newA Object[k]; }

4: for(i=1;i<=k;i++) { else {

5: b[i-1] = m2(i,l); 7: c = new Integer(0);

} }

6: Object[] c = newA Integer[9]; 8: d = newA Integer[4];

7: return b; 9: f[j-1] = c;

} }

class RefO { 10: e = newA Integer[1];

public Object ref; 11: s.ref = e;

} 12: return f;

}

Figure 2.1: Motivating example

2.2.3. Representing a program state

For the sake of simplicity, we would not formally de�ne program semantics. Such
a formalization is given in, for instance, [Sal]. Informally, a state σ of a program in
run-time is given by the values of the variables, the heap, the control location and
the call stack. A program run is a sequence σ1 . . . of states. Notice that, the absence
of recursion and name clashing implies that mapping variable names to values is
enough to model program data (i.e., no environment or data stacks are required).

A static analysis for safely estimating memory consumption requires de�ning
an abstraction that conservatively describes program states and runs in a suitable
way. In our case, this abstraction only needs to keep enough information about the
program state to be able to count the number of times object creation statements are
executed in a program run. For simplicity, we assume that counting only depends
on non heap-allocated3, integer-valued variables. Therefore, it is important to notice
that the heap in a program state can be abstracted away. This is due to the fact that
the points-to relationship between objects in the heap is not relevant for computing
the amount of explicitly allocated memory, which is, indeed, equal to the size of the
portion of the heap directly created by new statements in the program code.

For the purpose of the analysis, the program control state can be characterized
by the control location and the call stack. A control state ζ is the sequence π.`,
where ` ∈ Label is a location and π is a path to method mth(`) in the call graph G.

Example m0.2.m1.5.m2.3 is a control state.

Let ζ = π.` be a control state and σ1 . . . σt be a �nite run such that the location
of state σt is `, and the call stack of σt is π. Then, there exists a set of indexes
{i1, . . . , i|π|}, such that the control state ζj of σij is π...j , j ∈ [1, | π |]. That is,
pmth(π, j) is the method on the top of the stack in state σij , ploc(π, j) is the control
location corresponding to the method call to pmth(π, j + 1), and pmth(π, |π| +1) is
mth(`). We say that run σ1 . . . σt reaches the control state ζ.

3We will discuss about relaxing this assumption in Section 2.6.

Chapter 2. Synthesizing of Dynamic Memory Utilization 41

Example Let ζ be the control state m0.2.m1.5.m2.3. Consider the run σ1 . . . σ10

de�ned as: (m0.1, θ1) (m0.2, θ2) (m1.1, θ3) (m1.2, θ4) (m1.3, θ5) (m1.4, θ6) (m1.5, θ7)
(m2.1, θ8) (m2.2, θ9) (m2.3, θ10), where θi, 1 ≤ i ≤ 10, record the valuations of pro-
gram variables, the heap, and the call stack. We have that the σ1 . . . σ10 reaches ζ, the
call stack of σ10 is the path π = m0.2.m1.5.m2, and the set of indexes {2, 7} is such
that ζ1 = π...1 = m0.2 is the control state of σi1 = σ2, and ζ2 = π...2 = m0.2.m1.5
is the control state of σi2 = σ7. These indexes correspond to the times in the run
where a method yet in the call stack of state σ10 (i.e., m1 at 2 and m2 at 7), or
equivalently, in π, has been pushed (i.e., called).

An invariant for a control state ζ is an assertion over program variables (local,
global and method parameters) that holds whenever such a control state is reached
in any run.

Given a method m and a control state ζ = π.` such that pmth(π, 1) = m, that is,
π is a path in the call graph G that starts inm, Imζ denotes an invariant predicate for
ζ. We call the pair (ζ, Imζ) an abstract state as it is a conservative approximation of
the possible program states at location ` and stack π in any run starting at method
m. That is, for every run σ1 . . . σt starting at (m, 1), that reaches ζ, Imζ (σt) holds.

Example Let ζ = m0.2.m1.5.m2.8. The constraint Im0
ζ de�ned by set of linear

inequalities {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n} is an invariant for ζ.

Whenever (m, `,m′) ∈ G (i.e., stm(`) is a method call), we assume the invari-
ant Imζ , for any ζ = π.`, constrains not only the values of variables local to the
caller m, but also equates actual parameters (local variables of the caller m) with
formal parameters (local variables of the callee m′). This assumption simpli�es the
presentation.

Let m,m′ be two methods such that (m, `,m′) ∈ G, ζ = m1 . . .m.` and ζ ′ =
m′ . . .ms.`s be two control states, and Imζ and Im′ζ′ be two invariants. We have that
ζ.ζ ′ is a control state and Imζ.ζ′ de�ned as Imζ ∧Im

′
ζ′ is an invariant for ζ.ζ ′. In words,

the invariant of a control state obtained by concatenating two control states is the
conjunction of the respective invariants.

Example Let ζ = m0.2 and ζ ′ = m1.5.m2.8. We have that

Im0
m0.2 = {k = mc}, Im1

m1.5 = {1 ≤ i ≤ k, n = i}, and Im2
m2.8 = {1 ≤ j ≤ n}

are invariants, which gives that

Im0
m0.2.m1.5 = {k = mc, 1 ≤ i ≤ k, n = i}
Im1
m1.5.m2.8 = {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

Im0
m0.2.m1.5.m2.8 = {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

are also invariants.

Given a control state ζ = m1.`1 . . .mk.`k, the property above provides means for
computing the invariant Im1

ζ as the conjunction
∧k
i=1 I

mi
mi.`i

. Each Imimi.`i
is called a

local invariant.

Example Table 2.1 shows invariants that de�ne iteration spaces and corresponding
Ehrhart polynomials for some control states starting at method m0.

42 Synthesis of parametric speci�cations of dynamic memory utilization

ζ Im0
ζ C(Im0

ζ ,Pm0)

m0.2.m1.2 {k = mc} 1

m0.2.m1.5.m2.3 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.2.m1.5.m2.6 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 = 0}
1

6
mc2 −

1

6
mc+ [0, 0,−

1

3
]mc

m0.2.m1.5.m2.7 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 > 0}
1

3
mc2 +

2

3
mc+ [0, 0,

1

3
]mc

m0.2.m1.5.m2.8 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}
1

2
mc2 +

1

2
mc

m0.2.m1.5.m2.10 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.3.m2.3 {n = 2mc} 1

m0.3.m2.6 {n = 2mc, 1 ≤ j ≤ n, j mod 3 = 0}
2

3
mc+ [0,−

2

3
,−

1

3
]mc

m0.3.m2.7 {n = 2mc, 1 ≤ j ≤ n, j mod 3 > 0}
4

3
mc+ [0,

2

3
,
1

3
]mc

m0.3.m2.8 {n = 2mc, 1 ≤ j ≤ n} 2mc

m0.3.m2.10 {n = 2mc} 1

Table 2.1: Some invariants and Ehrhart polynomials for m0

2.2.4. Counting the number of visits of a control state

Let (ζ, Imζ) be an abstract state such that the invariant Imζ de�nes a polyhedral
iteration space [Cla96], that is, a polytope that characterizes all possible values of
loop-control variables and parameters involved in a program interation that passes
through ζ.

Example Let ζ be the control state m0.2.m1.5.m2.8. The invariant Im0
ζ de�ned

by set of linear inequalities {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n} de�nes a polyhe-
dral iteration space for ζ.

Therefore, given an invariant Imζ that de�nes a polyhedral iteration space, it
follows that counting the number of integer solutions of Imζ yields an expression
that over-approximates the number of times a concrete state, whose abstraction is
(ζ, Imζ), is reached in a run starting at m.

Example Let ζ = m0.2.m1.5.m2.8. We have that ζ is reached at most 1
2mc

2+ 1
2mc

times in a run starting at m0 for any value of parameter mc.

2.3. Synthesizing memory consumption

In this section we present our technique for synthesizing non-linear formulas
(actually, quasi-polynomials) to conservatively over-estimate memory consumption
in terms of method parameters. First, we show how to adapt the counting technique
discussed in Section 2.2.4 to cope with memory allocations. Second, we show how
to compute the total amount of memory allocated by a method.

2.3.1. Memory allocated by a creation site

We now focus on statements that create new objects (i.e., allocate memory): new
and newA statements. We assume that those statements only create object instances

Chapter 2. Synthesizing of Dynamic Memory Utilization 43

and constructors are called separately and handled as any other method call. We
call creation site, and denote cs, a control state associated to such operations: cs ∈
CS = { π.` ∈ Label+ | stm(`) ∈ {new T, newA T[·] . . . [·]} }.

To compute the amount of memory allocated by a creation site cs we de�ne the
function S (see below). Given an invariant Imcs for cs and method m with parameters
Pm, S computes the parametric number of visits to cs and multiplies the resulting
expression for the size of the allocated object. This parametric expression over-
estimates the memory allocate by cs whenever cs is a new statement. Nevertheless,
when cs is an array allocation (i.e., newA T[e1] . . . [en]), this technique needs to be
slightly adapted considering the fact that an array is a collection of elements of the
same type. In fact, the newA T[e1] . . . [en] statement creates the same number of
instances (and, therefore, allocates the same amount of memory) as n nested loops
of the form:

for(h1 = 1; h1 ≤ e1; h1++)

. . .
for(hn = 1; hn ≤ en; hn++)

newA T[1]
whose iteration space can be described by the invariant

⋃
i=1..n{1 ≤ hi ≤ ei}.

Thus, we de�ne the function S as follows:

S(Imcs, Pm, cs) // returns an Expression over Pm
` = last(cs); // (cs = π.`)
if stm(`)= new T

res:=size(T) · C(Imcs, Pm);
else if stm(`)= newA T[e1] . . . [en]

Invarray:= Imcs ∪
⋃
i=1..n{1 ≤ hi ≤ ei}

res:=size(T[]) · C(Invarray, Pm);
end if;

return res;

where size(T) is a symbolic expression that denotes the size of an object of type T,
and size(T[]) is a symbolic expression that denotes the size of a cell of an array of
type T 4. C is the symbolic expression that counts the number of integer solutions
for an invariant as de�ned in Section 2.2.1.

As linear invariants are conservative, S(Imcs , Pm, cs) over-approximates, in general,
the amount of memory allocated by cs in any run starting at m. That is, for any
run σ1 . . . σt that starts at m and reaches cs, the amount of memory in the heap
of σt occupied by objects allocated by creation site cs is bounded by the result of
evaluating S(Imcs , Pm, cs) in the values of parameters Pm in σ1.
Example Consider the creation site m0.3.m2.8, which corresponds to statement d
= newA Integer[4] in line 8 of method m2 when called from m0 at line 3.

S(Im0
m0.3.m2.8,mc,m0.3.m2.8) =

= size(Integer[]) · C(Im0
m0.3.m2.8 ∪ {1 ≤ h ≤ 4},mc)

= size(Integer[]) · C({n = 2mc, 1 ≤ j ≤ n, 1 ≤ h ≤ 4},mc)
= size(Integer[]) · C({1 ≤ j ≤ 2mc, 1 ≤ h ≤ 4},mc)
= size(Integer[]) · 8mc

4size(T[]) will be the same for all Object subclasses and will di�er for arrays of basic types.

44 Synthesis of parametric speci�cations of dynamic memory utilization

The �gure on the right depicts the sets of points in the invariant for several values
of parameter mc.

Example Table 2.2 shows the polynomials that over-approximate the amount of
memory allocated for (some selected) creation sites reachable from method m0.

cs S(Im0
cs ,Pm0, cs)

m0.2.m1.2 size(RefO)

m0.2.m1.6 size(Integer[]) · 9

m0.2.m1.5.m2.3 size(Object[]) ·
(1

2
mc2 +

1

2
mc
)

m0.2.m1.5.m2.6 size(Integer[]) ·
(1

9
mc3 +

1

2
mc2 + [−

1

6
,−

1

6
,−

5

6
]mc ·mc+ [0,−

4

9
,−

11

9
]mc

)
m0.2.m1.5.m2.7 size(Integer) ·

(1

3
mc2 +

2

3
mc+ [0, 0,

1

3
]mc

)
m0.2.m1.5.m2.8 size(Integer[]) · (2mc2 + 2mc)

m0.3.m2.3 size(Object[]) · 2mc

m0.3.m2.6 size(Integer[]) ·
(4

3
mc2 + [2,−

2

3
,
2

3
]mc ·mc+ [0,−

2

3
,−

2

3
]mc

)
m0.3.m2.7 size(Integer) ·

(4

3
mc+ [0,

2

3
,
1

3
]mc

)
m0.3.m2.8 size(Integer[]) · 8mc

Table 2.2: Polynomials of memory allocation.

2.3.2. Memory allocated by a method

Having shown how to compute the amount of memory allocated by a single cre-
ation site, we determine how much memory is allocated by a run starting at method
m. Basically, our technique identi�es the creation sites reachable from method m,
gets the corresponding invariants, computes the amount of memory allocated by each
one and �nally yields the sum of them.

Let CSm ⊆ CS denote the set of creation sites reachable from method m that
is, the set of creation sites cs = π.` ∈ CS, where π is a path starting at m.

Example The creation sites of the example in Fig. 2.1 are:
CSm0 = { m0.1, m0.2.m1.2, m0.2.m1.3, m0.2.m1.6, m0.2.m1.5.m2.3,

m0.2.m1.5.m2.6, m0.2.m1.5.m2.7, m0.2.m1.5.m2.8, m0.2.m1.5.m2.10,
m0.3.m2.3, m0.3.m2.6, m0.3.m2.7, m0.3.m2.8, m0.3.m2.10 }

CSm1 = { m1.2, m1.3, m1.6, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7, m1.5.m2.8,
m1.5.m2.10 }

CSm2 = { m2.3, m2.6, m2.7, m2.8, m2.10 }
Fig. 2.2 shows the call graph augmented with creation sites. This graph is automat-
ically constructed with the tool described in [FGB+05].

Observe that, since we are not dealing with recursive programs, the number
of paths in the call graph and thus the number of control states is �nite. Now, the
problem of computing a parametric upper-bound of the amount of memory allocated
by a method m can be reduced to: for each cs ∈ CSm, obtain an invariant, compute
the function S and sum up the results.

The function computeAlloc computes an expression (in terms of method param-
eters) that over-approximates the amount of memory allocated by a selected set of
creations sites:

Chapter 2. Synthesizing of Dynamic Memory Utilization 45

Figure 2.2: Call Graph and Creation Sites

computeAlloc(m, CS) =
∑

cs ∈ CS

S(Imcs , Pm, cs) , where CS ⊆ CSm

Given a method m, the symbolic estimator of the memory dynamically allocated
by m is de�ned as follows:

memAlloc(m) = computeAlloc(m, CSm)

That is, for any run σ1 . . . that starts at m, the amount of memory, in the heap of
any state in the run, occupied by objects allocated by a creation site in CSm reached
by the run, is bounded by the result of evaluating memAlloc(m) in the values of
parameters Pm in σ1.

Notice that the over-estimation may arise because invariants are conservative,
but also as a consequence of summing up all creation sites reachable in the call
graph, which may not all be executed by a given run.

Example Table 2.3 shows the expressions computed for m0, m1 and m2.

memAlloc(m0) size(Integer[]) ·
(1

9
mc3 +

23

6
mc2 +([

29

2
,
71

6
,
25

2
]mc) ·mc+[11,

83

9
,
79

9
]mc

)
+ size(Integer) ·(1

3
m2 + 2mc+ [0,

2

3
,
2

3
]mc

)
+ size(Object[]) ·

(1

2
mc2 +

7

2
mc
)

+ 2 · size(RefO)

memAlloc(m1) size(Integer[]) ·
(1

9
k3 +

5

2
k2 +[

23

6
,
23

6
,
19

6
]k ·k+[9,

77

9
,
70

9
]k

)
+ size(Integer) ·

(1

3
k2 +

2

3
k+

[0, 0,
1

3
]k

)
+ size(Object[]) ·

(1

2
k2 +

3

2
k
)

+ size(RefO)

memAlloc(m2) size(Integer[]) ·
(1

3
n2 + [

16

3
,
14

3
, 4]n · n + [2, 1,

2

3
]n
)

+ size(Integer) ·
(2

3
n + [0,

1

3
,
2

3
]n
)

+

size(Object[]) · n

Table 2.3: Memory allocated by methods m0, m1, and m2

The complexity of the method depends on the number of con�gurations of the call
stack from the analyzed method to each creation site. Though this number is in the
worst case exponential in the number of methods, in many cases, the topology of the
call graph leads to few paths and thus the presented technique is still feasible. This
actually happens for the benchmarks analyzed in Section 2.5. Further discussion on
this topic can be found in Section 2.6.

Notice that, using the technique we are able to evaluate the consumption of a
program starting at any method m. For instance, in case of a batch program it

46 Synthesis of parametric speci�cations of dynamic memory utilization

would be reasonable to compute the consumption from the actual main method of
the program since the consumption usually depends on command line arguments
or contextual objects like the size of a referenced �le. Nevertheless, the ability
to compute consumption for any given method is useful to get di�erent context-
independent consumption speci�cations at a �ner level of granularity. Besides, in
cases where the application model is reactive event-driven, the consumption should
be measured from a dispatched method according to the parameter values conveyed
in the event.

2.4. Applications to scoped-memory

Scoped-memory management is based on the idea of grouping sets of objects into
regions associated with the lifetime of a computation unit. Thus, objects are collected
together when their corresponding computation unit �nishes its execution. In order
to infer scope information we use pointer and escape analysis (e.g., [Bla99, SR01]).
In particular, we assume that, at method invocation, a new region is created which
will contain all objects captured by this method. When it �nishes, the region is
collected with all its objects. An implementation of scoped memory following this
approach can be found in [GNYZ04].

An object escapes a method when its lifetime is longer than the method's lifetime,
and it cannot be safely collected when this unit �nishes its execution. Let escape :
Method→ P(CreationSite) be a function that given a method m returns (an over-
approximation of) the set of creation sites escape(m) ⊆ CSm that escape m.

An object is captured by the method m when it can be safely collected at the
end of the execution of m. Let capture : Method → P(CreationSite) be a func-
tion that given a method m returns (an under-approximation of) the creation sites
capture(m) ∈ CSm that are captured by m.

These functions can be computed using any escape analysis technique.

Example For instance, for our example in Figure 2.1 we have:

escape(m0) = {}
escape(m1) = {m1.3,m1.5.m2.3,m1.5.m2.6,m1.5.m2.7}
escape(m2) = {m2.3,m2.6,m2.7,m2.10}

capture(m0) = {m0.1,m0.2.m1.3,m0.2.m1.5.m2.3,m0.2.m1.5.m2.6,m0.2.m1.5.m2.7,
m0.2.m1.5.m2.10,m0.3.m2.3,m0.3.m2.6,m0.3.m2.7,m0.3.m2.10}

capture(m1) = {m1.5.m2.10,m1.2,m1.6}
capture(m2) = {m2.8}

2.4.1. Memory that escapes a method

In order to symbolically characterize the amount of memory that escapes a
method, we use the algorithm developed in Section 2.3, but we restrict the search to
creation sites that escape the method:

memEscapes(m) = computeAlloc(m, escape(m))

This information can be used to know how much memory the method leaves
allocated in the active regions (the caller region or their parent regions in the call
stack) after its own region is deallocated, or to measure the amount of memory that
cannot be collected by a garbage collector after the method terminates.

Chapter 2. Synthesizing of Dynamic Memory Utilization 47

Example In Table 2.4 we show the memory-consumption expressions for the cre-
ation sites escaping m1. Observe that expressions are de�ned only on the method
parameters.

memEscapes(m1)= size(Object[]) · k m1.3

+size(Object[]) ·
(1

2
k2 +

1

2
k
)

m1.5.m2.3

+size(Integer[]) ·
(1

9
k3 +

1

2
k2 + [

5

6
,
5

6
,
1

6
]k · k + [0,−

4

9
,−

11

9
]k

)
m1.5.m2.6

+size(Integer) ·
(1

3
k2 +

2

3
k + [0, 0,

1

3
]k

)
m1.5.m2.7

Table 2.4: Amount of memory escaping from m1.

2.4.2. Memory captured by a method

To compute the expression over-estimating the amount of allocated memory that
is captured by a method, we use the algorithm developed in Section 2.3, but we
restrict the search to creation sites that are captured by the method:

memCaptured(m) = computeAlloc(m, capture(m))

Example Table 2.5 shows the expression that over-approximates the amount of
memory captured by each method for our example.

memCaptured(m0) = size(RefO) m0.1
+size(Object[]) ·mc m0.2.m1.3

+size(Object[]) ·
(1

2
mc2 +

1

2
mc
)
+ m0.2.m1.5.m2.3

+size(Integer[]) ·
(1

9
mc3 +

1

2
mc2 + [−

1

6
,−

1

6
,−

5

6
]mc ·mc+ [0,−

4

9
,−

11

9
]mc

)
m0.2.m1.5.m2.6

+size(Integer) ·
(1

3
mc2 +

2

3
mc+ [0, 0,

1

3
]mc

)
m0.2.m1.5.m2.7

+size(Integer[]) ·mc m0.2.m1.5.m2.10

+ size(Object[]) · 2mc m0.3.m2.3

+size(Integer[]) ·
(4

3
mc2 + [2,−

2

3
,
2

3
]mc ·mc+ [0,−

2

3
,−

2

3
]mc

)
m0.3.m2.6

+size(Integer) ·
(4

3
mc+ [0,

2

3
,
1

3
]mc

)
m0.3.m2.7

+size(Integer[]) m0.3.m2.10

= size(Integer[]) ·
(1

9
mc3 +

11

6
mc2 + ([

9

2
,
11

6
,
5

2
]mc) · mc + [2,

2

9
,−

2

9
]mc

)
+

size(Integer) ·
(1

3
mc2 + 2mc + [0,

2

3
,
2

3
]mc

)
+ size(Object[]) ·

(1

2
mc2 +

7

2
mc
)

+

size(RefO)

Total

memCaptured(m1) = size(RefO) m1.2
+size(Integer[]) · 9 m1.6
+size(Integer[]) · k m1.5.m2.10
memCaptured(m2) = size(Integer[]) · 4n m2.8

Table 2.5: Memory captured by methods m0, m1 and m2

Assuming the resulting expression is a symbolic estimator of the size of the mem-
ory region associated to the method's scope, this information can be used to spec-
ify the size of the memory region to be allocated at run-time, as required by the
RTSJ [GB00]. Moreover, it can be used to improve memory management algorithms.

2.5. Method Validation

We have developed a proof-of-concept tool-suite to perform the initial experi-
ments aiming at validating our approach for Java applications. This section identi-

48 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 2.3: Proof-of-concept tool-suite

�es the key conceptual components of the technique, their associated challenges and
brie�y describes the implemented solution that was suitable to treat some well-known
benchmarks.

2.5.1. Tool

The proof-of-concept architecture is shown in Fig.2.3. The tool can e�ectively
analyze single-threaded Java programs provided they do not feature recursion or
complex data structures.

Call graphs are obtained with Soot [VRHS+99]. Invariants can be either provided
by programmer assertions �à la� JML [LLP+00], or computed using general analy-
sis techniques [CH78, CC02] or Java-oriented ones[NE01, FL01, ECGN99, CL05].
PolyLib [Pol] is used to compute Ehrhart polynomials. In the experiments, local in-
variants were generated using Daikon[ECGN99]. It should be noted here that Daikon
is a tool for dynamic dectection of �likely� invariants by executing the program over
a set of test cases. Even if the properties generated by Daikon have a high proba-
bility of being true in all runs, that is, being invariants, they might not be. In our
experiments, we have manually veri�ed all properties to be invariants.

None of the techniques for computing invariants deal with our concept of control
state invariant since they only compute local invariants. Thus, the tool builds a
control state invariant by computing the conjunction of the local invariants that
hold in the control locations along the path as explained in Section 2.2.

Note that the precision of our analysis depends on the accuracy of both the
invariant generation and call graph generation techniques (specially in the presence
of dynamic binding). Weak invariants and unfeasible calls make our technique to
over-approximate too much. In section 2.6 we comment this issue in more detail.

In order to increase the precision of computed upper-bounds, it is preferable to
obtain invariants that only capture what is required to be known about the relevant

Chapter 2. Synthesizing of Dynamic Memory Utilization 49

iteration spaces [Cla96]. A key concept for our characterization of iteration spaces
is the set of inductive variables for a control location, that is, a subset of program
variables which cannot repeat the very same value assignment in two di�erent visits
of the given control state (except in the case where the program halts). An invari-
ant that only involves parameters and an inductive variables is called an inductive
invariant.

To compute inductive variables we developed a conservative data�ow analysis
that combines a live variables analysis augmented with �eld sensitivity with a loop
inductive analysis [NNH99]. This problem has been studied for programs that make
use of iteration patterns composed of for and while loops with simple conditions.
Handling more complex iteration patterns and types beyond integers is a challenging
issue related to �nding variant functions for the iteration. In section 2.6.2 we brifely
discuss our general strategy and we show how the tool currently deals with an itera-
tion pattern pervading Java applications as it is the case of looping over collections.
Indeed, while not dealing with recursive programs is an underlying limitation of the
approach, handling complex data-structures (such as collections) is not precluded,
but is a challenge for building good linear invariants.

2.5.2. Experiments

The initial set of experiments were carried out on a signi�cant subset of programs
from JOlden [CM01] and JGrande [DHPW01] benchmarks. It is worth mentioning
that these are classical benchmarks and they are not biased towards embedded and
loop intensive applications � the target application classes we had in mind when we
devised the technique.

Indeed, our method faced serious obstacles when dealing with these examples.
First, in most examples some of the memory-consuming methods reside into recursive
structures. Second, inductive variables include not only integer-typed variables but
also object �elds and complex data-structures.

Despite these issues, the tool was able to synthesize very accurate and non-trivial
estimators for the number of object instances created (and memory allocated) in
terms of program parameters for two examples that do not feature recursion (mst
and em3d examples). In all test cases, execution times were less than 30 sec. in
a Pentium 4 3Ghz PC for the core components (Fig. 2.3): (1) �nd creation sites,
and compute (2) control-state invariants, (3) inductive variables, and (4) Ehrhart
polynomials. Moreover, the tool was also able to analyze most non-recursive (and
tail-recursive) application methods for the rest of the examples.

All these results were achieved using the original code as input for the method
and reducing human intervention to a minimum (i.e., creation of test cases for
Daikon, strengthening some of automatically detected invariants and reducing some
of automatically detected inductive sets). Remaining obstacles that prevent fully
automatic analysis of some examples are complex data-structures which must be
considered part of any set of inductive variables and thus, an integer interpretation
of them should be provided by the user to build a useful linear invariant.

These experimental results focused on the allocation estimation (Section 2.3).
The application of our technique to the scoped memory management (Section 2.4)
needs further work.

In order to make the result more readable, the tool computes the number of
object instances created when running the selected method, rather than the actual
memory allocated by the execution of the method5. Also, we set aside analyzing the

5For simplicity we assume that the function size(T)=1 for all type T

50 Synthesis of parametric speci�cations of dynamic memory utilization

standard Java library in order to keep examples manageable.
Table 2.6 shows the computed polynomials, the analysis time (of core compo-

nents), and the comparison between real executions and estimations obtained by
evaluating the polynomials with the corresponding values of parameters. The last
column shows the relative error ((#Obs - Estimation)/Estimation).

Example:Class.Method Static Analysis Precision Analysis

#CSm memAlloc Time Param. #Objs Estim. Err%

mst:MST.main(nv) 13 (2+[14 , 0, 0, 0]nv)nv2 26.04s 10 240 245 2,00
+4nv + 5 20 940 985 5,00

100 22700 22905 1,00
1000 2252000 2254005 0,09

mst:MST.computeMST(g, nv) 1 nv − 1 10 9 9 0,00
20 19 19 0,00
100 99 99 0,00
1000 999 999 0,00

mst:Graph.Graph(nv) 6 (2+[14 , 0, 0, 0]nv)nv2 10 230 230 0,00
+3nv 20 920 960 4,17

100 22600 22800 0,88
1000 2251000 2253000 0,09

mst:Graph.addEgdes(nv) 2 2nv2 10 180 200 10,00
20 760 800 5,00
100 19800 20000 1,00
1000 1998000 2000000 0,10

Em3d.main(nN, nD) 28 6nD ·nN +4nN +14 30.57s (10, 5) 350 354 1,13
(20, 6) 810 814 0,49
(100, 7) 4610 4614 0,09
(1000, 8) 52010 52014 0,01

Bigraph.create(nN, nD) 22 6nD · nN + 4nN + 8 (10, 5) 348 348 0,00
(20, 6) 808 808 0,00
(100, 7) 4608 4608 0,00
(1000, 8) 52008 52008 0,00

Node.makeFromNodes 2 2 · this.fromCount 10 20 20 0,00
20 40 40 0,00
100 200 200 0,00
1000 2000 2000 0,00

Tree.createTestData(nb) 23 17nb + 26 7.22s 10 196 196 0,00
20 366 366 0,00
100 1726 1726 0,00
1000 17026 17026 0,00

Value.createTree(size,sd) 1 size− 1 2.74s 10 7 9 22,22
20 15 19 21,1
200 127 199 36,2
64 63 63 0,0
128 127 127 0,0
256 255 255 0,0

power:Root.<init> 14 32622 5.82s - 32412 32622 0,64

(*)health: (recursive) 8 11(4l − 1)/3 2 55 ∞ ∞
Village.createVillage(l, lab, b, s) 4 935 ∞ ∞

6 15015 ∞ ∞
8 240295 ∞ ∞

FFT.test(n) 10 4n + 8 5.02s 8 38 40 5,00
32 134 136 1,47
256 1030 1032 0,19
1024 4102 4104 0,05

JGFHeapSortBench.JGFinitialise 2 1000001 4.63s - 1000001 1000001 0,00
JGFCryptBench.JGFinitialise 7 9000113 5.76s - 9000113 9000113 0,00
JGFSeriesBench.JGFinitialise 1 20000 5.16s - 20000 20000 0,00

Table 2.6: Experimental results

These experiments showed that the technique was indeed e�cient and very ac-
curate, actually yielding exact �gures in most benchmarks. In some cases, the over-
approximation was due to the presence of creation sites associated with exceptions
(which did not occur in the real execution), or because the number of instances could
not be expressed as a polynomial. For instance, in the bisort example, the reason of
the over-approximation is that the actual number of instances is always bounded by
2i − 1 being i = dlog2 sizee. Indeed, the estimation was exact for arguments power
of 2. For the (*)health example, it was impossible to �nd a non-trivial linear in-
variant. It actually turns out that memory consumption happens to be exponential6

(the given result was calculated by hand). For fft, the argument n was required to
be a power of 2 for not throwing an exception.

Table 2.7 shows the polynomials that over-approximate the amount of memory
captured by methods of the MST and Em3d examples from JOlden. We show only

6Some JOlden programs not considered here also lead to exponential memory usage

Chapter 2. Synthesizing of Dynamic Memory Utilization 51

methods that capture some creation sites. For the others, the estimation yields 0 as
they do not allocate objects or they escape their scope.

m #CSm memCaptured(m)

mst
MST.main(nv) 13 size(mst.Graph) + (size(Integer) + size(mst.HashEntry)) · nv2 +

[1/4, 0, 0, 0]nv · size(mst.Hashtable) · nv2 + (size(mst.Vertex) +
size(mst.Vertex[])) · nv + 5 · size(StringBuffer)

MST.parseCmdLine() 2 size(java.lang.RuntimeException)+size(Integer)

MST.computeMST(g, nv) 1 size(mst.BlueReturn) · (nv − 1)

em3d
Em3d.main(nN,nD) 26 size(em3d.BiGraph) + nN · (2 · size(em3d.Node) + 4 ·

size(em3d.Node[]) · nD + 2 · size(double[]) · nD) + 8 ·
size(em3d.Node1Enumerate) + 4 · size(java.lang.StringBuffer) +
size(java.util.Random)

Em3d.parseCmdLine() 6 3 · size(Integer) + 3 · size(java.lang.Error)
BiGraph.create(nN,nD) 2 size(em3d.Node[]) · nN

Table 2.7: Capturing estimation for MST and Em3d examples.

Additional experiments and details about the the tool can be found in [BGY04].

2.6. Discussion and Future Work

2.6.1. Dealing with recursion

As stated, currently we are not dealing with general recursion. This is probably
the most challenging theoretical obstacle for our method since some basic concepts
are rooted in the assumption of �nite call chains. However, not supporting recursion
does not constitute a major drawback in many cases since our focus are embedded
applications where recursion is a �rara avis�. Nevertheless, we are looking for ways
of relaxing this limitation like counting the number of possible stack con�gurations
when recursion is eliminated.

2.6.2. Beyond classical iteration spaces

State of complex data-structures may impact the number of times a control state
is visited (e.g., iterating a collection). The basic idea to handle this problem is,
�rstly, to abstract away data-structures into �integer views� (e.g., size of a collection,
array length, integer class-attributes, counters standing for iteration progress, largest
integer member of the collection, the size of the largest collection inside the collection,
the number of objects satisfying a given property, etc.). Then, inductive invariants
may be built using those integer-typed variables that capture the relevant state of
the data structure (e.g., current index position) and integer-typed expressions over
the data-structure that may serve as complexity parameters (e..g, size of array). The
tool provides basic functionality to apply this pre-processing for structures such as
collections and arrays.

As an example, we illustrate here how to handle collections. Consider an iteration
of the form:

Iterator it1= collection1.iterator();

while (it1.hasNext() && condition) {

a = (Type)it1.next();

...

}

To analyze this kind of pattern the following pre-processing is to be done:

52 Synthesis of parametric speci�cations of dynamic memory utilization

1. As the counting method deals with integer-valued inductive variables, each
iterator it should be associated to a �virtual� counter it. This counter is ini-
tialized when the iterator is created and incremented when the corresponding
it.next() is called. Consequently, loop invariants involving iterators will in-
clude a constraint of the form {0 ≤ it < collection.size()}.

2. The parameter to be used when computing the invariant is its size.

public class ArrayDim { Object[] newBlock(int how) {

Vector list; int len; 1: Object[] block=new Object[how];

final static int BSIZE = 5; 2: list.add(block);

ArrayDim() { 3: return block;

1: list= new Vector(); }

2: len = 0; } void addAll(Collection c) {

void add(Object o) { 1: for(Iterator it=c.iterator();

1: Object[] block; it.hasNext();)

2: if (len % BSIZE == 0) {

3: block = newBlock(BSIZE); 2: add(it.next());

else }

4: block=(Object []) }

list.lastElement(); }

5: block[len % BSIZE] = o;

6: len++;

}

Figure 2.4: Collection Example

Figure 2.4 shows a (very simple) implementation of a dynamic array using a
list of �xed sized nodes. The memory allocated by the method addAll depends on
the size of the collection passed as a parameter. The actual allocation takes place
in the method newBlock where a new block of memory is allocated only when the
previous block is full. Our method yields the following invariant for the control state
addAll.2.add.3:

IaddAlladdAll.2.add.3.newBlock.1 = {BSIZE = 5, 0≤ it< c.size(), len = it,

len mod BSIZE = 0, how = BSIZE}

and the corresponding allocation expression in terms of the collection size7:

S(IaddAlladdAll.2.add.3.newBlock.1, {c}) = c.size() + [0, 4, 3, 2, 1]c.size()

2.6.3. Improving method precision

When programs feature if statements with non-linear conditions or polymorphic
invocations, it is usually the case of having control states that, by the control struc-
ture, are mutually exclusive but their invariants have non-empty intersection. This
implies that some statement occurrences are counted more than once by the current
technique.

Consider the following example:
0: void test(int n,Object a[]) {

1: for(int i=1;i<=n;i++) {

2: if(t(i))

3: a[i] = new Integer[2*i];

4: else

5: a[i] = new Integer[10];

}

}

7The function S will add the constraint { 1 ≤ h1 ≤ how} since the involved creation site is a
newA statement.

Chapter 2. Synthesizing of Dynamic Memory Utilization 53

Figure 2.5: Evolution of size functions for the "test" example

If t(i) is abstracted away, the invariants at test.3 and test.5 will be identical:
Itesttest.3 = Itesttest.5 = {1 <= i <= n}

and their corresponding size expressions8:
S(Itesttest.3, n) = n2 + n, S(Itesttest.5, n) = 10n.

The computeAlloc function will sum up these expressions and yield the expres-
sion n2 + 11n . This result, although safe, would be too conservative. For instance,
for n = 6, the estimated memory utilization for test will be 102. Nevertheless,
analyzing the program, it is easy to see that the maximum amount consumed is 62.
This corresponds to choosing creation site test.5 when i is between 1 and 5 and
taking creation site test.3 when i is greater than 5 (see �gure 2.5). In [BGY04] we
show some advances in the direction of improving precision.

2.6.4. Hybrid technique

Approaches like [CKQ+05, CNQR05] seem suitable for the veri�cation of Pres-
burger expressions accounting for memory consumption annotations for class meth-
ods. We believe that it is possible to devise a technique integrating our analysis
together with those mentioned type-checking based ones. The approach would be as
follows. While methods for data container classes (like the ones provided by stan-
dard libraries) are annotated and veri�ed by type-checking techniques, loop intensive
applications built on top of those veri�ed libraries may be analyzed using our ap-
proach. The idea is to resort to veri�ed annotations in the same spirit as we handle
array creation. That is, it would be not necessary to reach the underlying creation
sites of the library. Instead, invariants at the method invocation sites may be built
by introducing an integer variable with the Presburger expression as upper-bound.
Bene�ts are twofold: �rst, work done by our technique would be reduced since we
would had to deal with signi�catively smaller call graphs, and second, our ability to
synthesize non-linear consumption expressions would entail an increase of expressive
power and usability of type-checking based techniques.

2.7. Conclusions
We have developed a technique to synthesize non-linear symbolic estimators of

dynamic memory utilization. We �rst presented an algorithm for computing the es-
timator for a single method. We then specialized it for scope-based memory manage-
ment. Our approach resorts to techniques for �nding invariants and counting integer
solutions of linear constraints. We believe that the combination of such techniques,
and in particular, their application to obtain speci�cations that predict dynamic

8To simplify the explanation, we intentionally omit the size(Integer) factor.

54 Synthesis of parametric speci�cations of dynamic memory utilization

memory utilization is interesting and novel. Besides, it is suitable for accurately
analyzing memory utilization in the context of loop-intensive programs. Memory
estimators can be used both at compile- and run-time, for example, to set up the
appropriate parameters required by the RTSJ scoped-memory API, to over estimate
heap usage, to improve memory management and to accurately determine whether
a new program can be safely dynamically loaded and scheduled without disturbing
other programs behavior.

We have developed a prototype tool that allowed us to experimentally evaluate
the e�ciency and accuracy of the method on several Java benchmarks. The results
were very encouraging. We are currently improving the tool in order to thoroughly
test the complete approach (in particular integration with escape analysis) and make
the approximations tighter.

Other aspect to explore is the optimization of our method. Slicing techniques
and techniques to �nd inductive variables could help in reducing the number of
variables and statements considered when building the invariants. On the other
hand, techniques like [Ghe02] can be used to eliminate from our analysis creation
sites that can be statically pre-allocated.

CHAPTER 3

A region-based memory manager

We present a method to analyze, monitor and control dynamic memory allo-
cation in Java. It �rst consists in performing pointer and escape analysis to detect
memory scopes. This information is used to automatically instrument Java programs
in such a way memory is allocated and freed by a region-based memory manager.
Our source code instrumentation fully exploits the result of scope analysis by dy-
namically mapping allocation places to the region stack at runtime via a registering
mechanism. Moreover, it allows executing the same transformed program with dif-
ferent implementations of scoped-memory managers and perform di�erent run-time
analysis without changing the transformed code. In particular, we consider a class
of managers that handle variable-size regions composed of �xed-size memory blocks
for which we provide analytical models for the intra- and inter-region fragmentation.
These models can be used to observe and control fragmentation at run-time with
negligible overhead. We describe a prototype tool that implements our approach1.

3.1. Introduction

Current trends in the embedded and real-time software industry are leading to-
wards the use of object-oriented programming languages such as Java. From the
software engineering perspective, one of the most attractive issues in object-oriented
design is the encapsulation of abstractions into objects that communicate through
clearly de�ned interfaces. Because programmer-controlled memory management in-
hibits modularity, object-oriented languages, like Java, provide built-in garbage col-
lection [JL96] (GC), that is, the automatic reclamation of heap-allocated storage
after its last use by a program. However, automatic memory management is not
used in real-time embedded systems. The main reason for this is that the tempo-
ral behavior of software with dynamic memory reclaiming is extremely di�cult to
predict.

Several GC algorithms have been proposed for real-time embedded applications.
For instance, [Hen98] proposes to use an incremental copying algorithm [Bro84] dur-
ing the execution of low-priority tasks. To insure that high-priority tasks will not run
out of memory, enough storage space must be pre-allocated. Besides, the sharing of
garbage collection time among low-priority tasks is not evident. [Sie00] adapts the

1 This chapter is based on the results published at the �International Workshop on Runtime
Veir�cation� (RV'04) [GNYZ04].

55

56 Synthesis of parametric speci�cations of dynamic memory utilization

incremental mark-and-sweep algorithm for a JVM that allocates objects as a collec-
tion of small memory blocks. The inconvenience of this algorithm is that the number
of increments required per allocated block depends on the size of the whole reach-
able memory. [RF02] adapt the classical reference-counting algorithm [Bro85]. Its
response time depends on the total number of reachable objects when it has to collect
a non-referenced cycle. [HIB+02] propose a picoJava-II hardware implementation of
an adaptation of the incremental treadmill algorithm [Bak92]. This approach is not
portable and it does not ensure predictable execution times.

To overcome the drawbacks of current GC algorithms, the RTSJ [GB00] proposes
a memory management API based on the concept of �scoped memory�. The idea is to
allocate objects in regions [GA01, TT97] which are associated with the lifetime of a
computation unit (method or thread). Regions are freed when the corresponding unit
�nishes its execution. However, determining objects' scope is di�cult. Therefore,
programming using the RTSJ API is error-prone.

To avoid using the RTSJ API directly, [DC02] proposes to automatically instru-
ment a Java program and to replace (whenever possible) Java new statements by
calls to the RTSJ scoped-memory API. Doing so requires analyzing the program to
determine the lifetime of dynamically allocated objects. Their approach is based
on a weighted graph of references, where nodes are allocation points, arcs represent
the points-to relation, and weights correspond to depths in the call chain. Roughly
speaking, weights are associated with scopes, and dynamic programming is used to
minimize weights, that is, to bind any allocation point to the smallest depth of an
allocation point of an object that transitively points to some object created at the
former.

To build the graph, [DC02] uses a pro�ler. Thus, there is no assurance that the
graph over-approximates the possible references to an object in all possible runs. In
consequence, scoped-memory rules are not necessarily respected which forces cor-
responding run-time checks to be performed by the API implementation, with the
implied running time overhead. Besides, the instrumentation is such that each cre-
ation site is statically assigned to a �xed region. This technique may make objects
live signi�cantly longer than needed.

Here, we propose a method that attempts to tackle these two issues. The �rst
step is to apply pointer and escape analysis techniques [Bla99, CGS+99, SR01] to
the program to synthesize scopes. Using pointer and escape analysis it is possible
to conservatively determine if an object �escapes� or is �captured by� a method.
Intuitively, an object escapes a method when its lifetime is longer than the method's
lifetime, so it can not be collected when the method �nishes its execution. An object
is captured by the method when it can be safely collected at the end of its execution.

Based on the information above we synthesize a memory organization that as-
sociates a memory region with each method in such a way the restrictions imposed
by the scoped-memory management scheme are ful�lled by construction. Thus, run-
time checks can be safely eliminated to enhance performance. To instrument the
program, we de�ne an API that avoids the RTSJ overhead of creating a runnable
object each time a new memory scope is created. Our instrumentation fully exploits
the result of the scope analysis by dynamically mapping creation sites to the region
stack at runtime via a registering mechanism. This allows to control at run-time
where the object is actually allocated according to given performance criteria (e.g.,
minimizing memory fragmentation), without changing the source-level instrumenta-
tion.

We also address the issue of monitoring and evaluating run-time performance of
the scoped-memory manager. In this paper, we focus on region-based memory man-

Chapter 3. A region-based memory manager 57

agers that handle variable-size regions composed of �xed-size memory blocks. For
this class of managers, we provide an analytical model of the intra- and inter-region
fragmentation for several allocation algorithms (e.g., �rst-�t and best-�t). These
models can be used to observe and control fragmentation at run-time with negligible
overhead. Run-time analysis also allows tuning the parameters to accommodate to
the needs of the program.

We �nally describe a prototype tool that implements our approach.

3.2. Preliminaries

Following [SR01], we de�ne a program to be a set {m0,m1, . . .} of Methods.
A method m has a list Pm of parameters. Each statement is identi�ed with a
Label =def Method× N which uniquely characterizes its location.

A Call Graph of a method m is a directed graph CGm =< N,E > where N =
Methods represents the program methods and E = (Methods× Label ×Methods)
represents the call relation. (c, l,m) ∈ E means that the method c, at location l,
calls method m. We assume that we can determine at compile time, for each call,
exactly which method will be invoked, not being able to have more than one possible
invocable method. Supporting inheritance and late binding is outside the scope of
this work.

Since currently we do not deal with recursive programs, a �nite Call Tree CTm =<
N,E > can be obtained by unfolding the call graph. This unfolding is done by cloning
the nodes that have more than one parent. N = MethodsCT = Label+ ×Method
represents the path from the root node and E = (MethodsCT ×Label×MethodsCT)

Let α ∈ Label+. Let α = α′.i, i ∈ N, we de�ne trim(α) = α′. Let l ∈ Label
such that α = α1.l.α2, and l does not appear in αi, i = 1, 2. We de�ne pref(α, l) =
α1.l, and suff(α, l) = l.α2. We de�ne last(α.l) = l and first(l.α) = l. The
projection mth() of Label+ onto Method is recursively de�ned as mth(m.i) = m
and mth(α.m.i) = mth(α).m. These operations are naturally extended to nodes of
the call tree. We de�ne paths(CTm) to be the set of paths of CTm, and predm(ρ) to
be the subtree of CTm composed of all paths of the form ρ′.mth(first(ρ)) such that
ρ′.ρ ∈ paths(CTm).

A control �ow graph (CFG) is a directed graph G =< N,E, entry, exit > where
N is the set of nodes and E is the set of edges. entry and exit are specials nodes
indicating unique start and ending points. Given a method m, Gm is the CFG of m
which includes transitively the CFG of every method that m calls. Each node n ∈ N
corresponds to one statement and has a label l ∈ Label+. Notice that, since a called
method is macro-expanded in the control �ow graph each time it is invoked, labels
are composed by the corresponding path in CTm and its relative location.

By convention, m0 is the main method. Thus, Gm0 is the control �ow graph of
the program, and CTm0 its call tree.

We call Creation Site every place (de�ned by its Label+) of the program where
an object is created (i.e. there is a new or a newA statement). For simplicity we
assume that new statements only create object instances. Constructors are assumed
to be called separately. Calls to constructors are handled as any other method call.
CSm denotes the set of creation sites reachable from the entry point of the method
m control �ow graph.

We call Call Site every place (de�ned by its Label+) of the program where there
is method call. Callsm denotes the set of method calls in Gm.

58 Synthesis of parametric speci�cations of dynamic memory utilization

void m0(int mc) {

1: RefO h = new RefO();

2: Object[] a = m1(mc);

3: Object[] e = m2(2*mc,h);

}

Object[] m1(int k) {

1: int i;

2: RefO l = new RefO();

3: Object[] b = newA Object[k];

4: for(i=1;i<=k;i++) {

5: b[i-1] = m2(i,l);

}

6: Object[] c = newA Integer[9];

7: return b;

}

Object[] m2(int n, RefO s) {

1: int j;

2: Object c,d;

3: Object[] f = newA Object[n]

4: for(j=1;j<=n;j++) {

5: if(j % 3 == 0) {

6: c = newA Integer[j*2+1];

}

else {

7: c = new Integer;

}

8: d = new Integer[4];

9: s.ref = d;

10: f[j-1] = c;

}

11: return f;

}

class RefO {

public Object ref;

}

Figure 3.1: Motivating example

Example

In Figure 3.1 we present one motivating example. The Call Graph and Call Tree
for method m0 are depicted in Figure 3.2.

Figure 3.2: Call Graph and Call Tree for method m0 of the proposed example

The creation sites for each method of our example are:
CSm0 = { m0.1, m0.2.m1.2, m0.2.m1.3, m0.2.m1.5.m2.3, m0.2.m1.5.m2.6,

m0.2.m1.5.m2.7, m0.2.m1.5.m2.8, m0.2.m1.6, m0.3.m2.3,
m0.3.m2.3, m0.3.m2.6, m0.3.m2.7, m0.3.m2.8 }

CSm1 = { m1.3, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7, m1.5.m2.8, m1.6 }
CSm2 = { m2.3, m2.6, m2.7, m2.8 }
The call sites for each method of our example are:
Callsm0 = { m0.2,m0.3 }
Callsm1 = { m1.5 }
Callsm2 = { }

3.3. Scoped memory management

In the Real-Time Speci�cation for Java (RTSJ) [GB00] scoped-memory manage-
ment is based on the idea of allocating objects in regions which are associated with

Chapter 3. A region-based memory manager 59

the lifetime of a runnable object. This approach imposes restrictions on the way
objects can reference each other in order to avoid the occurrence of dangling refer-
ences. An object o1, belonging to a region r, can point to other object o2 only if
one of the following conditions holds: o2 belongs to r; o2 belongs to a region that is
active when r is active; o2 is in the heap; o2 is in the inmortal (or static) memory.
An object o1 can not point to an object o2 in region r if: o1 is in the heap; o1 is in
inmortal memory; r is not active sometime during o1's lifetime.

At runtime, region activity is related to the execution of computational units
(e.g., methods or threads). In an single-threaded program, where each region is
associated with one method, there is a region stack, where the number and ordering
of active regions corresponds exactly to the appearances of each method in the call
stack. In a multi-threaded program, where regions are associated with threads and
methods, there is a region tree which branches are related to each execution thread.
In this paper, we assume that threads do not share regions, that is, threads only
interact through the immortal memory [GB00].

Programming with scoped-memory management is di�cult and error-prone. One
solution is to statically check whether a program satis�es the restrictions above. This
approach is followed in [GA01], where a type system is proposed. Here we propose
to automatically infer scopes by static analysis and automatically instrument the
program with the appropriate region-based allocations in such a way the restrictions
imposed by the scoped-memory management scheme are ful�lled by construction.

3.3.1. Inferring scopes

In order to infer scope information we use pointer and escape analysis [Bla99,
CGS+99, SR01]. This is a static analysis technique that discovers the relationship
between objects themselves and between objects and methods. It has been used in
several applications such as synchronization removal, elimination of runtime checks,
stack and scoped allocation, etc.

Here, we are interested in conservatively determining if an object �escapes� or
is �captured by� a method. An object escapes a method when its lifetime is longer
than the lifetime of the method. Let escape : Method → P(CreationSite) be the
function that returns the creation sites that escape a method. An object is captured
by the method when it can be safely collected at the end of the method's execution.
Let capture : Method→ P(CreationSite) be the function that returns the creation
sites that are captured by a method.

For the sake of simplicity, we do not explain here how these two functions are
computed. The interested reader is referred to [Bla99, CGS+99, SR01]. Instead, we
use our example to illustrate the technique.

Example

The creation sites that escape and are captured by are the following:
escape(m0) = { }
escape(m1) = { m1.3, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7 }
escape(m2) = { m2.3, m2.6, m2.7, m2.8 }

capture(m0) = { m0.2.m1.3, m0.2.m1.5.m2.3, m0.2.m1.5.m2.6,
m0.2.m1.5.m2.7, m0.3.m2.3, m0.3.m2.6, m0.3.m2.7,
m0.3.m2.8 }

capture(m1) = { m1.5.m2.8, m1.6 }
capture(m2) = { }

60 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 3.3: Escape analysis for creation sites m0.1, m1.2, m1.3, m2.3, m2.6 and
m2.8

Let us consider a few cases. For instance, m1.3 escapes from m1. This is because
m1.3 is the creation site of the object assigned to b (represented in Fig. 3.3 as the
bi-directional arc from node b to node m1.3), which is returned by (and therefore
escapes from) method m1 (depicted as the arc from b to a labeled rv 2). Creation
site m2.3 escapes from m2. This is because the memory allocated in line 6 of m2 is
�rst referenced by c and then by an entry of f (line 11), which is returned by m2.
Since the returned object is assigned to an entry of b when m1 calls m2 in line 5,
and b is returned by m1, we have that m1.5.m2.6 escapes. Besides, m0.2.m1.5.m2.6
is captured by m0. Also, m2.8 escapes from m2 because the memory allocated is
referenced by s which is passed to m2 as a parameter, but, in this case, the creation
site is captured by m1 and m0 depending on the corresponding call chain.

Let m be a method and l ∈ Callsm, we de�ne:

register(l) = {last(cs) | cs ∈ capture(mth(l)) ∧ first(cs) = l}

Example

The creation sites registered to call sites in the example are the following:
register(m0.2) = { m1.3, m2.3, m2.6, m2.7 }
register(m0.3) = { m2.3, m2.6, m2.7, m2.8 }
register(m1.5) = { m2.8 }

3.3.2. Synthesizing memory regions

Based on the information above we can synthesize a memory organization that
associates a memory region rm with each method m in such a way the restrictions
imposed by the scoped-memory management scheme are ful�lled.

The properties of escape analysis ensure that the lifetime of objects allocated by
creation sites captured by a method m does not exceed the lifetime of m itself. That
is, no object captured by m can be pointed-to by an object captured by a method
(transitively) calling m. Thus, the memory referenced by those objects can be safely
reclaimed after m terminates.

2rv stands for return value.

Chapter 3. A region-based memory manager 61

Let cs be a creation site and m be a method such that cs ∈ capture(m), that is,
m = mth(first(cs)). We de�ne reclaim(cs) to be the subtree of the call tree of the
program composed of those paths having cs as su�x, that is:

reclaim(cs) = predm0(trim(cs))
= {pref(ρ,m) | ρ ∈ paths(CTm0) ∧ trim(cs) = suff(ρ,m)}

In words, mth(ρ) is a call stack, and mth(pref(ρ,m)) is the portion of the stack
that contains all methods where it is safe to allocate the memory required by cs. If
an object o is allocated at line i of method n, where n.i = last(cs), when the call
stack is mth(ρ), then o can be safely allocated in any region rm′ , where m′ appears
in the pre�x of the call stack upto method m.

3.3.3. API and program transformation

In order to perform scoped-memory management at program level, we propose
an API which di�ers from the RTSJ one, described in [BR01, GB00], in two major
points. First, in our API memory scopes are not bound to runnable objects. In this
point, our API is closer to the RC library [GA01]. Second, our API does not specify a
unique region where an object is allocated, but rather a set of regions corresponding
to methods in a pre�x of the call stack. The actual region where the object will be
allocated at runtime is left out to the implementation. We will discuss this issue in
the next section. The API is shown in Table 3.1.

enter(r) push r into the region stack
exit() collect the objects in top region
current() return the top region
determineAllocationSite(CS) register creation sites in CS
newInstance(l,c) create an object of class c
newAInstance(l,c,n) same but for arrays of dimension n

Table 3.1: Scoped-memory API.

The program is transformed as follows. Let m be a method.

The calls to enter(rm) and exit are inserted at the beginning and at the end
of the method.

Let l = m.i ∈ Label be the label of a new C (resp. newA C[n]) statement
in the body of m. The statement in line i is replaced by an invocation to
newInstance(l,c) (resp. newInstance(l,c,n)).

Recall that creation sites are distinguished in the analysis by the paths in
the call tree. Since a newInstance at label l only carries l as a parameter,
and not the call chain, it is necessary to dynamically change the capture in-
formation to be able to compute reclaim() at runtime. To do so, we regis-
ter the set of creation sites captured by a method at the corresponding call
site. Let l be such that m = mth(l). If register(l) 6= ∅, an invocation to
determineAllocationSite(register(l)) is inserted just before l.

Thus, at newInstance(l,c), wheremth(l) = m, we have that pref(ρ,m) ∈ reclaim(cs)
i� σ = mth(ρ) is the call stack, and last(cs) ∈ register(l). Therefore, the object
instance can be allocated in the region of any method in pref(σ,m).

62 Synthesis of parametric speci�cations of dynamic memory utilization

Example

Table 3.2 shows the instrumented code for the example.

class RegisterExample

{

final static String[] m0_2= {"m1_3","m2_3","m2_6","m2_7"};

final static String[] m0_3= {"m2_3","m2_6","m2_7","m2_8"};

final static String[] m1_5= {"m2_8"};

}

void m0(int mc) {

ScopedMemory.enter(new Region("m0"));

RefO h =(RefO) ScopedMemory.newAInstance("m0_3", RefO.class,1);

Object[] a;

ScopedMemory.determineAllocationSite(RegisterExample.m0_2);

a = m1(mc);

Object[] e;

ScopedMemory.determineAllocationSite(RegisterExample.m0_3);

e = m2(2 * mc, h);

ScopedMemory.exit();

}

Object[] m1(int k) {

ScopedMemory.enter(new Region("m1"));

int i;

RefO l =(RefO) ScopedMemory.newAInstance("m1_2", RefO.class, 1);

Object b[] = (Object[]) ScopedMemory.newAInstance("m1_3", Object[].class, k);

for (i = 1; i <= k; i++) {

ScopedMemory.determineAllocationSite(RegisterExample.m1_5);

b[i - 1] = m2(i, l);

}

Object c[] = (Integer[]) ScopedMemory.newAInstance("m1_6", Integer[].class, 9);

ScopedMemory.exit();

return b;

}

Object[] m2(int n, RefO s) {

ScopedMemory.enter(new Region("m2"));

int j; Object c, d;

Object[] f = (Object[]) ScopedMemory.newAInstance("m2_3", Object[].class, n);

for (j = 1; j <= n; j++) {

if (j % 3 == 0) {

c = (Integer[]) ScopedMemory.newAInstance("m2_6", Integer[].class, j * 2 + 1);

} else {

c = (Integer[]) ScopedMemory.newAInstance("m2_7", Integer[].class, 1);

}

d = (Integer[]) ScopedMemory.newAInstance("m2_8", Integer[].class, 4);

s.ref = d;

f[j - 1] = c;

}

ScopedMemory.exit();

return f;

}

Table 3.2: Instrumented code for the example

3.3.4. Properties of the code instrumentation

In the instrumentation proposed in [DC02], which uses the RTSJ API [GB00],
each creation site is statically assigned to a �xed region by accessing directly outer-
scopes using the RTSJ method getOuterScope() at the allocation place. This means
that, when a creation site is captured by di�erent methods (in di�erent call chains),
the inferred scope is necessarily the one corresponding to the capturing method which
is closer to the root of the call tree. Therefore, this approach tends to generate fewer
regions with bigger sizes, specially near the call tree root, thus maximizing objects'
lifetime.

On the contrary, our instrumentation fully exploits the result of the scope analysis
in terms of call chains, by dynamically mapping creation sites to a pre�x of the region

Chapter 3. A region-based memory manager 63

stack at runtime via the registering mechanism. The actual region where an object
is allocated in is determined by the implementation. One possible strategy consists
in allways allocating objects in the region of the method that captures them (that
is, the last one in the pre�x). This strategy produces regions which sizes tend to be
bigger for the leafs of the call tree, that is for those methods with shorter lifetimes,
rather than near the root. In other words, it minimizes the lifetime of allocated
memory.

Example

Consider, for instance, creation site m2.8 in our example (see Fig. 3.3). The
instrumentation of [DC02] will always allocate memory inside the region r0 associated
with method m0, independently of the caller. Our instrumentation will dynamically
choose to allocate memory inside regions r0 or r1, depending on the caller m0 or m1,
respectively.

Our approach allows executing the same transformed program with di�erent imple-
mentations of scoped-memory managers. In particular, our API can be implemented
directly on top of the ones proposed by the RTSJ and RC. All these instantiations
will be functionally equivalent. However, they may exhibit di�erent performances
with respect to di�erent quantitative parameters, such as region size, allocation time
and memory fragmentation. In the next section, we discuss several possible imple-
mentations and focus our analysis on the fragmentation problem.

3.4. Run-time analysis

In this section we describe a framework for analyzing the behavior at runtime of
di�erent region-based memory-allocation algorithms that can be used to implement
the scoped-memory API. In particular, we consider allocation algorithms that han-
dle variable-size regions composed of �xed-size memory blocks. These algorithms
typically manage a linked list of blocks where objects are allocated according to a
�rst-�t or best-�t strategy [WJNB95]. The former allocates the object in the �rst
block where there is enough place to. The latter searches for the block with the small-
est amount of free space. The interest of these algorithms resides in the fact that
allocation time is linear in the number of blocks, while region deletion is linear in the
number of allocated objects (because of the calls to methods' �nalizers)3. However,
they introduce memory fragmentation, that is, holes of (temporarily) unusable free
memory. Predicting the number of blocks and objects in a region is di�cult and out
of the scope of this paper. A static-analysis technique for over-approximating such
numbers is described in [BGY04]. Here we concentrate on the problem of analyzing
the run-time behavior of the allocation algorithms regarding memory fragmentation.

3.4.1. Intra-region fragmentation

The unused space of a region after a sequence of allocations is considered to be
an �intra-region fragmentation� if the next allocation is such that:

(1) no single empty fragment is bigger than the size of the object to be allocated,
and a new memory block needs to be added to the region, and

(2) the total amount of empty space is bigger than the size of the object.

3The cost could be made constant if calls to �nalizers are eliminated via static analysis.

64 Synthesis of parametric speci�cations of dynamic memory utilization

Now, let ω = o1 · · · on be a sequence of objects to be allocated in region. We
denote by R the set of blocks of the region, and by Ri the set of blocks associated
to the region before allocating object oi. The sequence R1, · · · , Rn+1 is computed
as follows. Initially, R1 = {B1}. Now, suppose Ri be {B1, . . . , Bmi}. Let freeki be
the empty space in block Bk and Ki be the set of indices of blocks that have enough
empty space to allocate object oi, that is,

Ki = {k ∈ [1,mi] | freeki − size(oi) ≥ 0}.

Then,

Ri+1 =
{
Ri ∪ {Bmi+1} if Ki = ∅,
Ri otherwise.

Let 4i be a total order over Ki that gives the ordering of blocks of Ri that have
enough space to allocate oi according to the search strategy. For instance, for �rst-
�t, 4i is such that a 4i b i� a ≤ b , for all a, b ∈ Ki, and for best-�t, 4i is such that
a 4i b i� freeai ≤ freebi , for all a, b ∈ Ki.

The value freeki is computed as follows. Initially, free11 = size(B1). For i ≥ 1,
if Ki 6= ∅,

freeki+1 =
{
freeki − size(oi) if k = min4i Ki,
freeki otherwise,

and if Ki = ∅,

freeki+1 =
{
size(Bk)− size(oi) if k = mi + 1,
freeki otherwise.

We de�ne freei =
∑

k∈[1,mi]
freeki .

Let f(R,ω) be the intra-region fragmentation of R produced by ω. It is the
sequence f1, · · · , fn such that:

fi =
{
freei if Ki = ∅ ∧ freei − size(oi) ≥ 0
0 otherwise.

3.4.2. Inter-region fragmentation

The region where an object will be actually allocated is chosen by an inter-region
allocation strategy. Here we consider three possible ones: (1) always allocate in the
one of the capturing method (that is, the one corresponding to the method that
registers the creation site); (2) allocate in the �rst region backwards in the pre�x (of
the call stack) where there is enough free space for the object (inter-region �rst-�t);
(3) allocate in the region (in the corresponding pre�x of the call stack) that leaves
the smallest possible remanent (inter-region best-�t).

Let Γ = Rmi1 . . . Rmip be the pre�x of the region stack associated with a creation
site. The unused memory in Γ is considered to be an �inter-region fragmentation�
when the allocation of a new object in Γ requires allocating a new memory block to
some region Rmij , 1 ≤ j ≤ p, while there is enough contiguous free space in some
other region Rmik , 1 ≤ j 6= k ≤ p, for the newly created object.

The inter-region fragmentation of Γ produced by ω, denoted by F (Γ, ω), can be
de�ned similarly to f(R,ω).

3.5. Prototype tool

We have developed a software prototype that provides almost fully automatic
tool support for transforming Java programs into programs with controlled memory

Chapter 3. A region-based memory manager 65

management via our API, and for analyzing their run-time behavior for di�erent
allocation algorithms. Figure 3.4 shows the structure of the tool.

Figure 3.4: Tool suite

To generate the transformed program, we proceed as follows. We �rst use the
Flex Harpoon Compiler [aG] to perform the escape analysis. The output of Flex is
used to compute the capture function. We have developed an Eclipse plug-in that
takes as input the original program and the capture function, traverses the syntax
tree of the program, and generates the transformed one.

The transformed code can be easily integrated into a test suite that provides
a software platform (Java classes) with the appropriate wrappers for executing the
program. The test platform simulates the behavior of the di�erent memory allocation
algorithms by using the fragmentation models presented in the previous section. The
classes have been developed in such a way they can be parameterized in many ways,
in particular, by di�erent allocation strategies, memory blocks' sizes, and analysis
functions.

The output of the analysis is given as charts implemented with the JChart library.
Figure 3.5 shows the intra-region fragmentation produced by a single run of the
transformed program for a given block size and intra-region allocation strategy. The
x-axis represents the sequence of memory accesses, that is, object allocations. The
y-axis shows the intra-region fragmentation ratio, that is, the percentage of total
intra-region fragmentation (i.e., the sum for all regions) for the total amount of
allocated memory in all regions. It is also possible to run the transformed code several
times with di�erent memory blocks' sizes, but for the same sequence of allocations.
In Figure 3.6, the x-axis represents the block sizes, and the y-axis the minimum,
maximum and average intra-region fragmentation over all regions. The tool also
provides functionality to count and output the number of operations performed by
the algorithms.

3.6. Conclusions and Future Work

We presented a technique for program instrumentation at source code level which
transforms a Java program with heap-based allocation into one with scoped-memory
management. Our approach ensures scoping rules by construction and decreases
run-time overhead by eliminating run-time checks.

Our instrumentation o�ers a light-weight mechanism for gathering information

66 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 3.5: Intra-region fragmentation for a given block size

Figure 3.6: Max/Min/Avg intra-region fragmentation for di�erent block sizes

Chapter 3. A region-based memory manager 67

about and controlling memory allocation at run-time. In this paper, we have focused
on using it for analyzing memory fragmentation for di�erent allocation algorithms.
Nevertheless, it can be used for other purposes such as measuring the number of
object intances, region sizes, allocation time, etc.

The results of the runtime analysis allows customizing the parameters of the
scoped-memory manager according to given performance criteria (e.g., minimize
fragmentation ratio). It should be noted that this can be done without touching
the transformed program at all.

We are currently working on implementing our API on top of the RTSJ and
RC API, and integrating it into the TurboJ compiler [Ins]. Future work includes
extending our approach to deal with multi-threading and recursion, and run-time
validation of the static estimates given in [BGY04].

CHAPTER 4

A simple static analysis from region inference

We present an algorithm for escape analysis inspired by, but more precise than,
the one proposed by Gay and Steensgaard [GS00]. The primary purpose of our al-
gorithm is to produce useful information to allocate memory using a region-based
memory manager. The algorithm combines intraprocedural variable-based and in-
terprocedural points-to analyses. This is a work in progress towards achieving an
application-oriented trade-o� between precision and scalability. We illustrate the
algorithm on severaltypical programming patterns, and show experimental results of
a �rst prototype on a few benchmarks1.

4.1. Introduction

Garbage collection (GC) [JL96] is not used in real-time embedded systems. The
reason is that temporal behavior of dynamic memory reclaiming is extremely dif-
�cult to predict. Several GC algorithms have been proposed for real-time embed-
ded applications (e.g., [Hen98, Sie00, RF02, HIB+02]). However, these approaches
are not portable (as they impose restrictive conditions on the underlying execution
platform), do require additional memory, and/or do not really ensure predictable
execution times.

An appealing solution to overcome the drawbacks of GC algorithms, is to allocate
objects in regions (e.g., [TT97]) which are associated with the lifetime of a computa-
tion unit (typically a thread or a method). Regions are freed when the corresponding
unit �nishes its execution. This approach is adopted, for instance, by the Real-Time
Speci�cation for Java (RTSJ) [GB00], where regions can be associated to runnables,
and by [GA01], which implements a library and a compiler for C. These region-based
approaches de�ne APIs which can be used to explicitly and manually handle allo-
cation and deallocation of objects within a program. However, care must be taken
when objects are mapped to regions in order to avoid dangling references. Thus,
programming using such APIs is error-prone, mostly because determining objects'
lifetime is di�cult.

An alternative to programming memory management directly using an API con-
sists in automatically transforming a program so as (a) to replace (whenever possible)

1 This chapter is based on the results published at the �First International Workshop on Abstract
Interpretatation for Object Oriented Languages� (AIOOL'05) [SYG05].

69

70 Synthesis of parametric speci�cations of dynamic memory utilization

�new� statements by calls to the region-based memory allocator, and (b) to place ap-
propriate calls (i.e., guaranteeing absence of dangling references) to the deallocator.
Such an approach requires to analyze the program behavior to determine the life-
time of dynamically allocated objects. In [DC02], analysis is based on pro�ling,
while [GNYZ04, CR04] rely on static (points-to and escape) analysis.

Escape analysis aims at conservatively determining if an object escapes from or
is captured by a method. Intuitively, an object escapes a method when its lifetime
is longer than the method's lifetime, so it can not be collected when the method
�nishes its execution. An object is captured by the method when it can be safely
collected at the end of its execution.

Several approaches to escape analysis for Java have been proposed, most of which
aim at allocating objects on the stack, and removing unnecessary synchronizations.
[Bla03] works on the bytecode, which brings in an additionnal complexity due to
the stack-based model. [CGS+99, WR99] use points-to analysis to determine if an
object escapes a method through a path in the points-to graph. [GS00] proposes a
fast but very conservative escape analysis, based on solving a simple system of linear
constraints obtained from a Static Single Assignment (SSA) form [CFR+91] of the
program.

For region-based allocation in Java, we are aware of two works. [GNYZ04] ex-
ploits method-call chains and escape analysis to dynamically map allocation sites to
regions associated with methods. [CR04] de�nes a points-to analysis to determine
regions of objects with similar lifetimes (with instruction-level resolution, as opposed
to method-level).

In this paper, we present an algorithm for escape analysis inspired by, but more
precise than, the one proposed in [GS00]. The primary purpose of our algorithm is to
produce useful information to allocate memory using a region-based memory man-
ager. The algorithm combines intraprocedural variable-based and interprocedural
points-to analyses. This is a work in progress towards achieving an application-
oriented trade-o� between precision and scalability. We illustrate the algorithm on
several typical programming patterns, and show experimental results of a �rst pro-
totype on a few benchmarks.

4.2. The algorithm

In this section we describe our escape analysis algorithm in detail. We assume
the program is in static single assignment form (SSA) [CFR+91], that is, every
variable is assigned only once in the program. The transformation of the program
into SSA comes at a cost, but gives to a �ow-insensitive analysis the power of a
�ow-sensitive one. Our algorithm is mainly based on local variables, instead of on a
complex points-to graph, which would be much more expensive to build and to work
with. The analysis is based on abstract interpretation [CC77] and computes several
properties for local variables and methods.

4.2.1. Properties

escape

For each local variable v of a method, escape(v)∈Escape, where Escape is the
lattice in �gure 4.1(a), says whether v may escape from its method, that is, if an
object pointed to by v is referenced in a way such that its lifetime may exceed the
method.

Chapter 4. A simple static analysis from region inference 71

A variable v escapes because it is returned (escape(v)=RETURNED) or it is copied
into a global variable (escape(v)=STATIC). When a variable is stored into an object
�eld (escape(v)=FIELD), v may escape through a chain of references. Determin-
ing whether v escapes in this case, requires further analysis that will be explained
later. The > value stands for variables that escape by several ways, or when the
analysis cannot compute a tighter information (e.g., when v is used as a parameter
in a non-analyzed method). For example, in the program shown on �gure 4.1(b)
escape(a)=STATIC, escape(b)=⊥, escape(c)=RETURNED, escape(d)=>.

Notice that escape(v) = ⊥ is not su�cient to say that the object pointed to by
v is local to the method. It only means that the method does not create any new
reference path from the outside of the method to the object, but the object may
already be reachable from outside. This is the case for variable b in �gure 4.1(b)
which is an alias of the static variable s.

>
↗ ↑ ↖

FIELD RETURNED STATIC

↖ ↑ ↗
⊥

(a) The escape lattice

class Test01 {

static Object s,t;

void m0() {

Object a=m1();

s=a;

Object b=m2();

}

Object m1() {

Object c=new Object();

return c;

}

Object m2() {

Object d=new Object();

s=d;

return d;

}

}

(b) the Test01 program

Figure 4.1: The Escape lattice and the Test01 program

mfresh

Let MFresh be the lattice: ⊥ ≤ RETURNED ≤ >. For each method m, mfresh(m) ∈
MFresh describes how objects returned by m escape: mfresh(m)=⊥ when m does not
return any object (it may be void, or return some primitive type value); mfresh(m)=>
when returned values are already known to escape from m in a di�erent way; mfresh(m)
= RETURNED when m returns an object (or several objects) which does (do) not escape
otherwise. If there is no other path leading to this object (see section 4.2.2), the caller
of m can capture it.

sites

Let Sites be P(AllocationSites ∪ {UNKNOWN}), where AllocationSites is the
set of all allocation sites in the program. For each local variable v, sites(v)∈Sites
contains all allocation sites that can create an object referenced by v. sites(v) can
always be computed at the unique (thanks to SSA) statement where v is de�ned.
To be conservative, if we cannot determine all the sites that v can point to (e.g.,
because of a not analyzed method call), a �fake� allocation site UNKNOWN is added to
sites(v). In the program of �gure 4.1(b), sites(a) = sites(c) = {[m1:c=new Object]},
and sites(b) = sites(d) = {[m2:d=new Object]}.

msites

For each method m, msites(m) is an element of Sites, saying where objects re-
turned by m come from. In the program of �gure 4.1(b), msites(m0) = ∅, msites(m1)

72 Synthesis of parametric speci�cations of dynamic memory utilization

= {[m1:c=new Object]}, and msites(m2) = {[m2:d=new Object]}. Notice that, if
mfresh(m) = RETURNED, then objects from msites(m) are possibly captured by callers
of m, but it is not certain. In some complex situations, there can still be a path
of references leading to these objects. For example in the program shown on �gure
4.6(a), the e variable is not captured by m0.

isdereferenced

isdereferenced(v) is true i� v, or one of its aliases, is dereferenced in m. That is,
is v.f appears in the right-hand side of an assignment.

usedasparameter

usedasparameter(v) is true i� v, or one of its aliases, is used as a concrete param-
eter in a method call.

def

For each variable v, def(v) says how v was de�ned.

�elduse

�elduse shows reference relations between local variables. For each v in m, �eld-
use(v) is the set of variables u in m such that v may be an alias of u.f (for some �eld
f). �elduse is mainly useful when a variable v escapes by a FIELD: for example, if
escape(v)=FIELD, but all variables of �elduse(v) are captured by m, then so is v.

the mrefs graph

When objects are passed through several methods, knowledge about local vari-
ables is often not su�cient to determine objects' lifetimes, that's why a reference
graph is needed. Our reference graph is very simple, in order to minimize the al-
gorithmic cost of the analysis. mrefs is a subset of AllocationSites × Fields ×
AllocationSites, where (α, f, β) ∈ mrefs means: �an object created in α, may point,
with its f �eld, to an object created in β�.

side

The main goal of our analysis is to determine in which regions to allocate objects.
Each method m has an associated region, containing objects which do not escape m.
To determine the region, we compute for each variable v of m, where objects pointed
to by v live, namely, side(v):

side(v)=INSIDE, when objects pointed to by v are captured by m. If they are
created by m, they can be allocated in m's region. If they are created by callees,
m can ask for them to be allocated in its region, as is described in [GNYZ04];

side(v)=OUTSIDE, when objects pointed to by v live longer than m. If they
are created by m, they must be allocated outside its stack frame. But such an
object may be captured by a caller n of m, in this case m can allocate the object
in n's region.

An example is presented on �gure 4.6(a): the RefObject allocated by m2 is cap-
tured by m1. Our analysis detects this situation by computing side(a)=OUTSIDE and
side(c)=INSIDE.

Chapter 4. A simple static analysis from region inference 73

4.2.2. The rules

The algorithm works in two phases. First, it determines for each variable the
values of escape, sites, isdereferenced, usedasparameter, �elduse, def, it builds the
mrefsgraph and computes msites and mfresh values. To compute these values, the
algorithm solves the least �xpoint in Figures 4.2 and 4.3.

In a second phase, the algorithm uses these values to compute, for each variable,
its side value, as presented on �gure 4.4. It is the combination of side and sites that
will enable us to instrument the bytecode in order to use a region memory allocator
for captured sites.

α: v := new

α ∈ sites(v)

v:= ϕ(v1..vn)
def(v) = PHI

∀i = 1..n
sites(v) ⊇ sites(vi)
escape(v) w escape(vi)
escape(vi) w escape(v)
isdereferenced(v) ≥ isdereferenced(vi)
isdereferenced(vi) ≥ isdereferenced(v)
usedasparameter(v) ≥ usedasparameter(vi)
usedasparameter(vi) ≥ usedasparameter(v)
�elduse(v) ⊇ �elduse(vi)
�elduse(vi) ⊇ �elduse(v)

v := v1

def(v) = COPY

other properties: similar to ϕ-expression

v1.f := v
escape(v) w FIELD

�elduse(v) 3 v1

mrefs ⊇ {s1
f−→ s2,

s1 ∈ sites(v1), s2 ∈ sites(v2)}

s := v

escape(v) w STATIC

mrefs ⊇ {UNKNOWN −→ S, s ∈ sites(vi)}

v := s
def(v) = STATIC

sites(v) 3 UNKNOWN

v := p
def(v) = PARAM

sites(v) 3 UNKNOWN

other properties: similar to ϕ-expression

v := constant
def(v) = CONSTANT

sites(v) 3 UNKNOWN

v := v1.f
def(v) = FIELD

isdereferenced(v1) ≥ true
sites(v) ⊇ {s |∃ S ′ ∈ sites(v1), S ′

f−→ S }
If UNKNOWN ∈ sites(vi)

sites(v) 3 UNKNOWN

returnm v
escape(v) w RETURNED

mfresh(m) w escape(v)
msites(m) ⊇ sites(v)

Figure 4.2: Escape analysis rules

First phase

Most of these rules are simple. They are only intraprocedural information prop-
agation. The only complicated rule is the one on �gure 4.3, which handles method
calls. This is not trivial, because we do not want to perform a full points-to analysis,
neither to be too conservative about method calls.

Our analysis is designed to process arbitrary portions of an application. That is
why we have an istobeprocessed predicate, that tells if a method must be analyzed
or not. If not, for example because the method is native, or unavailable, we must be
conservative about it.

For a not analyzed method, we assume that all parameters escape, and are ref-
erenced by the UNKNOWN site.

On the other hand, if the method is analyzed, then we can be more precise.
Obviously, we have sites(v) ⊇ msites(m), that is, v will point to any object returned
by m. If these objects have escaped (mfresh(m) 6= RETURNED), then the return value
is not capturable either. (escape(v) w mfresh(m))

74 Synthesis of parametric speci�cations of dynamic memory utilization

v := v0.m(v1..vn)
∀ m that may be invoked here
If istobeprocessed(m)
sites(v) ⊇ msites(m)
If mfresh(m) 6= RETURNED

escape(v) w mfresh(m)
∀i = 0..n
usedasparameter(vi) ≥ true
Let pi the i-th formal parameter of m
isdereferenced(vi) ≥ isdereferenced(pi)
If ¬escape(pi) ∈ {RETURNED,⊥}

escape(vi) w >
mrefs ⊇ {UNKNOWN −→ S, S ∈ sites(vi)}

If isdereferenced(pi) = true
mrefs ⊇ {UNKNOWN −→ s |∃ S ′ ∈ sites(vi), S ′ −→ s)}

else
sites(v) 3 UNKNOWN

∀i = 0..n
usedasparameter(vi) ≥ true
isdereferenced(vi) ≥ true
escape(vi) w >
mrefs ⊇ {UNKNOWN −→ S, s ∈ sites(vi)}

Figure 4.3: Escape analysis rules (cont)

To process the parameters of m, we match the formal parameters (pi) with the
concrete ones (vi): if pi escapes from m, vi is considered as escaping from the current
method, and we put an edge from UNKNOWN to all sites pointed to by vi. If pi does
not escape but isdereferenced in m, then we cannot be precise about those references
without performing a points-to analysis. In this case, we conservatively consider that
all children of vi escape.

Second phase

def(v)

escape(v) NEW RETVAL
PARAM
STATIC

COPY
PHI FIELD CONSTANT

⊥ (3) (3) OUTSIDE (1) (2) OUTSIDE
FIELD (2) (2) OUTSIDE (1) (2) OUTSIDE

RETURNED OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE
STATIC OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE
> OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE OUTSIDE

(1)

v:= ϕ(v1..vn) or v := v1

∀i
side(v) w side(vi)
side(vi) w side(v)

(3)

If ∃s ∈ sites(v) s.t. UNKNOWN ; s

side(v) = OUTSIDE

else
side(v) = INSIDE

(2)

If ∃u ∈ �elduse(v) s.t. side(u) = OUTSIDE

or s.t.isdereferenced(u) ∧ usedasparameter(u)
side(v) = OUTSIDE

else
(3)

Figure 4.4: Computation of side(v)

Once the �xed point is reached, the algorithm computes side(v) for each variable
using rules shown in �gure 4.4. This is not a one-pass computation, but a second
least �xpoint, because of the (1) and (2) rules:

The (1) rule says that, if a variable may alias another, then those two variables
cannot have di�erent side values.

Chapter 4. A simple static analysis from region inference 75

Similarly, the (2) rules says that if a variable v is referenced by another vari-
able's �eld (e.g. by a u.f=v), v cannot be captured unless u is.

Examples

Let us consider the example presented in �g.4.5(a). First, m0 builds a small
chained structure, then it calls m1 which makes the last element (t3) escape. As
shown on �g.4.5(b), the analysis of m0 understands the behavior of m0, but as we can
only match x with t1, and not a with t2, we cannot keep track of m1. Nevertheless,
to stay conservative, we put an edge from UNKNOWN to the site of t2 because x

is dereferenced in m1. Notice that, t2 and t3 are usedasparameter, because they
are the this parameter of their constructor. That is why the only captured site is
[m0:t1 = new RefObject].

class RefObject {

Object f;

}

class Test25 {

void m0() {

RefObject t1=new RefObject();

RefObject t2=new RefObject();

Object t3=new Object();

t1.f=t2;

t2.f=t3;

m1(t1);

}

static Object s;

void m1(RefObject x)

{

RefObject a=(RefObject)x.f;

Object b=a.f;

s=b;

}

}

(a) The Test25 program

(b) mrefs graph

escape

mfresh def IsD uP �elduse
sites

msites side

m0 ⊥ ∅
t1 ⊥ NEW true true [] [m0:t1 = new RefObject] INSIDE
t2 FIELD NEW false true [t1] [m0:t2 = new RefObject] OUTSIDE
t3 FIELD NEW true true [t2] [m0:t3 = new java.lang.Object] OUTSIDE
m1 ⊥ ∅
x ⊥ PARAM true false [] [UNKNOWN] OUTSIDE
a ⊥ FIELD false false [] [UNKNOWN] OUTSIDE
b STATIC FIELD false false [] [UNKNOWN] OUTSIDE

(c)

analysis results

Figure 4.5: The Test25 program

The second example, shown in �gure 4.6(a), illustrates the msites property. The
m2 method allocates two objects and makes one (a) point to the other (b), which
escapes. Then it returns a, which is captured by m1 (side(c)=INSIDE). m1 dereferences
c to get the Object and returns it, but m0 cannot capture it because of the edge from
UNKNOWN to [m2:b = new Object].

4.3. Empirical results

We have implemented a prototype version of this algorithm using the Soot frame-
work [VRHS+99] v.2.2.1. Table 4.1 presents the results of our algorithm on the
Jolden benchmarks [CM01]. The �rst two column are the size of the program in
lines, and the number of allocation sites. The next three columns present the time
spent by our escape analysis, in seconds, not including Soot's phases: class loading,
transformation from bytecode to Jimple (Soot's three-address stackless code), and
transformation into SSA form.

76 Synthesis of parametric speci�cations of dynamic memory utilization

class Test30 {

void m0() {

Object e=m1();

}

Object m1() {

RefObject c=m2();

Object d=c.f;

return d;

}

static Object s;

RefObject m2() {

RefObject a=new RefObject();

Object b=new Object();

s=b;

a.f=b;

return a;

}

}

(a) the Test30 program

(b) mrefs graph

escape

mfresh def IsD uP �elduse
sites

msites side

m0 ⊥ ∅
e ⊥ RETVAL false false ∅ [m2:b = new Object] OUTSIDE

m1 RETURNED [m2:b = new Object]

c ⊥ RETVAL true false ∅ [m2:a = new RefObject] INSIDE
d RETURNED FIELD false false ∅ [m2:b = new Object] OUTSIDE

m2 RETURNED [m2:a = new RefObject]

a RETURNED NEW false true: ∅ [m2:a = new RefObject] OUTSIDE
b > NEW true true [r1] [m2:b = new Object] OUTSIDE

(c) analysis results

Figure 4.6: The Test30 program

Program Lines Allocation Analysis time INSIDE G&S's analysis
sites escape side total variables sites stackable variables

bh 1128 41 9.430 23.51 32.481 34 21 23
bisort 340 10 7.876 11.509 19.385 7 7 7
em3d 462 26 8.551 15.706 24.257 13 11 11
health 562 28 8.454 19.414 27.868 18 13 10
mst 473 16 8.106 14.260 22.366 8 8 7
perimeter 745 13 11.357 23.944 35.301 7 7 7
power 765 21 3.628 1.159 4.787 9 9 5
treeadd 195 11 10.876 27.539 38.415 6 6 6
tsp 545 12 11.19 30.201 41.220 7 7 7
voronoi 1000 35 12.778 66.566 79.344 34 20 31

Table 4.1: Analysis results

The last three columns give the number of INSIDE variables and allocation sites,
as computed by our algorithm, and the number of stackable variables, as computed
by our implementation of G&S's analysis [GS00]. Our analysis is more precise than
[GS00] as it subsumes all its rules. That is, all stackable variables in the sense of
[GS00] are INSIDE variables, but the converse is not true. In our experiments, we
did not use any inlining of analyzed code. It is interesting to remark that without
inlining, [GS00] does not �nd any stackable variable in the programs of �gures 4.5
and 4.6. As noted in [GS00], both analyses will bene�t from method inlining.

We did not have enough time to use the computed information to actually in-
strument the benchmarks as described in [GNYZ04]. We count on doing this soon.
Anyway, a preliminary implementation on another test program revealed a gain of
20% of total utilized memory, when using GC together with region-based manager,
w.r.t. GC only, even if the actual region-allocated memory is about 5%.

Besides, only a subgraph of the whole call graph has been analyzed for each test
case. The subgraph contains all application methods and a subset of library methods
transitively invoked by the program. This explains why there are only a few alloca-
tion sites. Nevertheless, these results are interesting, because an important fraction
of analyzed allocation sites are indeed computed to be captured. Our algorithm is

Chapter 4. A simple static analysis from region inference 77

parameterized by the set of classes to be analyzed. This allows the user to �ne-tune
the analysis trading precision against performance according to speci�c application
behaviors.

CHAPTER 5

Annotations for more precise points to analysis

We extend an existing points-to analysis for Java in two ways. First, we fully
support .NET which has structs and parameter passing by reference. Second, we in-
crease the precision for calls to non-analyzable methods. A method is non-analyzable
when its code is not available either because it is abstract (an interface method or an
abstract class method), it is virtual and the callee cannot be statically resolved, or
because it is implemented in native code (as opposed to managed bytecode). For such
methods, we introduce extensions that model potentially a�ected heap locations. We
also propose an annotation language that permits a modular analysis without losing
too much precision. Our annotation language allows concise speci�cation of points-
to and read/write e�ects. Our analysis infers points-to and read/e�ect information
from available code and also checks code against its annotation, when the latter is
provided1.

5.1. Introduction

Object-oriented languages, as C# or Java, strongly rely on the manipulation
(read/write) of dynamically allocated objects. As a consequence, static analysis
tools for these languages need to compute some heap abstraction. Here, we focus
our attention on a static analysis for determining the side-e�ects of statements and
methods.

Side e�ect information can be used for program analysis, speci�cation, veri�cation
and optimization. If it is known that a method m has no side-e�ects, then during the
analysis of a caller, m can be handled in a purely functional way. Furthermore, m can
be used in assertions and speci�cations, [FLL+02, BLS05]. Side e�ect-free methods
enable several optimizations such as caching the computed results and automatic
parallelization.

Analysis of side-e�ects in mainstream OO languages is not simple as (i) di�erent
variables or �elds may refer to the same memory location (aliasing); (ii) the rela-
tionship between objects can be very complex (shape); (iii) the number of objects
can be unbounded (scalability); and (iv) it can be di�cult or impossible to statically
determine the control �ow because of dynamic binding or because not all the code is

1 This chapter is based on the results published at the �International Workshop on Aliasing,
Con�nement and Ownership� (IWACO'07) [BFGL07a].

79

80 Synthesis of parametric speci�cations of dynamic memory utilization

not available at analysis time, e.g., when analyzing a class library or programs that
use native code.

We extend an existing points-to and e�ect analysis presented by Salcianu et al.
[SR05] to infer read and write e�ects for code targetting the .NET Common Language
Runtime (CLR) [ECM06]. The CLR is the common infrastructure for languages such
as C#, VB, Managed C++, etc. Unlike Java, the CLR adds support for struct types
and parameter passing by reference via managed pointers, i.e., garbage collector
controlled pointers. For each method in the application we compute a summary
describing a read/write e�ects and a points-to graph that approximates the state of
the heap at the method's exit point.

The more important extension is the inclusion of additional support for non-
analyzable calls. We can analyze programs that have calls to non-statically resolvable
calls such as interface calls, virtual calls, and native calls while being less pessimistic
than Salcianu's analysis. We de�ne a concise yet expressive speci�cation language to
describe points-to and read/write e�ects for a method. The method annotations are
used (i) as summaries, to analyze code involving calls to non-analyzable methods; (ii)
to enable modular analysis, i.e., when analyzing a method n that invokes a method
m, we (a) use the annotation A(m) in the analysis of the body of n and (b) we check
m against its speci�cation A(m); (iii) as documentation and contracts to impose
restrictions on eventual implementations [Mey88]. This allows our analysis to work
even without computing a precise call graph.

In this work we apply our analysis primarily for checking method purity but it
can be used for any other analysis that requires aliasing information and/or conser-
vative read/write e�ect information. Purity is informally understood to mean that
a method has no e�ect on the state. Formally, however, there are di�erent levels of
purity [BN04]. Our analysis computes weak purity, i.e., it infers weak purity and
it checks whether a method annotated as being weakly pure lives up to its con-
tract. A weakly pure method does not mutate any object that was allocated prior
to the beginning of the method's execution. Because a weakly-pure method can
return newly allocated objects and since object equality can be observed by clients,
there may be further restrictions on weakly-pure methods in order to use them in
speci�cations [DM06].

The main contributions of this work are:

An interprocedural read/write e�ect inference technique, built on the top of the
points-to analysis, for the .NET memory model that relaxes the closed world
assumption.

A new set of annotations for representing points-to and e�ect information in
a modular fashion. The annotations are considered valid for interprocedural
analysis when the methods are called, and veri�ed when the implementations
of the methods are analyzed.

An implementation integrated into the Spec# compiler [Spe] to infer and verify
method purity and for checking the admissibility of speci�cations in the Boogie
methodology [BLS05].

5.1.1. The Problem

Consider the following simple, but realistic example. Figure 5.1 contains a
method written by a programmer to copy a list of integers. In C#, the foreach
is syntactic �sugar" which the compiler expands (�desugars") into the code shown

Chapter 5. Annotations for more precise points to analysis 81

List<int> Copy(IEnumerable<int> src)

{

List<int> l = new List<int>();

foreach (int x in src)

l.Add(x);

return l;

}

Figure 5.1: A simple use of an iterator in C#.

List<int> Copy(IEnumerable<int> src)

{

List<int> l = new List<int>();

IEnumerator<int> iter =

src.GetEnumerator();

while (iter.MoveNext()){

int x = iter.get_Current();

l.Add(x);

}

return l;

}

Figure 5.2: �Desugared" version of the iterator example.

in Figure 5.2. (Programmers are also able to directly write the de-sugared ver-
sion.) The desugared version shows that there is one method call from the interface
IEnumerable〈T 〉 and two from the interface IEnumerator〈T 〉. In addition, the
constructor for the type List〈T 〉 is called, as is its Add method.

A points-to analysis produces the set of memory locations that are read and
written by Copy. That information can then be used to determine if Copy is (weakly)
pure. It clearly mutates the list that it creates and returns, but that list is created
after entry into the method and the original collection from which the integers are
drawn is unchanged. Thus, we desire an analysis that is precise enough to recognize
its purity.

Salcianu's analysis would not be able to analyze the calls to the interface methods.
It would make the conservative approximation that the parameter src could escape
to any location in memory and that the method has a (potential) write e�ect on
all accessible locations, such as all static variables. This precludes Copy from being
pure and, perhaps more importantly, pollutes the analysis of any method that calls
it because those e�ects then become the e�ects of the caller.

We have created a speci�cation language for concisely describing the points-
to graph and read/write e�ects of a method. The design of such a language is
subject to common engineering tradeo�s: it should be precise enough to enable
the recognition of common programming idioms while at the same time be concise
enough for programmers to use in everyday practice.

We add annotations written in the language to method signatures. At call sites,
we trust the annotation of the called method; annotations are then veri�ed when
analyzing a method implementation. Annotations are inherited: they must be re-
spected in every subtype by overriding methods. We use the set of annotations to
model non-analyzable calls with better precision than previously possible while still

82 Synthesis of parametric speci�cations of dynamic memory utilization

computing a conservative points-to graph and read and write e�ects of the callee.
The annotations do not describe precisely the behavior of the method.

5.1.2. Structure

First, we review the essential ideas from Salcianu's analysis in Section 5.2 and
present our extensions to deal with .NET memory model and non-analyzable calls.
Section 5.3 presents our annotations and the extensions to Salcianu's analysis needed
to process the points-to graphs they represent. Our preliminary experimental results
appear in Section 5.4. Some related work is reviewed in Section 5.5 and our conclu-
sions are presented in Section 5.6.

5.2. Salcianu's Analysis

Salcianu et al. [SR05] created an analysis for Java programs that performs an
intra-procedural analysis of each method to obtain a method summary that models
the result of the analysis at the end of the method's execution. We brie�y review
their analysis.

Their analysis relies on having a precise precomputed call graph for the entire
application. Methods are traversed in a bottom up fashion, using already computed
method summaries at each call site. To deal with recursion, a �xpoint computation
operates over every strongly-connected component (i.e., group of mutually recursive
methods). When a method invokes another method, the current state of the caller
and the method summary for the callee are joined to represent the caller's state after
the call.

The intra-procedural analysis is a forward analysis that computes a points-to
graph (PTG) which over-approximates the heap accesses made by a methodm during
all its possible executions. Given a method m and a program location pc, a points-to
graph Ppcm is a triple 〈I,O, L〉, where I is the set of inside edges, O the set of outside
edges and L the mapping from locals to nodes 2. The nodes of the graph represent
heap objects; there are basically three di�erent types of nodes. Inside nodes represent
objects created by m, while parameter nodes represent the value of an object passed
as an argument to m. Load nodes are used as placeholders for unknown objects or
addresses. A load node represents elements read from outside m.

Relations between objects are represented using two kind of edges: inside edges
model references created inside the body of m and outside edges model heap refer-
ences read from objects reachable from outside m, e.g., through parameters or static
�elds.

When the statement at the program point pc is a method call, op, the analysis
uses a summary of the callee Pcallee�a PTG representing the callee e�ect on the
heap�and computes an inter-procedural mapping µpcm :: Node 7→ P(Node). It relates
every node n ∈ nodes(Pcallee) in the callee to a set of existing or fresh nodes in the
caller (nodes(Ppcm)∪nodes(Pop)) and is used to bind the callee's nodes to the caller's
by relating formals with actual parameters and also to try to match callee's outside
egdes (reads) with caller's inside egdes (writes).

For each program point within m, the analysis also records the locations that are
written to the heap. The summary of a method represents the abstract state at the

2The set of nodes is implicitly described by the two sets of edges and the local variables map.
Salcianu's analysis also has one more element, E, the escaping node set. Instead, we represent an
escaping node by connecting it to a special node that represent the global scope.

Chapter 5. Annotations for more precise points to analysis 83

method's exit point in term of its parameters. It contains all reachable nodes from
the (original) parameter nodes.

5.2.1. Extensions for the .NET Memory Model

We extend this analysis to support features of the .NET platform not present
in Java: parameter passing by reference and struct types. Struct types have value
semantics; they encompass both the primitive types like integers and booleans as
well as user-de�ned record types. To accommodate both references and structs, we
add a new level of dereference using address nodes. In this model, every variable or
�eld is represented by an address node. In the case of objects (or primitive types) the
address node then refers to the object itself. A struct value is represented directly by
its address. To access an object we �rst get a reference to an address node and then
follow that to the value. In the case of structs we directly consider the address as the
starting o�set of the struct. Thus, an address node for an object has outgoing edges
labeled with the �contents-of" symbol �*", while an address node for a struct value
has one outgoing edge for each �eld of the struct: the labels are the �eld names.

This distinction is used in the assignment of objects and structs. For objects, we
just copy the value pointed to by the address node, and for structs we also copy all
the values pointed to by its �elds. Figure 5.3 shows the representation of object and

Figure 5.3: Modeling objects and structs. On the left v0 is the address of v1, which
is a value of a struct type with two �elds f1 and f2. (v0 can be thought of as an
object, e.g., if the struct is passed to a method that takes an object as a parameter
then v1 would be a boxed value.) The type of f1 is also a struct type with one �eld
g which is of an object type. The type of f2 is an object type. The center and right
�gures show an assignment of two variables of struct type.

struct values and how the assignment of struct values is done. Address nodes are
depicted as ovals, values as boxes.

In [BFGL07b] we formally present the concrete and abstract semantics of the
extended model. Basically we support the statements that operate on managed
pointers. For instance the statement that loads an address a = &b assigns to a the
address of b. If the type of b is a struct type a will contain a reference to it. Thus,
a can be used as if it were an object. The pair of statements indirect load, a = *b,
and indirect store, *a = b, allows indirect access to values and are typically used
to implement parameter passing by reference. We also keep track of read e�ects by
registering every �eld reference (load operation).

Figure 5.4 shows a simple method and three points-to graphs at di�erent control
points in the method. All of the addresses in the �gure refer to objects. One node
models all globally accessible objects. The graph on the left shows the points-to
graph as it exists at the entry point of the method. The middle graph shows the
e�ect of executing the body of the method: the points-to graph is shown at the exit
point of the method. Finally, the right graph is the summary points-to graph for the

84 Synthesis of parametric speci�cations of dynamic memory utilization

method. It represents the method's behavior from a caller's point of view. Notice
that the initial value of the parameter a has been restored since a caller would not
be able to detect that it is re-assigned within the method. The summary for the
method is a triple made up of a points-to graph that approximates the state of the
heap, a write set W, and a read set R.

void m(A a){

a = this;

D d = new D();

a.f = d;

}

W(m) = {〈PLN(this), f〉}
R(m) = {}
Write(m) = {this.f}
Read(m) = {}

Figure 5.4: Three points-to graphs for the beginning, end, and summary of the
method A.m.

5.2.2. Extensions for Non-analyzable Methods

Salcianu's analysis computes a conservative approximation of the heap accesses
and write e�ects made by a method. A call to a non-analyzable method causes all
arguments to escape the caller and also to cause a write e�ect on a global loca-
tion [SR05].

For a more precise model of non-analyzable calls, we generate summary nodes for
non-analyzable methods. A load node (in particular, a parameter node) is a place
holder for unknown objects that may be resolved in the caller's context. In the case
of analyzable calls, at binding time the analysis tries to match every load node with
nodes in the caller. A match is produced when there is a path starting from a callee
parameter that �uni�es� with a path in the caller. That means that a read or write
made on a callee's load node corresponds to a read or write in the caller. As reads
and writes in the callee are represented by edges in the points-to graph, those edges
must be translated to the caller.

Figure 5.5: E�ect of omega nodes in the inter-procedural mapping

Non-analyzable calls may have an e�ect on every node reachable from the param-
eters. That means that, unlike analyzable calls, some e�ects might not be translated
directly to the caller points-to graph as it may not have enough context information
to do the binding. For instance, a non-analyzable callee m2 may modify p1.f1.f2.f3
to point to another parameter p2 and a caller m that performs the method call

Chapter 5. Annotations for more precise points to analysis 85

m2(a1, a2) may have points-to information only about a1.f1. As we don't know �a
priori� the e�ect of m2 it would be unsound to consider only an e�ect over a1.f1 in
the caller. We need some mechanism to update a1 when more information becomes
available (e.g., when binding m with its caller).

Omega Nodes

We introduce a new kind of node, an ω node, to model the set of reachable
nodes from that node. At binding time, instead of mapping a load (or parameter)
node with the corresponding node in the caller, ω nodes are mapped to every node
reachable from the corresponding starting node in the caller. For instance, an ω
node for a parameter in the callee will be mapped to every node reachable from the
corresponding caller argument.

Figure 5.5 shows an example of how ω nodes are mapped to caller nodes during
the inter-procedural binding. Suppose that somehow we know the non-analyzable
method call creates a reference from some object reachable from p1 to some object
reachable from p2. Since we don't know which �elds are used on the access path,
we use a new edge label, ?, that represents any �eld. At binding time we know that
from a1 we can reach IN1 and IN2. Thus, we must add a reference from both nodes
to the nodes reachable from a2.

We want to distinguish between a node being merely reachable from it being
writable (e.g., an iterator may access a collection for reading but not for writing).
For this purpose, we introduce a variant of ω nodes: ωC nodes. (The C stands for
con�ned, a concept borrowed from the Spec# ownership system [BDF+04].) These
nodes have the same meaning as ω nodes for binding a callee to a caller, but they
represent only nodes reachable from the caller through �elds it owns. Ownership is
speci�ed on the class de�nition: a �eld f marked as being an owning �eld in class
T means that an object o of type T owns the object pointed to by its f �eld, o.f (if
any).

To model potential read or writes we use ? edges to mean that the method may
generate a reference using an unknown �eld for any object reachable from the ob-
ject(s) represented by the source node to the object(s) represented by the target
node. As we want a conservative approximation of the callee's e�ect, we only gener-
ally introduce inside edges in non-analyzable methods because they do not disappear
when bound with the caller's edges. We use another wildcard edge label $, that in-
cludes only a subset of the labels denoted by ?. $ denotes only non-owned �elds and
allows distinguishing between references to objects that can be written by a method,
from references that can only be reached for reading (see Section 5.3 in particular
the WriteConfined attribute). This is the distinction that allows the use of impure
methods while retaining guarantees that some objects are not written. For the worst
case scenario we connect every parameter ω node of the non-analyzable method to
other parameter nodes and to themselves using edges labeled as ? to indicate poten-
tial references created between objects reachable from the parameters. Section 5.3
presents our annotation language that helps eliminate some of these edges.

Interprocedural binding

To deal with the new nodes and edge labels, we adapt the inter-procedural map-
ping µ. Recall that µ is a mapping from nodes in the callee to nodes in the callee
and the caller. Thus, for every ω node nLpc

ω we compute the closure of µ(nLpc
ω) by

adding the set of reachable nodes from µ(nLpc
ω) to itself.

86 Synthesis of parametric speci�cations of dynamic memory utilization

When computing the set of reachable nodes matching an ωC node we consider
only paths that pass through owned �elds3 and ? edges. Note that we reject paths
that contain $ edges.

Finally, we convert any load nodes, nLpc, contained in the set µ(nLpc
ω) to ω nodes.

This is because these nodes could be resolved when more context is available, at
which point we still need to apply the e�ect of the non-analyzable call to those
nodes. For instance in Figure 5.5, before the binding all nodes reachable from a1
are inside nodes. Those nodes do not change at binding time as they were created
by the caller itself and are not place holders for unknown objects. Thus, no more
context is necessary to solve the binding between a1 and p1. However, a2 can reach
the load node L4 meaning that more context might be necessary to resolve nodes
reachable from a2. That is why we convert L4 to an ω node. Full details on the
modi�ed computation for the inter-procedural mapping µ is in [BFGL07b].

We also modify the operation that models �eld dereference to support the ? and
$ edges. It considers those edges as �wild cards� allowing every �eld dereference to
follow those edges.

5.3. Annotations

Table 5.1 summarizes our annotation language. The annotations provide concise
information about points-to and e�ect information and allows us to mitigate the e�ect
of non-analyzable calls. Annotating a method as pure is the same as marking each
parameter as not being writable (unless it is an out parameter). A method annotated
as being write-con�ned is shorthand for marking every parameter as write-con�ned.
Obviously not all combinations of the attributes are allowed. For example, it would
be contradictory to label a method as being both pure and as writing globals.

The full details for mapping the attributes into points-to and write e�ect infor-
mation are found in [BFGL07b]. Basically their impact is to a) remove ? edges, b)
replace ω nodes by inside nodes, and c) avoid registering write e�ects over parameters
or the global scope.

We explain the e�ect of the annotations using some of the methods in our running
example. Figure 5.7 presents the full list of annotations. The GetEnumerator
method returns an object that is modi�ed later on in Copy. Notice that the loop
would never terminate unless iter.MoveNext returns false at some point. So either
the loop never executes or else some state somewhere must change so that a di�erent
value can be returned. If the state change involves global objects, then Copy is
not pure so let us assume that the change is to the object iter itself. As long as
that object was allocated by GetEnumerator, changes to it would not violate the
weak purity of Copy. We expect GetEnumerator to return a Fresh object: the
iterator. At the same time, it is likely that the returned iterator has a reference to
the collection. We need a way to distinguish the write e�ects in MoveNext so that
we do not conclude that it modi�es the collection.

Figure 5.6 shows the points-to graph for GetEnumerator. It corresponds to the
following annotations.

The return value is annotated as Fresh. This generates the inside node for
the return value instead of an ω node.

The receiver (this variable) is annotated as Escapes which means that the
points-to graph must introduce edges from the nodes reachable from outside

3We mean �owned �elds" as de�ned in the Boogie methodology [BDF+04].

Chapter 5. Annotations for more precise points to analysis 87

Attribute Name Target Default Meaning

Fresh out Parame-
ter

False The returned value is a newly created
object.

Read Parameter True The content can be transitively read.

Write Parameter False The content can be transitively mu-
tated.

WriteCon�ned Parameter False The content can transitively mutate
only captured objects.

Escape(bool) Parameter False Will any object reachable from the pa-
rameter be reachable from another ob-
ject in addition to the caller's argument

Capture(bool) Parameter False Will some caller object own the
escaping-parameter's objects ?

GlobalRead(bool) Method True Does the method read a global?
GlobalWrite(bool) Method True Does the method write a global?
GlobalAcccess(bool) Method True Does the method read or write a global?

Pure Method False The method can not mutate any object
from its prestate except for out param-
eters

WriteCon�ned Method False The method mutates only objects
owned by the parameters (captured).

Table 5.1: The set of attributes used to summarize the points-to graph and the read
and write sets. The attributes Fresh and Escape also are allowed on the �return
value" of the method since we model that as an extra (out) parameter. In C#,
attributes on return values are speci�ed at the method level with an explicit target,
e.g., [return:Fresh].

(in this case the return value) to the receiver. Note that we do not annotate it
as Capture. This is why the edge between the return value and the collection
is labeled as $ which means that the receiver is reachable from outside but
only for reading. A Capture annotation would generate a ? edge. There are
no edges starting from the ω node pointed by &this because of the default
annotation for the receiver as Write(false).

The method is annotated as not accessing globals. This means that there is no
global node (and so no write or read e�ects on the global state).

We believe these are reasonable constraints on the behavior of GetEnumerator. The
points-to graph for MoveNext is also shown in Figure 5.6. It corresponds to these
annotations:

The method is annotated as WriteConfined, which means that it can only
mutate objects it owns. This is represented using an ωC node for the receiver.
Note how this is implemented. The parameter node has two edges. The edge
labeled as ? which leads back to the reciever means that the method can per-
form any write to nodes in its ownership cone. The other edge labeled as $
leads to a separate ω node. That means that objects reachable using not-owned
�elds can be read but not modi�ed. Thus, edges labeled as $ do not need to
be considered when computing write e�ects for the method.

88 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 5.6: The evolution of Copy's points-to graph after calling src.GetEnumerator
and iter.MoveNext. We use the special �eld $ to indicate that src is reachable from
iter but iter is able to mutate objects only using �elds that iter's class owns. For
simplicity we do not show the evolution of the newly created objects pointed to by
the list l.

class List<T> {

[GlobalAccess(false)]

public List<T>();

[GlobalAccess(false)]

public void Add(T t);

...

}

interface IEnumerable<T>{

[return: Fresh]

[Escapes(true)] // receiver spec

[GlobalAccess(false)]

IEnumerator<T> GetEnumerator();

}

interface IEnumerator<T> {

[WriteConfined] bool MoveNext();

T Current { [GlobalAccess(false)] [Pure] get; }

[WriteConfined] void Reset();

}

Figure 5.7: The methods needed for analyzing Copy along with their annotations.

5.4. Experimental Results

Our implementation is integrated into the Spec# compiler pipeline and can also
be run as a stand alone application. We analyze Boogie [BDJ+06], a program ver-
i�cation tool for the Spec# language [BDF+04]. Boogie is itself written in Spec#
and so already has some annotations. In this case we use our tool to verify methods
annotated as pure. We analyzed the eight application modules using three di�er-
ent approaches. Intra-procedural: We analyze each method body independently. In
the presence of method calls we use any annotations provided by the callee. Inter-
procedural (bottom up with �x point): This is a whole program analysis. We compute
a partial call graph and analyze methods in a bottom up fashion in order to have
the callee precomputed before any calls to that method. To deal with recursive calls
we perform a �x point computation over the strongly connected graph of mutually
recursive calls. Inter-procedural (top down with depth 3): Again, a whole program
analysis with inline simulation. For every method we analyze call chains to a maxi-
mum length of three.

Table 5.2 shows the time to analyze the annotated methods and the full appli-
cation regardless or whether methods are annotated or not. One of the reasons why
the full analysis takes more time is because it computes a partial call graph and the

Chapter 5. Annotations for more precise points to analysis 89

�xpoint computation for mutually recursive methods.

Approach Time (sec)
Intra-procedural 15.78
Inter-procedural (full) 89.00
Inter-procedural (depth 3) 22.83

Table 5.2: Analysis time for Boogie.

Table 5.4 show the number of method on each packet and how many are de-
clared as pure. Table 5.4 contains the results for the three kinds of analysis. We
show only modules that contain purity annotations. The intra-procedural analysis
is only slightly less precise than the other two analyses. Furthermore, when using
annotations with intra-procedural analysis, the precision is substantially better than
a full inter-procedural analysis without annotations. For this application we don't
�nd a big di�erence between the two inter-procedural analyses. This is because most
of the methods are not recursive.

One interesting thing is that we found that many of the methods declared pure
in Boogie were not actually pure. Some are observationally pure, but others ei-
ther record some logging information in static �elds, or else were just incorrectly
annotated as being pure.

Project #Methods Declared Pure
AbsInt 348 66
AIFramework (AI) 15063 3514
Graph 97 20
Core 9628 1326
ByteCodeTrans (BCT) 5564 984
VCGeneration (VCG) 2050 187
Compiler Plugin (CP) 55 12

Table 5.3: Information about the di�erent components of Boogie s showing the
number of methods annotated as pure.

Project Using Annotations Without Annotations
Intra % Inter 3 % IF % Intra % Inter 3 % IF %

AbsInt 66 100% 66 100% 66 100% 51 77% 51 77% 51 77%
AI 2702 77% 2725 77% 2730 78% 1631 46% 1688 48% 1688 48%
Graph 14 70% 14 70% 14 70% 10 50% 10 50% 10 50%
Core 1164 88% 1224 92% 1224 92% 709 53% 729 55% 729 55%
BCT 781 79% 845 86% 863 88% 255 26% 297 30% 297 30%
VCG 171 91% 171 91% 171 91% 155 83% 155 83% 155 83%
CP 10 83% 10 83% 10 83% 8 66% 8 66% 8 66%

Table 5.4:]
Results for Boogie showing the number of methods annotated as pure that were veri�ed as pure by our
analysis. IF stands for �Inter Procedural Full� bottom up analysis.

5.5. Related work

Our analysis is a direct extension of the points-to and e�ect analysis by Salcianu
et al. [SR05]. We add support for a more complex memory model (managed point-

90 Synthesis of parametric speci�cations of dynamic memory utilization

ers and structs) and provide a di�erent approach for dealing with non-analyzable
methods. Instead of assuming that every argument escapes and the method writes
the global scope, we try to bound the e�ect of unknown callees using annotations.
Using their analysis it is di�cult to decide that a method is pure when it calls a
non-analyzable method (e.g., the iterator example). One alternative is to generate
by hand all the information about the callee (points-to and e�ects) but it has to be
done for every implementation of an interface or abstract class. Our annotation lan-
guage simpli�es that task and allows us to verify the annotations when code becomes
available.

Type and e�ect systems have been proposed by Lucassen et al. [LG88] for
mostly functional languages. There has been a signi�cant amount of work in spec-
i�cation and checking of e�ect information relying on user annotations. Clarke
and Drossopoulou use ownership types [CD02] while Leino et al. use data groups
[LPHZ02]. In [GB99], an e�ect system using annotations is proposed: it allows e�ects
to be speci�ed on a �eld or set of �elds (regions). It also has a notion of �unshared"
�elds that corresponds to our ownership system. Using a purely intra-procedural
analysis, they verify methods against their annotations. However, it seems that it
doesn't compute points-to-information. Compared to their approach, our annotation
language is less precise, but still allows enough information about escaping and cap-
tured parameters. JML [LBR99] and Spec# [BDF+04] are speci�cation languages
that allow speci�cation of write e�ects. One of the aims of our technique is to assist
the Spec# compiler in the veri�cation and inference of the read and write e�ects.
We use the purity analysis to check whether a method can be used in speci�cations.
Javari [TE05] uses a type system to specify and enforce read-only parameters and
�elds. To cope with caches in real applications, Javari allows the programmer to de-
clare mutable �elds; such �elds can be mutated even when they belong to a read-only
object. Our technique computes weak purity so mutation of prestate objects are not
allowed in methods. To automatically deal with caching writes, it is necessary to
infer observationally pure methods [BN04].

Points-to information has also been used to infer side e�ects [RR01, MRR05,
CBC93, CR07]. Our analysis, as well as Salcianu's analysis [SR05], is able to dis-
tinguish between objects allocated by the method and objects in the prestate. This
enables us to compute weak purity instead of only strong purity. In more recent work,
Cherem and Rugina [CR07] present a new inter-procedural analysis that generates
method signatures that give information about e�ects and escaping information. It
allows control of the heap depth visibility and �eld branching, which permits a trade-
o� between precision and scalability. Our analysis also computes method summaries
containing read and write e�ect information that are comparable with the signatures
computed by their analysis but our technique is able to deal with non-analyzable li-
brary methods with a concise set of annotations that can be checked when code is
available. AliasJava [AKC02] is an annotation language and a veri�cation engine to
describe aliasing and escape information in Featherweight Java. Our work also uses
annotations to deal with escape, aliasing and some ownership information but also
some minimal description about read and write e�ects in order to compensate for
information lacking at non-analyzable calls. Hua et al. [NX05] proposed a technique
to compute points-to and e�ect information in the presence of dynamic loading. In-
stead of relying on annotations, they only compute information for elements that
may not be a�ected by dynamic loading and warn about the others.

Chapter 5. Annotations for more precise points to analysis 91

5.6. Conclusions and Future Work

We have implemented an extension to Salcianu's analysis [SR05] that works on the
complete .NET intermediate language CIL. The extensions involve several non-trivial
details that enable it to deal with call-by-reference parameters, structs, and other
features of the .NET platform. Our model provides a simple operational semantics
for a useful part of CIL. Full details are presented in an accompanying technical
report [BFGL07b].

We have extended the previous analysis by including ω-nodes that model entire
unknown sub-graphs. Together with our annotation language, this allows treatment
of otherwise non-analyzable calls without losing too much precision.

The abstraction aspect of ω-nodes also holds the promise to improve the scal-
ability of the analysis by enabling points-to graphs to be abstracted further than
possible in the original analysis by Salcianu.

We believe our annotation system strikes the proper balance between precision
and conciseness. The annotations are speci�cations that are useful not only for the
analysis itself, but represent information programmers need to use an API e�ectively.
Our technique needs to be very conservative when dealing with load nodes. We are
planning to improve it by recomputing the set of egdes (?, $, ω) when new nodes
become available. We also plan to leverage type information to avoid aliasing between
incompatible nodes.

Our annotation language appears to be general, but it was designed with our
purity analysis in mind. It is possible to create a di�erent set of annotations; our
approach would work given a mapping from the set of annotations into points-to
graphs. It is also possible to imagine the annotations being elements of the abstract
domain themselves, instead of using a separate annotation laguage. Besides usability
concerns for real programmers, it could make the veri�cation of a method against its
speci�cation more di�cult: our annotation language is intentionally simple enough
to make the veri�cation easy to perform.

One problematic aspect of the system is the necessity to introduce an ownership
system. The concept of ownership certainly exists in real code, but the right formal-
ization is not fully agreed upon. There are several di�erent ownership systems in
the literature and we believe the meaning of our annotations would work for any of
them. For now, we have connected our annotations to the Spec# ownership system.

By relaxing the closed-world requirements so that we do not need full programs,
we hope to enable the use of our system within real programming practice. In the
future we hope to present results from some real-world case studies.

There are other uses for a points-to and e�ect analysis besides method (weak)
purity. In addition to using it for checking forms of observational purity, we have
adapted the analysis for studying method re-entrancy. It is also possible to use it for
inferring and checking method modi�es clauses.

CHAPTER 6

JScoper: Scoping and Instrumentation for region-based Java

Applications

We present JScoper, an Eclipse plug-in which will help developers, researchers
and students, to generate, understand, and manipulate memory regions in scoped-
memory management setting. The main goal of the plug-in is to provide a tool
that will transparently assist the translation of Java applications into Real-time
Speci�cation for Java (RTSJ) compliant applications. More accurately, its purpose is
to enable automatic and semi-automatic ways to translate heap-based Java programs
into scope-based ones, by leveraging GUI features for navigation, speci�cation and
debugging1.

6.1. Introduction

Current trends in the embedded and real-time software industry are leading prac-
titioners towards the use of object-oriented programming languages such as Java.
From a software engineering perspective, one of the most attractive issues in object-
oriented design is the encapsulation of abstractions into objects that communicate
through clearly de�ned interfaces. Because programmer-controlled memory manage-
ment hinders modularity, object-oriented languages like Java provide built-in garbage
collection, i.e. the automatic reclaiming of heap-allocated storage after its last use
by a program.

However, automatic memory management is not used in real-time embedded
systems. The main reason for this is that the execution time of software with dynamic
memory reclaiming is extremely di�cult to predict. Therefore, in current industrial
practices the use of garbage collection in real-time applications is simply forbidden.
The typical alternative approach is to have programs allocate all memory during
their initialization phase and free it upon termination. This leads to very ine�cient
memory use, usually resulting in over-dimensioning physical memory requirements
at an unnecessary additional cost.

A automatic memory management techniques that meet real-time requirements
would clearly have a huge impact on the design, implementation, and analysis of
embedded software. These techniques would prevent programming errors produced

1 This chapter is based on the results published at the �International Eclipse Technology eX-
change at OOPSLA� (etX'05) [FGB+05].

93

94 Synthesis of parametric speci�cations of dynamic memory utilization

by hazardous memory handling, which are both hard to �nd and to correct. As
a result, they would drastically reduce implementation and validation costs while
considerably improving software quality.

In order to overcome the drawbacks of current garbage collection algorithms,
the Real-Time Speci�cation for Java (RTSJ)[GB00] proposes the use of application-
level memory management, based on the concept of �scoped memory�, for which
an appropriate API is speci�ed. Scoped-memory management relies on the idea
of allocating objects in regions associated with the lifetime of a computation unit
(method or thread). Regions are deallocated when the corresponding computational
units �nish their execution [TT97, GA01, GB00, GNYZ04]. Unfortunately, the task
of determining object scopes is left to the programmer.

Some techniques have been proposed to address this problem by automatically
mapping sets of objects with regions[DC02, GNYZ04]. These techniques typically use
Pointer and Escape Analysis [SR01, SYG05, Bla99] to conservatively approximate
object lifetimes. Informally, an object escapes a method when its lifetime is longer
than the method's lifetime, so it cannot be collected when the method �nishes its
execution. In contrast, an object is captured by the method when it can be safely
collected at the end of the method's execution.

Our main goal is to provide developers with a tool that will assist the translation
of Java applications into Java Real-time compliant applications. More accurately,
the idea is to enable translation of heap-based Java programs into scoped-based ones,
by leveraging GUI features for navigation, speci�cation, translation, �ne-tuning and
debugging.

6.2. Scoped Memory Management

The aim of the Real-Time Speci�cation for Java (RTSJ) [GB00] is to enable the
development of real-time applications using Java. One of its most remarkable char-
acteristics is a new memory hierarchy which incorporates several kinds of memory
models: Heap memory (garbage collected), Immortal memory and Scoped memory.
Neither Immortal nor Scoped memory use garbage collection. Objects allocated in
Immortal memory are never collected and live throughout program lifetime. Scoped-
memory management is based on the idea of allocating objects in regions associated
with the lifetime of a runnable object. When a computational unit �nishes its exe-
cution, its objects are automatically collected.

This approach imposes restrictions on the way objects can reference each other
in order to avoid the occurrence of dangling references. An object o1 belonging to
region r references an object o2 only if one of the following conditions holds: o2
belongs to r; o2 belongs to a region that is always active when r is active; o2 is in
the Heap; o2 is in Immortal (or static) memory. An object o1 cannot point to an
object o2 in region r if: o1 is in the heap; o1 is in immortal memory; r is not active
at some point during o1's lifetime.

Heap Inmortal Scoped
Heap Yes Yes No

Inmortal Yes Yes No
Scoped Yes Yes if active

Table 6.1: Scoped-memory reference rules.

At runtime, region activity is related to the execution of computational units
(e.g., methods or threads). In a single-threaded program, if each region is associated
with one method, then there is a region stack where the number and ordering of

Chapter 6. JScoper: A tool for region edition and code generation 95

active regions corresponds exactly to the appearances of each method in the call
stack. In a multi-threaded program, where regions are associated with threads and
methods, there is a region tree whose branches are related to each execution thread.

In order to perform scoped-memory management at program level, an API is
proposed which di�ers from the RTSJ one, described in [GB00], in three main points.
First, in the proposed API memory scopes are not bound to runnable objects. In this
point, this API is closer to the RC library [GA01]. Second, the API does not specify
the region where an object will be allocated, but rather a set of regions corresponding
to methods in a pre�x of the corresponding call stack. The actual region where the
object will be allocated at runtime is left out to the implementation. To determine in
which region an object will be allocated we use a registering mechanism. Basically,
when regions are created, they are informed about the set of creation sites (new
statements) it will allocate. When object instantiation is requested, the API allocates
the object in the last region the creation site was registered in. Finally, there is no
Immortal memory; instead, it is simulated by a �main� region with a global scope.
The API is shown in Table 6.2.

enter(r,lCSs) push r into the region stack and
register the creation sites it will al-
locate

exit() collect the objects in top region
newInstance(cs,c) create an object identi�ed by the

creation site cs of class c
newAInstance(cs,c,n) same but for arrays of dimension n

Table 6.2: Scoped-memory API.

6.3. Eclipse Plug-in: JScoper

The Eclipse Java Development Toolkit (JDT) is one of the most popular and
feature rich platforms currently available to Java developers. Because Eclipse is not
only an IDE but an extensible plug-in platform, it is the ideal framework to use for
the development of tools aimed at transforming Java code. Currently there are few
tools that can be used to assist in the conversion of standard Java code to scoped-
memory code. An Eclipse plug-in called JScoper that full�ls this purpose is presented
in this paper. This is a tool that can be used to support both automatic and semi-
automatic translation of heap-based Java programs into scope-based ones. Although
the resulting programs are not fully compliant with RTJS (this will be supported
in the future), they also implement a scope-based memory management mechanism
which replaces the garbage collector from the Java Virtual Machine [GNYZ04].

JScoper allows the user to visualize, debug and control the transformation pro-
cess. Its GUI facilities provide a user-friendly way of gaining insight into the under-
lying concepts of controlled memory management.

6.3.1. Usage and Features

JScoper makes use of three main windows: the CallgraphBrowser, the Scoped-Memory
Java Editor, and the standard Java Editor provided with the Eclipse Java Devel-
opment Toolkit. It also features additional views that provide alternative represen-
tations of the callgraph and memory regions.

The CallGraph Browser is used for the visualization of the code callgraph and
creation sites corresponding to dynamic memory allocation statements. It also has
some editing capabilities: the manual creation of memory regions and the movement

96 Synthesis of parametric speci�cations of dynamic memory utilization

of creation sites between di�erent regions. These editing features are meant to allow
for manual adjustment of the automated output of the tool.

The Scoped-Memory Java Editor is a source code editor with syntax highlighting
support for scoped-memory Java code, as well as special marker icons which act as
hyperlinks between the di�erent plug-in windows. These markers will be discussed
later.

The Java Editor is the standard editor provided with the Eclipse JDT, with
additional support for special marker icons analogous to those of the Scoped-Memory
Java Editor.

During a normal usage work�ow, the user will start from regular Java source
code, use the integrated tools to identify the creation sites, perform escape analysis
[SYG05] (an optional step) and generate the callgraph, and then examine the re-
sulting graph in the Callgraph Browser window. Memory region and creation site
adjustments are possible at this stage. The user may also switch between the three
editors (Callgraph, Instrumented and standard Java), using special marker icons
which link related memory allocation sites. The �nal output of the plug-in will be
stored as a series of XML �les describing memory regions, creation sites and call-
graph of the source code. These �les are described with more depth in the following
section, �Design and Implementation�. The work�ow consists of the following steps:

Figure 6.1: A side by side view of the two code editors. Left: the standard Java
Editor. Right: the Scoped-Memory Java Editor.

1. Start from Java source: this is the program the developer originally coded,
with no concern for real-time issues. Positioned in the package explorer of
the Eclipse Java view, the user must select the appropriate options provided
by JScoper in order to analyze the code and memory regions (optional) and
generate the callgraph. This will create a series of XML �les corresponding
to the callgraph, memory regions and creation sites, the rtjava instrumented
code �le and a jscoper project �le which links all the previous �les together.

2. Output visualization: the user can now examine the result of the automated
code analysis and instrumentation. The Scoped-Memory Java Editor (�gure
6.1, right) is used to browse the instrumented code, which is a �le with exten-
sion rtjava. Instrumented Java �les contain an extension of Java code with
special scoped-memory related statements. This editor can be used to switch
to the relevant sections in the original source code, for comparison purposes. In

Chapter 6. JScoper: A tool for region edition and code generation 97

order to allow this, there are special icons called markers that connect dynamic
memory allocation statements in the original Java code with the corresponding
statements in the instrumented code. It also links the java and rtjava �les
with the callgraph. The user is able to inspect related locations in the original
source code, the instrumented code and the callgraph.

The code callgraph is represented visually in a directed graph form (�gure
6.2). Nodes represent Java methods and show their corresponding creation
sites (dynamic memory allocation statements, like new). When a Java method
calls another, an arrow with a label stating the line number is drawn to connect
the corresponding two nodes in the graph. Each creation site lists the memory
regions that capture it. Several �lters that can reduce visual clutter and are
useful to inspect the code �ow are provided: for example, it is possible to trace
a path from the root node (which represents the initial caller method) to any
selected node in the graph, focus on the subgraph that spans from any given
node or hide the region information so that only the code �ow is shown. In
addition, there are two side views that can also be inspected: a hierarchical tree
view of the callgraph and a tree view of the current memory regions. Image
snapshots of the callgraph may be exported at any time.

3. Manual adjustments: both the generated memory regions and the creation
sites location within those regions may be manually adjusted. If the automati-
cally generated regions are not satisfactory (for example, because they are too
conservative), they can be deleted, modi�ed or added at will using a region
management window which can be accessed both from the toolbar and from
a context menu. This manager also allows the reassigning of creation sites to
di�erent regions (�gure 6.3).

All intermediate �les are persisted to disk storage and can be inspected at any
time with a text editor. JScoper can be used to explicitly write the current state of
region/creation site mappings at any time.

6.3.2. Design and Implementation

JScoper was developed for the 3.x series of the Eclipse platform. Currently there
is no support for versions 2.x or earlier. It was developed and tested in Linux and
Windows XP. It has not been tested (yet) on other operating systems, but it should
work on any platform supported by Eclipse and Java 1.4.x.

JScoper integrates 4 distinct modules which roughly correspond to the editors
described in the previous section, �Usage and Features�: the Callgraph Browser, the
Scoped-Memory Java Editor, the standard Java Editor and the Backend (which is
actually a collection of di�erent tools itself). This paper focuses on the frontend of
the plug-in.

The Callgraph Browser handles the visual representation of the program call-
graph and allows the manual editing of memory regions and creation sites.
This module uses an add-on for Eclipse called GEF, the Graphical Editor
Framework 2, which is used to implement the graphical editor following the
Model-View-Controller pattern.

The Scoped-Memory Java Editor is used to inspect and edit the instrumented
source code. Special Eclipse markers allow switching to and from creation sites
in the regular Java source code and also to the corresponding nodes in the
Callgraph Browser window.

2See the homepage at http://www.eclipse.org/gef/

98 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 6.2: The callgraph browser window. The view on the right shows a tree
outline of the callgraph.

The Java Editor mimics the behavior of the standard source editor included
with the Eclipse platform, and adds support for the special markers mentioned
above.
The Backend consists of a collection of tools that actually perform the code
analysis, including a code instrumentator [GNYZ04], a callgraph generator
based on Soot [VRHS+99], an escape analysis and region inferrer [SYG05] and
a creation sites �nder.

A sketch of the plug-in model is shown in �gure 6.4. The original Code Model

is the basis for establishing derived models (and their corresponding views), namely,
Call Graphs and Creation Sites. The Point of View de�nes the abstraction pa-
rameters used to obtain call graphs and creation sites (e.g., root method for the
analysis, whether or not to include standard Java API creation sites, etc.). The
Region Model is a mapping from creation sites to sets of regions, and it is used as
the input for the instrumentation procedure that generates a Scoped Code Model.
The Object Lifetime Model is an escape analysis [SYG05] representation and holds
the relationship between creation sites, the regions that contain them, and their paths
within the call graph. This model can be used to either automatically synthesize a
Region Model, and in the future it will also be used to validate a manually created
one. Each of these models has a corresponding view in the plug-in, with the ex-
ception of the Point of View (which is currently unimplemented) and the Object
Lifetime, whose graphical visualization, while currently unavailable, will be a call
graph coloring.

The interface between the plug-in modules comprises several XML �les. Assum-
ing the original Java source �le is named MyClass.java, then the XML �les are:

The callgraph �le, MyClassCallGraph.xml. This is an XML that contains
graph information in the form of nodes (class methods) with items (creation
sites) linked to other nodes (method calls). Each node is identi�ed by a class-
name and a fully quali�ed method name, and it has a list of all the �children�

Chapter 6. JScoper: A tool for region edition and code generation 99

Figure 6.3: The Region Manager.

Figure 6.4: Modules of JScoper

or nodes it is linked to. Each child node represents a method that is called
from the parent method at the line number speci�ed by attribute line. Any
arbitrary callgraph may be represented and cycles are possible.

The creation sites �le, MyClassCreationSites.xml. This is an XML that lists
the line numbers of dynamic memory allocation statements within the Java
source code. A simpli�ed version looks like this:

<CreationSites id="example.SimpleExample">

<CreationSite method="m0" line="26"/>

<CreationSite method="m0" line="27"/>

<CreationSite method="m1" line="29"/>

<CreationSite method="m1" line="32"/>

</CreationSites>

Method m0 in the class example.SimpleExample has creation sites at lines 26
and 27, while method m1 has its sites at 29 and 32.

The memory regions �le, MyClassRegions.xml (optional). This is an XML that
stores the assignment of creation sites to scoped memory regions. There may

100 Synthesis of parametric speci�cations of dynamic memory utilization

be more than one creation site within any given region. This �le is optional; if
it is not present when the user tries to visualize a callgraph, JScoper will simply
generate default regions named after the corresponding method for each orphan
site. A simpli�ed version of this �le has the following outline:

<Regions>

<Region id="R1" scope="SimpleExample.m0"

lineFrom="10" lineTo="28">

<CreationSite method="m0" line="26" instancesExp="x"/>

<CreationSite method="m0" line="27" instancesExp="x^2"/>

</Region>

<Region id="R2" scope="SimpleExample.m1"

lineFrom="29" lineTo="50">

<CreationSite method="m1" line="" instancesExp="2x"/>

<CreationSite method="m1" line="" instancesExp="x"/>

</Region>

</Regions>

A region description states its scope (essentially, the classname and method
where it is located), the line numbers it spans and the creation sites which it
contains. Currently, regions cannot cross method or class boundaries but there
may be two or more regions within a given Java method.

The Java to Scoped-Memory Java �le, MyClassCSR.xml. This is an XML �le
(similar to the one containing the creation sites) which maps the line number
of each creation site to the corresponding line in the instrumented code.

There are two additional �les which are not XMLs and have special meanings:

The instrumented code, MyClass.rtjava.

The JScoper project �le, MyClass.jscoper, which links all the previous �les
together.

6.4. Conclusions and Future Work

JScoper is an Eclipse plug-in that assists the automatic translation of standard
Java code to a RTJS-like code. It provides a graphical call graph browser that helps
ease program understanding, supports the generation and edition of memory regions,
automatic code generation and code visualization. JScoper can be downloaded from
http://dependex.dc.uba.ar/jscoper/download.html.

Future work plans include the implementation of debugging facilities such as
runtime browsing of active regions, visualization of object-lifetimes, region-sizes and
scoping-rules violations. It is also planned to include full RTSJ compatibility (auto-
matic instrumentation and edition) and support for automatic generation of memory
size annotations [BGY05].

CHAPTER 7

Computing memory requirements certi�cates

This chapter presents a technique to compute symbolic non-linear approximations
of the amount of dynamic memory required to safely run a method in (Java-like)
imperative programs. We do that for scoped-memory management where objects are
organized in regions associated with the lifetime of methods. Our approach resorts
to a symbolic non-linear optimization problem which is solved using Bernstein basis.

7.1. Introduction

In a previous chapter we presented a technique for computing a parametric upper-
bound of the amount of memory dynamically requested by Java-like imperative pro-
grams [BGY06] (see chapter 2). The idea consists in quantifying dynamic allocations
done by a method. Given a method m with parameters p1, . . . , pk we exhibit an
algorithm that computes a parametric non-linear expression over p1, . . . , pk which
over-approximates the amount of memory allocated during the execution of m. This
bound is a symbolic over-approximation of the total amount of memory the appli-
cation requests to a virtual machine via new statements, but not the actual amount
of memory really consumed by the application. This is because memory freed by
the garbage collector is not taken into account. We also showed that assuming a
region-based memory management [GA01, GB00, GNYZ04, CR04] where objects
are organized in regions associated with computation units, the same technique al-
lows to obtain non-linear parametric bounds of the size of every memory region.

Here we propose a new technique to over-approximate the amount of memory
required to run a method (or a program). Given a method m with parameters
p1, . . . , pk we obtain a polynomial upper-bound of the amount of memory necessary
to safely execute the method and all methods it calls, without running out of memory.
This polynomial can be seen as a pre-condition stating that the method requires that
much free memory to be available before executing, and also as a certi�cate engaging
the method is not going to use more memory than the speci�ed. To compute this
estimation we consider memory deallocation that may occur during the execution
of the method. Basically, assuming a region-based memory management we model
all the potential con�gurations of regions stacks at run-time. Since region sizes
are expressed as polynomials, this model leads to a symbolic non-linear optimization
problem. This problem can be solved using a technique using Bernstein basis [CT04].

Applications of this set of techniques are manifold, from improvements in memory

101

102 Synthesis of parametric speci�cations of dynamic memory utilization

management to the generation of parametric memory-allocation certi�cates. These
speci�cations would enable application loaders and schedulers (e.g., [KNY03]) to
make decisions based on available memory resources and the memory-consumption
estimates.

Outline

In section 7.2 we present a de�nition of the problem we want to solve and some
assumptions that we are making. In section 7.3 propose an e�ective de�nition of a
function that predict memory requirements for a scoped-based memory management.
In section 7.4 propose an approach to compute the memory requirements function. In
section 7.6 we discuss some aspects of the technique that we would like to improve. In
section 7.7 we discuss some related work and in section 7.8 we present our conclusions
and future work.

7.2. Problem statement

void m0(int mc) {

1: m1(mc);

2: m2(3 * mc);

}

void m1(int k) {

3: B[][] dummyArr = new B[k][];

4: for (int i = 1; i <= k; i++) {

5: dummyArr[i-1]= m3(i);

}

}

void m2(int k2) {

6: B[] m3Arr=m3(k2);

}

B[] m3(int n) {

7: B[] arrB = new B[n];

8: N l = new N();

9: for (int j = 1; j <= n; j++) {

10: arrB[j-1] = m4(l,j);

}

11: return arrB;

}

B m4(N l, int v)

{

12: N c = new N();

13: c.value = new B(v);

14: c.next = l.next;

15: l.next = c;

16: return c.value;

}

Figure 7.1: A sample program with his detailed call graph

Let us introduce the problem informally with an illustrative example (Fig. 7.1).
Method m0 calls m1 and m2. m1 allocates an array of size k (k = mc when called
from m0) and calls k times a method m3. m2 also calls m3 but only once with a
di�erent parameter assignment (k2 = 2mc when called fromm0). m3 allocates an
array of size n (n ranges from 1 to k when called from m1 or k2 when called from
m2), allocates also a node of a list and calls n times to m4 that add a node to the
list and returns a newly created object of type B.

The objects allocated in method m4 at locations 12 and 16 (denoted as m4.12
and m4.13) cannot be collected when the method �nishes its execution because they
are referenced from outside (the object of type N is annexed to the list referenced

Chapter 7. Computing memory requirements certi�cates 103

by l and the object of type B is returned). Thus, we say that both objects escape
the scope of m4. m4.12 can be collected when m3 �nishes its execution. However,
m4.13 also escapes m3 and can be collected just at the end of m2 or m1 when the
last reference is removed. In a similar fashion, m3.7 can be collected at the end of
m2 or m1 but m3.8 can do it at the end of m3. Finally m1.3 can be collected by m1.
Observe that, at m0 all objects created during the execution of m1 can be collected
before the call to m2 is performed.

m0(3)

m0(7)

Figure 7.2: Two traces: m0(3) (above) and m0(7) (below).

Fig. 7.2 depicts the e�ects of allocations and deallocations on memory occupancy
for di�erent executions (m0 invoked with mc = 3 and mc = 7, respectively) using an
�ideal� garbage-collection scheme where objects are collected as soon as they are no
longer referenced. The �gure only shows memory occupation generated by explicit
requests at allocation statements, that is, there is no allocation overhead introduced
by the memory manager. The peaks represent the maximum amount of memory
occupied by the runs. Notice that in the �rst run the peak is reached in some point
after m0 calls m2, and in the second one, the peak occurs somewhere after m0 calls
m1.

Determining the peak consumption of a run in advance would enable to know �a
priori� the amount of memory required to safely execute the run. However, predicting
this peak is hard for di�erent reasons. First, it is di�cult to estimate the amount of
memory requested by a program. Second, it is also challenging to determine when
objects will be collected. In fact, the �gure shows that di�erent runs may exhibit
di�erent peak consumptions on di�erent program states (i.e. variable valuation and
program control location).

This example pinpoints the issues that need to be considered in order to formulate
in a precise way the problem of computing the memory requirements.

104 Synthesis of parametric speci�cations of dynamic memory utilization

Assume a Java-like program Prog which semantics is given by a transition system
JProgKM = 〈Σ, σI ,→M〉 where Σ set of states, σI a set of program initial states and→M

a transition relation according to the language semantics using a memory manager
M. In a few words, the state of a program in run-time is given by the variable values
(σ(v) yields the value associated to v), a control location is associated to a special
variable pc and a call stack (stack(σ) yields the stack). Given program location
l = σ(pc), stm(l) yields the statement to be executed at that program location (i.e.,
pc pinpoints the next statement that will be executed from σ).

We denotememUsedM :: Σ 7→ N the function that returns the amount of dynamic
memory occupied in a given program state. We only consider objects created by the
program under analysis. Let ideal be the collector which frees objects as soon as
they are no longer alive (i.e. not reachable from local or stack variables). In this
case, memUsedideal, yields the memory occupied by live objects.

Let r = σ0, σ1, . . . such that σi → σi+1 be a run. We denote ri to the state
corresponding to the ith element of the run. Let R(JProgKM) be the set of runs for
Prog.

We de�ne the maximum amount of memory consumed by a method m in a
particular run r at particular state ri corresponding to an invocation to method m
as follows:

peakForRunrm(r, i) = max{memUsedM(rk) | i+ 1 ≤ k ≤ t
∧ stm(ri(pc)) = call m

∧ stm(rti(pc)) = ret m}
− memUsedM(ri)

where rti is the corresponding return statement of the invocation to m at ri. For the
sake of simplicity we assume that m does terminate every time is invoked.

The amount of memory consumed by a method m with formal parameters ~Pm
when invoked with arguments ~x : ~Tm, denoted PeakMm(~x), is de�ned as the maximum
of peakForRunMm over all traces that invoke m with arguments ~x:

PeakMm(~x) = max{peakForRunrm(r, i) | r ∈ R(JProgKM)
∧ stm(ri(pc)) = call m

∧ ri(~Pm) = ~x}

In this de�nition we are assuming that the peak function has the same input
parameters as the method de�nition: PeakMm : ~Tm 7→ N. In section 7.6 we discuss how
we can support a more liberal de�nition that allows the use of di�erent expressions
as parameters of memory requirements.

Peakidealm (~x) gives the least upper-bound of the amount of memory needed to
run method m with parameters ~x. Any other garbage collector M will not liberate
memory earlier that this ideal policy:

∀m,~x : ~Tm · Peakidealm (~x) ≤ PeakMm(~x)

Our aim is to get a parametric upper bound of the amount of memory required
to safely run a method under ideal conditions. Thus, the goal of this work is to
approximate the above mentioned least upper-bound by a function memRq : ~Tm 7→
N ∪∞ such that:

∀~x : ~Tm · Peakidealm (~x) ≤ memRqm(~x)

Chapter 7. Computing memory requirements certi�cates 105

7.3. A Peak Overapproximation for Scoped-memory

The ideal memory manager is optimal in terms of memory consumption. This
collector is used in works that verify memory usage certi�cates such as [CNQR05,
BPS05], etc. However, it is not well understood how to infer memory consumption
for it, especially if the expression is not linear in terms of method parameters or
object are not deallocated manually.

In this work we follow a di�erent strategy: we assume the presence of a scoped-
memory manager to over approximate memory requirements. Thus, this will not only
lead to a solution to the original general problem (an over approximation of ideal),
but it will provide the memory requirements for a predictable garbage collection in
embedded applications.

More speci�cally, our proposal is the use of a scoped-based memory collection
mechanism that reclaims memory only at the end of the execution of every method.
Besides, the collector is only allowed to claim for non-live created during the exe-
cution of the method (and the method it transitively calls). Objects created in an
outer scope cannot be collected by the current method and may be reclaimed by
some of the methods in the call stack.

In particular, we will choose a scoped-based memory management where objects
are organized in regions and each method has an associated region (denoted as an m-
region) whose lifetime corresponds with its associated method's lifetime [GNYZ04].
To be safe, objects in a region can point to objects in the same region or a parent
region (corresponding to a method that is in the call stack). This scoping restriction
can be satis�ed inferring the regions at compile-time by performing escape analysis
[GNYZ04, SYG05].

We will assume that two parametric memory-consumption speci�cations are
given for each method\region: memCaptured and memEscapes. Given a method m,
memCaptured(m) yields an over approximation, in terms of method m parameters,
of the size of the region associated to m. It can also be seen as the amount of dy-
namic memory temporally occupied by the objects created during the execution of
m that can be safely collected when m �nishes it execution. memEscapes(m) yields
an over approximation, in terms of method m parameters, of the amount of dy-
namic memory allocated by objects created during the execution of m that cannot
be released, meaning that they has be allocated in other callers regions. memEscapes
provides useful information to the callers of that method as they must consider that
the call to that method will require some additional space of their own regions. In
[GNYZ04, SYG05] we proposed techniques to automatically infer memory regions
and in [BGY06] we proposed a technique to automatically infer memCaptured and
memEscapes .

Example For instance, we can compute the following escape and capture informa-
tion for our motivating example:

memCaptured memEscapes

m0 0 0

m1 size(B[])k + (size(B[]) + size(B)).(1
2k

2 + 1
2k) 0

m2 (size(B[]) + size(B)).k2 0

m3 size(N) + size(N).n (size(B[]) + size(B)).n

m4 0 size(B) + size(N)

106 Synthesis of parametric speci�cations of dynamic memory utilization

Given a method m we know how to compute the size of its associated region. But
this is not enough. To compute the amount of memory required to run a method
we need to consider also the size of the regions of every method that may be called
during the execution of m.

There are two important facts to consider:

1. There are some region stack con�gurations that cannot happen at the same
time.

2. Although a method can be potentially invoked several times with the same
con�guration stack, there will be at most one active region instance per method.
Its size may change according to the calling context (the value assigned to its
parameters each time it is invoked).

To illustrate the �rst fact consider method m0 in the example of Fig. 7.1. At
location m0.1, m0 calls m1 which calls m3 and then calls m4. Similarly, at location
m0.2, m0 calls m2 which calls m3 and then calls m4 (see �gure 7.3). Under our
region-based memory management there will be two independent region stacks. One
stack will be formed by the regions in the call chain m0 1→ m1 5→ m3 10→ m4, and
the another stack with the regions in the call chain m0 2→ m2 6→ m3 10→ m4. These
two chains are independent as they cannot be simultaneously active. In particular
the region stack for the call chain m1 5→ m3 10→ m4 is completely collected before
calling method m2.

Figure 7.3: Potential region stacks for the sample

Now, To illustrate the second fact consider the call chain m0 1→ m1 5→ m3.
The the method m3 will the called k times with its parameter n assigned with an
argument varying from 1 to k. Each time m3 is called an m3-region is created which
is completely collected when the method returns the control to its caller. Since there
will be only one region active for m3 it su�ces to consider the maximum size the
region can reach according to its calling context (e.g. all calls from m0.1.m1.5).
In this case, the region is maximized when n = k. Since we need to compute the
requirements for m0 (the MUA) we need a way to represent the maximum region for
m3 in terms of m0 parameters instead of m3 parameters. In Fig. 7.4 we show the
evolution of m3-regions when m0 is called with mc = 3.

7.3.1. Memory required to run a method

Given a MUA mua, let rSizeπ.mmua be a function from mua parameters which
yields the size of the largest m-region instance created by any call to m with control
stack π in a program which starts with an invocation to mua with rSize arguments.

Suppose we can compute rSize for each method in each call chain. Then, to
compute the amount of memory required to run a method mua, we basically need

Chapter 7. Computing memory requirements certi�cates 107

Figure 7.4: Evolution of m3-region sizes for a when m0 is called with mc = 3.

to consider the size of its own region and add the amount of memory required to run
every method it calls. Since every branch will launch an independent region stack,
we can select only the branch the would require the maximum amount of memory.
In general, this function can be de�ned as follows:

memRqπ.mmua(pmua) = rSizeπ.mmua(pmua) +
max{memRqπ.m.l.mimua (pmua) | (m, l,mi) ∈ edges(CGmua ↓ π.m)}

where CGmua ↓ π.m is a projection over the path π.m of the call graph of method
mua and edges is the set of its edges.

Note that this recursive de�nition leads to an evaluation tree where the leaves
are related with rSize operations and nodes with max or sum operations. We will
show later some options on how to reduce and evaluate this evaluation tree.

Observe also that in order to properly de�ne memRqπm we must rule out recursive
calls. Mutually recursive components has to be removed by program transforma-
tion or manually provide a requirement speci�cation for every strongly connected
component.

Example The amount of memory required to run m0 can be modeled as:

memRqm0
m0(mc) = rSizem0

m0(mc)
+max{(memRqm0.1.m1

m0 (mc), memRqm0.2.m3
m0 (mc)}

memRqm0.1.m1
m0 (mc) = rSizem0.1.m1

m0 (mc) + memRqm0.1.m1.5.m3
m0

memRqm0.1.m1.5.m3
m0 (mc) = rSizem0.1.m1.5.m3

m0 (mc)
+memRqm0.1.m1.5.m3.10.m4

m0 (mc)

memRqm0.1.m1.5.m3.10.m4
m0 = rSizem0.1.m1.5.m3.10.m4

m0 (mc)

memRqm0.2.m2
m0 = rSizem0.2.m2

m0 (mc) + memRqm0.2.m2.6.m3
m0 (mc)

memRqm0.2.m2.6.m3
m0 (mc) = rSizem0.2.m2.6.m3

m0 (mc)
+memRqm0.2.m2.6.m3.10.m4

m0 (mc)

memRqm0.2.m2.6.m3.10.m4
m0 (mc) = rSizem0.2.m2.6.m3.10.m4

m0 (mc)

These expressions can be reduced to:

108 Synthesis of parametric speci�cations of dynamic memory utilization

memRqm0
m0(mc) = rSizem0

m0(mc) +
max{rSizem0.1.m1

m0 (mc) + rSizem0.1.m1.5.m3
m0 (mc)

+rSizem0.1.m3.5.m3.10.m4
m0 (mc),

rSizem0.1.m2
m0 (mc) + rSizem0.2.m2.6.m3

m0 (mc) +
rSizem0.2.m2.6.m3.10.m4

m0 (mc)}.

memRqπ.mmua computes an over approximation of the amount required to be able to
allocate all the regions that can be active at the same time.

Recall that in our model memCaptured(m) over approximates the size of the m-
region and memEscapes(m) is an over approximation of the amount of memory that
is allocated during the execution of m and cannot be released. Thus, we still need
to consider the amount of memory that is not collected. However, we only need
to take into account the amount of memory escaping mua as escape information is
absorbent. By absorbent we mean that any object escaping the scope of a method
m, transitively called by mua, is eventually captured by some method in the call
stack pre�x de�ned by mua, . . . ,m and, thus, it will be considered in memRqmuamua, or
in the worst case, it will escape mua. Therefore it su�ces to consider the amount of
memory escaping mua.

Finally, a function that can be used to predict the amount of memory required
to run a method is de�ned as follows:

memRqmua(pmua) = memEscapes(mua)(pmua) + memRqπ.mmua(pmua)

7.3.2. De�ning the function rSize

Now, we will focus on how to de�ne the function rSize. To do that we will
introduce the idea using the example of Fig. 7.1.

In the example method m0 calls method m1 which calls k times method m3. At
each invocation the size of the m3-region changes because it is de�ned in terms of
the parameter n. Then, the expression for rSizem0.1.m1.5.m3

m0 has to be the maximum
region size for method m3 among all the k possible ones. In order to obtain such
an expression, it is necessary to provide some sort of information about the calling
context that constraints the instantiation of the invoked method (in this case m3)
when called from the MUA (in this case m0) with a given call-stack (in this case
given by m0.1.m1.5).

To provide this information we resort to binding invariants. A binding invariant
is used to (transitively) bind the MUA parameters with the parameters of method
m following a call chain. It constrains the possible valuation of variables stored in
stack frames when method m is invoked from the MUA following that call chain.
Binding invariants can be obtained from local invariant as described in [BGY06].

For instance a valid binding invariant for the call chain m0.1.m1.5.m3 is

{k = mc, 1 ≤ i ≤ k, n = i}

Since the m3-region is de�ned by the expression size(N)+size(N).n, the largest
region instance is produced by the assignment n = i = k = mc which respects the
invariant and maximizes the value of the expression. Then,

rSizem0.1.m1.5.m3
m0 (mc) = size(N) + size(N).mc

As we mentioned, rSizeπ.mmua is a function (in terms of mua parameters) repre-
senting the size of the largest region created by any call to m with a control stack π

Chapter 7. Computing memory requirements certi�cates 109

considering a program starting with mua. It can be de�ned as follows:

rSizeπ.mmua(Pmua) =
(
Maximize memCaptured(m)(Pm)
subject to Imuaπ.m (Pmua, Pm,W)

)
Notice that Imuaπ.m is treated as a function over three set of variables: Pmua (method

mua parameters), Pm (method m parameters), and W are local variables appearing
in the methods belonging to the call chain π. It is a binding invariant for the call
chain π.m and it models the admitted valuations of variables for a call stack pre�x
given by π (valid call stack con�gurations when mua calls m passing through π).
memCaptured(m), is the parametric expression for the memory captured by m, which
is only in terms of Pm. Their parameters are related with mua parameters using the
binding invariant.

In the example, we can approximate the maximum size of the region for m3
considering it is call from m0.1.m1.5 as follows:

rSizem0.1.m1.5.m3
m0 (mc) =

= max{size(N) + size(N) · n} s.t.{k = mc, 1 ≤ i ≤ k, n = i}
= max{size(N) + size(N) · n} s.t.{1 ≤ n ≤ mc}
= size(N) + size(N) ·mc

To calculate rSizem0
m0, no maximization is required since the region for the root

method is activated only once and it is already expressed in terms of its parameters.
In table 7.1 shows the resulting expressions for rSizeπ.mm0 for every possible region
for the example of Fig. 7.1.

π.m Im0
π.m \ rSizeπ.mm0 (mc)

m0 true
0

m0.1.m1 {k = mc}
(size(B[]) + size(B)).(1

2mc
2 + 1

2mc) + size(B[])mc

m0.1.m1.5.m3 {mc ≥ 1, k = mc, 1 ≤ i ≤ k, n = i}
size(N) + size(N)mc

m0.1.m1.5.m3.10.m4 {mc ≥ 1, k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, v = j}
0

m0.2.m2 {k2 = 3mc}
(size(B[]) + size(B))3mc

m0.2.m2.6.m3 {k2 = 3mc, n = k2}
size(N) + size(N)3mc

m0.2.m2.6.m3.10.m4 {mc ≥ 1, k2 = 2mc, n = k2, 1 ≤ j ≤ n, v = j}
0

Table 7.1: Expression for function rSize for the example

Using the resulting rSize expressions we can reduce memRqm0 to:

110 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 7.5: Consumption for m0(3) together with the estimated memory require-
ments.

memRqm0(mc) = 0 + memRqm0
m0(mc)

= 0 + 0 + max{(size(B[]) + size(B))(
1
2
mc2 +

1
2
mc)

+size(B[])mc+ size(N) + size(N)mc,
(size(B[]) + size(B))3mc

+size(N) + size(N)3mc}

= max{(size(B[]) + size(B))(
1
2
mc2 +

1
2
mc) + size(B[])mc

+size(N) + size(N)mc,
(size(B[]) + size(B))3mc+ size(N) + size(N)3mc}

Actual sizes of types are machine or language speci�c. We will assume their
sizes are known at compile time and for our analysis can be considered as constants.
Nevertheless, our technique can treat types as parameters and let the decision of
assigning a particular size to a type to run-time. Here, for simplicity, we will assume
that size(T) = 1 for all T .

Under this assumption memRqm0(mc) can be reduced to:

memRqm0(mc) = 0 + max{mc2 + 2mc+ 1 +mc, 6mc+ 1 + 3mc}
= 1 + max{mc2 + 3mc, 9mc}
= 1 + 3mc+ max{mc2, 6mc}

= 1 + 3mc+
{
mc2 if mc < 0 ∨mc > 6
6mc if 0 ≤ mc ≤ 6

In �gure 7.5 we show that the memRqm0 is an upper-bound of the actual memory
requirements of the example of Fig. 7.1. rm1, rm2, rm3, stand respectively for the
region sizes for methods m1, m2, m3. ideal stands for the ideal consumption when
m0 is invoked with mc = 3. memRq(3) is the parametric prediction instantiated with
mc = 3. This �gure also shows how regions are created when methods are invoked
and released when methods return control to their callers.

The formulation of rSize characterizes a non-linear maximization problem whose
solution is an expression in terms of mua parameters. To avoid expensive run-time
computations we need to perform o�-line reduction as much as possible at compile

Chapter 7. Computing memory requirements certi�cates 111

time. O�-line calculation also means that the problem must be stated parametrically.
As a consequence, it is not adequate the use of standard non-linear optimization
techniques.

7.4. Computing rSize and memRq

In this section we will show an e�ective method to solve the previously stated
maximization problems and some strategies to evaluate the memory requirement
expressions provided by the presented technique.

7.4.1. Computing rSize

Recall that rSize is a function in terms of the MUA that over approximates the
largest size of the region associated with a method invocation and a given control
stack. Once arguments are given, rSize is a non-linear maximization problem where
the polynomial memCaptured represents the input and the binding invariant for the
control stack represents the restriction.

As we stated, getting o�-line a parametric easy-to-evaluate solution of rSize
would avoid expensive run-time computations. Taking this into account, we based
our approach in a work presented by Clauss et al. in [CT04]. It proposes an exten-
sion of Bernstein expansion [Ber52, Ber54] for handling parameterized multivariate
polynomial expressions. Bernstein expansion allows simbolically bounding the range
of a multivariate polynomial over a linear domain. Bernstein polynomials are special
polynomials that form a basis for the space of polynomials. Expressing a polynomial
in that basis gives minimum and maximum bounds on the polynomial values, repre-
sented by particular coe�cients (in the new basis). Involved calculation is symbolic,
and it could be calculated through a direct formula. Thus, this approach can be used
to solve our optimization problem.

In this work we are not going into the details of this technique. An interested
reader can �nd them in C. We use the approach as a �black box� meaning that we
assume the existence of a function

bernstein : Q[x1, . . . , xk]×Q|x1,...,xk,p1,...,pn| 7→ P(Q|p1,...,pn| × P(Q[p1, . . . , pn]))

that is, given a polynomial pol(x1, . . . , xk) and a parametric domain given as a
convex polytope I over variables {x1, . . . , xk} and parameters p1, . . . , pn, yields a set
of pairs (Di, CanSeti), i ∈ [1, l] where Di is a domain de�ned in terms of p1, . . . , pn
and CanSeti is a set of �candidate� polynomials also in terms of p1, . . . , pn such that,
for all ~p:

max
I(~p,~x)

pol(~x) ≤

maxj{q(~p) ∈ CanSet1} if D1(~p)
...
maxj{q(~p) ∈ CanSetl} if Dl(~p)

Example Applying Bernstein's to the polynomial n with the parametric polytope
{1 ≤ i ≤ P1 + P2, i ≤ 3P2, n = i} yields the following result:

Domain: {P1 + P2 ≥ −1, 3P2 ≥ 1} Candidates: {P2 + P1}

Domain: {P1 ≥ 2P2, 3P2 ≥ −1} Candidates: {P2 + P1}

Domain: Otherwise Candidates: {0}

112 Synthesis of parametric speci�cations of dynamic memory utilization

We compute rSize by applying the Bernstein expansion to memCaptured (the
input polynomial), constrained by a binding invariant I which requires to be a linear
parametric invariant. The parameters are mua parameters. As we mentioned, the
output is a list of domains D1, . . . , Dl and for each Di several polynomials (in terms
of mua parameters) representing candidates for symbolic upper and lower bounds
of memCaptured in the domain Di. For instance, in Table 7.2 we show the results of
computing rSize for the regions of the example in �gure 7.1.

rSizem0.1.m1.5.m3
m0 = bernstein(Im0

m0.1.m1.5.m3, memCaptured(m3))
Domain: {mc ≥ 1}
Candidates: {mc+ 1}
Domain: {mc < 1}
Candidates: {0}
rSizem0.2.m2.6.m3

m0 = bernstein(Im0
m0.2.m2.6.m3, memCaptured(m3))

Domain: true
Candidates: {3mc}
rSizem0.1.m1

m0 = bernstein(Im0
m0.1.m1, memCaptured(m1))

Domain: true
Candidates: {mc2 + 2mc}
rSizem0.2.m2

m0 = bernstein(Im0
m0.2.m2, memCaptured(m2))

Domain: true
Candidates: {6mc}

Table 7.2: Computing the function rSize using Bernstein basis

Although this solution is a promising approach to cope with our maximization
problem, still has a drawback: the result is not simply a polynomial representing the
maximum value. It may yield a set of di�erent domains and for each domain a set
of candidate polynomials. This means that, in order to evaluate this expression, it is
necessary to decide �rst which domain holds for the input values. Thus, the cost of
evaluation is related with the number of domains obtained by the method. Another
problem is that given a domain, in general it is not easy to decide (symbolically)
which of the candidates polynomials is actually the greatest one within that domain.
This problem is similar to the maximum for memRq and can be handled analogously.
That is, adding polynomials into the evaluation tree for run-time evaluation.

7.4.2. Evaluating memRq

We will discuss in this section how to deal with the formula of memRq presented
in 7.3.1. Recall that memRq is de�ned recursively by traversing the application call
graph:

memRqπ.mmua(pmua) = rSizeπ.mmua(pmua) +
max{memRqπ.m.l.mimua (pmua) | (m, l,mi) ∈ edges(CGmua ↓ π.m)}

Applying this recursive procedure leads to an evaluation tree where expressions in
the tree are in terms of the MUA parameters. Nodes in the tree represents operations
like maximums and sums between expressions the leaves are operations that yields
expression in terms of method parameters.

An evaluation tree for our example is presented in Fig. 7.6. The tree has a direct
relation with the application call graph. The max node is associated with a branch

Chapter 7. Computing memory requirements certi�cates 113

in the call graph (i.e. independent regions). The sum node is related with adjacency
relation in the call graph (i.e. regions that can live at the same time). Finally the
leaves in the tree are associated with the nodes the in the unfolded version of call
graph (i.e. potential memory regions) using rSize as the operation to obtain the
largest region size.

Figure 7.6: Evaluation tree showing the operations involved in the computation of
the amount of memory required to run m0 and it correlation with the application
(unfolded) call graph

data ET<T1,..,TK> = Max [ET<T1,..,TK>] | Sum [ET<T1,..,TK>] | Pol P<T1,..,TK>

| Cases [(<T1,..,TK> -> Bool), ET<T1,..,TK>)]

eval:: ET<T1,..,TK> -> Nat ∪ ∞
eval Max e1...en = max { eval(e1),..., eval(en) }

eval Sum e1...en = sum { eval(e1),..., eval(en) }

eval Pol p args = evalPol p a1..an

eval Cases (c1,e1)..(cn..en) args = if(c1 args) eval e1 args

else if...

else if(cn args) eval en args

Figure 7.7: Function for evaluating an evaluation tree

To reduce the number of involved variables, we assume that size(Type) ex-
pressions where replaced by the corresponding size of the type for the underlying
architecture. For simplicity, we choose size(T)=1 for all T .

In order to compute memRq, for each node in the call graph, we have to select
the maximum polynomial among the polynomials that represent the requirements
for each branch. That selection can be easily done in run-time when MUA actual
parameters are available and polynomials can be evaluated. However, when trying to
reduce the tree o�-line, the maximization need to be handled symbolically, possibly
splitting the domains into sub-domains where a polynomial always is larger than the
others. For instance, consider P1(n) = n2 and P2(n) = 3n+ 1. Then ∀n ∈ N · P1 >
P2 ⇐⇒ n > 3.

Thus, in order to keep precision at the expense of some run-time calculations, it
is possible to leave some (unsolved) maximum expressions for runtime evaluation or

114 Synthesis of parametric speci�cations of dynamic memory utilization

at least generate a function that evaluates to di�erent polynomials depending on the
function arguments. In any case, the number of calculation to perform is known at
compile time and, in the worst case, we will have to perform a number of evaluations
proportional to the number of edges of the call graph.

In Fig. 7.7 we show a Haskell like code de�ning evaluation trees and a function to
evaluate them. The constructor Pol de�nes a leaf in the tree and is used to construct
a polynomial. They can be, for instance, the output of the rSize function when it
yields a simple polynomial or a user provided estimation. A Case constructor pro-
vides a more general construction and models a set of pairs (condition, expression).
Only the �rst evaluation tree whose condition is satis�ed is actually evaluated. This
can be used to model the output of rSize when it is split into several domains. Since
expression is an evaluation tree we can also codify a maximization operation for the
case when bernstein yields more than one candidate for a domain or the case when
a maximum operation can be partially solved by splitting the domain into several
parts.

At the end, we can automatically translate evaluation trees to Java code that can
be evaluated at runtime. In this way, we can obtain the numerical prediction of the
memory requirements just before running the chosen method when the method's ar-
guments are available. Although the evaluation may lead to some overhead, the worst
case complexity of the number of evaluations is known a priori (O(egdes(CGmua)))
and in practice the size of the evaluation tree is much smaller, since most of the
maximum comparisons can be solved o�-line.

The reduction can be achieved, for instance, by applying powerful symbolic tech-
niques or by assuming some loss of precision of the upper-bounds. We can think as
a function that takes an evaluation tree and yield a new, ideally easier to evaluate,
evaluation tree.

If precision were not an issue, a new polynomial, larger than everyone involved,
can be derived for instance by taking the largest coe�cient for each degree of the
polynomials. For example, given P1(n) = n2 and P2(n) = 3n+1 we can safely choose
P3(n) = n2 + 3n+ 1 whose evaluation will be an over-approximation of P1 and P2.

Fortunately, in some cases, it is known how to symbolically obtain the maximum
between the polynomials (yielding directly the largest one, or a segmented function
of polynomials). Some typical cases are:

1. Candidates are linear expressions. In this case, we select the largest one by
solving a set of linear equations.

2. Candidates are polynomials expressed in terms of only one parameter. In this
case, we can apply techniques like Sturm [Hei71] which given two polynomials
yields the domains where the �rst is larger than the second.

There are cases where we can obtain the maximum by simply comparing the
degree and the sign of the polynomials or by checking whether the di�erence is
always positive in the analyzed domain. In the general case, we cannot apply these
ideas. There are techniques like [Ped91] to deal with this problem, but we have
not analyzed them to know if they are suitable for our problem. We are testing
another approach which is based on applying the Bernstein expansion recursively in
order to gradually reduce the number of variables until we could apply the solutions
mentioned before.

In Fig. 7.8 we show the evolution of the evaluation tree for the example Fig. 7.1.
The �rst tree is the evaluation tree after applying Bernstein for solving the maxi-
mization problem for rSize. The next two trees are successive simpli�cations.

Chapter 7. Computing memory requirements certi�cates 115

Figure 7.8: Evaluation tree after computing rSize. Then two successive reductions.

To go from the �rst tree to the second one, we start by removing the Case

node by taking directly the case m+ 1 by using the fact that the binding invariant
forces mc ≥ 1. Then, we sum the nodes in the left part of the max node getting the
expression 1+3mc+mc2. Since 3mc appears also in the right side (6mc = 3mc+3mc)
we can factor that node. Then, to move from the second tree to the third we convert
the max node to a Case node after �nding the interval where one polynomial mc2 is
above 6mc and vice versa. In Fig. 7.9 we show how the resulting evaluation tree can
be translated into code for runtime evaluation.

Class Requirements {

long m0(int mc)

{

long required = 0;

if(mc>=1)

{

required = 1 + 3*mc;

if(mc>6)

required += mc*mc;

if(mc<=6)

required += 6*mc;

}

return required;

}

...

}

Figure 7.9: Code generated from an evaluation tree

7.5. Experiments

The initial set of experiments were carried out on a subset of programs from
JOlden [CM01] benchmarks. It is worth mentioning that these are classical bench-
marks and they are not biased towards embedded and loop intensive applications
the target application classes we had in mind when we devised the technique. In
order to make the result more readable, the tool computes the number of object
instances created when running the selected method, rather than the actual mem-
ory allocated by the execution of the method. Table 7.3 shows the computed peak

116 Synthesis of parametric speci�cations of dynamic memory utilization

expressions, and the comparison between real executions and estimations obtained
by evaluating the polynomials. The last column shows the relative error ((#Objs -
Estimation)/Estimation).

Table 7.3: Experimental results
Example memRq Param. #Objs Estimation Err%

MST(nv) 1 + 9
4
nv2 + 3nv + 5 + max{nv − 1, 2} 10 253 270 6%

20 943 985 4%
100 22703 22905 1%
1000 2252003 2254005 0%

Em3d(nN, nD) 6nN.nD + 2nN + 14 + max{6, 2nN} (10,5) 344 354 3%
(20,6) 804 814 1%
(100,7) 4604 4614 0%
(1000,8) 52004 52014 0%

BiSort(n) 6 + n 10 13 16 19%
20 21 26 19%
200 69 135 45%
64 69 70 1%
128 133 134 1%

Power() 32656 - 32420 32656 1%

These experiments show that the technique produced quite accurate results, ac-
tually yielding almost exact �gures in most benchmarks. In some cases, the over-
approximation was due to the presence of allocations associated with exceptions
(which did not occur in the real execution), or because the number of instances
could not be expressed as a polynomial. For instance, in the bisort example, the
reason of the over-approximation is that the actual number of instances is always
bounded by 2i−1, with i = blog2nc. Indeed, the estimation was exact for arguments
power of 2.

7.6. Discussion

7.6.1. Sources of imprecision

The way we de�ne memRq introduces an additional source of over-approximation
because it sums the maximum of each m-region along a call chain. However, it can
be the case that two regions cannot both reach the maximum size at the same time.

Consider the example in Fig. 7.10 assuming that N ≤ 10. As we have shown
previously, to compute memRq we need to compute the rSize estimator for every call
chain. In this case m1, m1 2→ m2 and m1 2→ m2 5→ m3. The call graph for this
sample is just a list, then we just need to sum the obtained expressions for the three
possible chains.

rSize(m1) = 0 becausem1 does not capture any object. The size of anm2-region
depends on the expression 11 − k. That means that the maximum size is reached
when k = 1. Thus, the maximum of the m2-regions constrained by the call chain
m1 2→ m2 is rSize(m1.2.m2) = 10 and it is obtained when assigning h = 1. On the
other hand, the size of an m3-region is proportional to the value of c. However, the
variable c reaches its maximum value when j does. That is exactly when j = k being
the maximum value of k reached when h = n. Thus, rSize(m1.2.m2.5.m3) = 2N
and is obtained assigning h = N ∧ k = h ∧ j = k ∧ c = j. However, as we have
seen, the assignment h = N does not maximize the size of m2-regions. Thus, both
situations cannot happen at the same time and summing up the resulting rSize

expressions leads to an over-approximation. This problem is shown graphically in
Fig. 7.11 and Fig. 7.12.

Notice that there are also other factors that may impact in the precision of the
bounds. For instance, in the rSize function the region's sizes are given by the

Chapter 7. Computing memory requirements certi�cates 117

void m1(int N) {

1: for(int h = 1; h <= N; h++) {

2: m2(h);

}

}

void m2(int k) {

3: B[] b = new B[11 - k];

4: for(j = 1; j <= k; j++) {

5: m3(j);

}

}

void m3(int c) {

6: for(int i = 1; i <= 2*c; i++) {

7: A a = new A();

}

}

Figure 7.10: An example that shows the over-approximation caused by memRq.

Figure 7.11: Region stack: regions in the same stack that cannot reach their maxi-
mum at the same time.

memCaptured estimator which can be computed using our technique presented in
[BGY06]. That technique may obtain an over-approximation of actual region sizes
whose accuracy depends on the precision of escape analysis or manually inferred
regions.

Another source of approximation may come from the binding invariant. If it is
too weak it may allow calling contexts that are not actually feasible leading inclusive
to the impossibility of �nding a maximum. Consider, for instance, the call chain
m0 1→ m1 5→ m3 in the example presented in Fig. 7.1. If the invariant did not
include the constrain 0 ≤ i ≤ k it would allow the values of i to be above the values
of k, and therefore, leaving the variable n unbounded. Since n determines the size
of the m3-region, that maximum would not be determined.

7.6.2. About the parameterization of memRq

In the de�nition of PeakMm, we assumed that its signature is the same than the
MUA signature. Actually, consumption may be more directly related with other
expressions derivable from the parameters.

For instance, suppose that we want to know the amount of memory required
to run a method clone(c: Collection) that returns a fresh copy of a collection
c. We know that the size of the collection is relevant for computing the memory
requirements. Thus, we can use a new variable size for the peak calculation and

118 Synthesis of parametric speci�cations of dynamic memory utilization

Figure 7.12: Actual region stack size vs. approximated sizes for di�erent values of n.

relate it with the actual parameter of clone using a predicate size = c.size().
To allow this kind of situation we propose an alternative de�nition of Peak that

allows the de�nition of new variables and a uses a predicate relating these variables
with the method's formal parameters. We introduce a predicate φ ∈ P(T1× . . . Tk,Σ)
that relates the new variables with a program state and de�ne φ-dependent version
of Peak as follows:

PeakMm,φ(a1, . . . , ak) = max{peakForRunrm(r, i) | r ∈ R(JProgKM)
∧ stm(ri(pc)) = call m

∧φ(a1, . . . , ak, ri)}

In practice, this de�nition is supported by relating these new variables with the
formal parameters using the binding invariant.

7.6.3. Dealing with recursion and complex data structures

We do not allow recursion because our technique relies on having a �nite eval-
uation tree. Although we believe that this restriction is acceptable for embedded
systems, we are trying to overcome it. For instance, it is possible to provide and
use peak memory-requirements speci�cation for a set of mutually recursive methods
considering them as being only one method.

Regarding the support of more complex data structures in [BGY06] we present
some solutions to deal with some typical iteration patterns in collections. We are also
studying the possibility of combining our technique with approaches like [CKQ+05,
CNQR05] that seem to be suitable for the veri�cation of Presburger expressions
accounting for memory consumption annotations for class methods.

We believe it is possible to devise a technique integrating our analysis together
with those mentioned type-checking based ones. The approach would be as fol-
lows. While methods for data container classes (like the ones provided by standard
libraries) are annotated and veri�ed by type-checking techniques, loop-intensive ap-
plications built on-top of those veri�ed libraries may be analyzed using our approach.
Bene�ts are twofold: �rst, work done by our technique would be reduced since we
would have to deal with signi�cantly smaller call graphs, and second, our ability to
synthesize non-linear consumption expressions would entail an increase of expressive
power and usability of type-checking based techniques.

Chapter 7. Computing memory requirements certi�cates 119

7.7. Related Work

The problem of dynamic memory estimation has been studied for functional lan-
guages in [HJ03, HP99, USL03]. The work in [HJ03] statically infers, by typing
derivation and linear programming, linear expressions that depend on function pa-
rameters. The technique is stated for functional programs running under a special
memory mechanism (free list of cells and explicit deallocation in pattern matching).
The computed expressions are linear constraints on the sizes of various parts of data.
Our technique is suited for region-based memory manager and is able to compute
non-linear parametric expressions. In[HP99] a variant of ML is proposed together
with a type system based on the notion of sized types [HPS96], such that well typed
programs are proven to execute within the given memory bounds.

The technique proposed in [USL03] consists in, given a function, constructing a
new function that symbolically mimics the memory allocations of the former. The
computed function has to be executed over a valuation of parameters to obtain a
memory bound for that assignment. The evaluation of the bound function might not
terminate, even if the original program does. Our technique generates an evaluation
tree which evaluation cost is known at analysis time.

For imperative object-oriented languages, solutions have been proposed in [CKQ+05,
CNQR05, Ghe02]. The technique of [Ghe02] manipulates symbolic arithmetic ex-
pressions on unknowns that are not necessarily program variables, but added by the
analysis to represent, for instance, loop iterations. The resulting formula has to be
evaluated on an instantiation of the unknowns left to obtain the upper-bound. No
benchmarking is available to assess the impact of this technique in practice. Nev-
ertheless, three points may be made. Since the unknowns may not be program
inputs, it is not clear how instances are produced. Second, it seems to be quite
over-pessimistic for programs with dynamically created arrays whose size depends
on loop variables and third, it does not consider any memory collection mechanism.
The method proposed in [CKQ+05, CNQR05] relies on a type system and type an-
notations, similar to [HP99]. It does not actually synthesize memory bounds, but
statically checks whether size annotations (Presburger's formulas) are veri�ed. It is
therefore up to the programmer to state the size constraints, which are indeed linear.
Their type system allows aliasing and object deallocation (dispose) annotations. Our
technique does not allow such annotations and indeed our memory model is more
restricted. But as a counterpart we we can infer non-linear bounds. The reason we
do not support individual object deallocation is our current impossibility of com-
puting lower bounds which are required for safely compare the di�erence between
allocations and deallocations.

To our knowledge, the technique used to infer non-linear dynamic memory re-
quirements under a region-based memory manager and its e�ective computation
using Bernstein basis is a novel approach to memory requirements calculus.

7.8. Conclusions and Future work

We presented a novel technique to compute non-linear parametric upper-bounds
of the amount of dynamic memory required by a method. The technique is more
suited for region-based dynamic memory management, when regions are directly
associated with methods, but it can be used safely to predict memory requirements
for memory management mechanism that free memory by demand.

The inputs of the technique are the application call graph enriched with binding
invariant information to constraint calling contexts, a set of parametric expressions

120 Synthesis of parametric speci�cations of dynamic memory utilization

that bound the size of every region and a mapping from creation sites to regions (we
can compute this information using the technique proposed in [BGY06]) and yields
a parametric certi�cate of the memory required to run a method (or program).

These certi�cates are given in the form of evaluation trees that can be easily
translated to code that can be evaluated in runtime. The size of the evaluation trees
is known at compile time and can be reduced either using mathematical tools to sym-
bolically solve maximums between polynomials or by compromising some accuracy
of run-time calculations.

The precision of the technique relies on several factors: the precision of the inputs
(regions size and invariants), the structure of the program that may allow or do not
allow two active regions get its maximum size at the same time, the precision of the
Bernstein approximation and eventual trade-o�s made to reduce the evaluation tree.
We still need to perform more benchmarks to really asses how well this technique
works in practice.

As we mention in the discussion, we will try to enhance our technique to support
recursion and we plan to explore combining our approach with other which are better
suited for more complex or recursive data structures.

CHAPTER 8

Conclusions

8.1. Concluding remarks

We have developed a series of techniques aiming at the automatic synthesis of
parametric certi�cates of dynamic memory consumption for Java like programs in
embedded and real-time environments.

First, we have developed a method to synthesize non-linear parametric estima-
tions of dynamic memory utilization. The analysis is general in the sense that it
may be used in for di�erent applications since it is based on counting the number
of times a selected set of statements is executed. Thus, it can be applied to obtain
bounds on the usage of other resources by selecting, for instance, statements involved
in communication, message passing, database access, etc.

Then, we have presented our approach for automatically inferring scoped-memory
regions that are used to replace conventional garbage collectors. We have also imple-
mented a tool that allows manipulation of the inferred regions together with an API
for supporting our region-based memory management. We have presented a tech-
nique to produce region-based code out of conventional Java code. This transforma-
tion ensures scoping rules by construction, thus, eliminating the need for run-time
checks. Under this setting, we have shown how we can predict the size of memory
regions to reserve enough space to allocate objects into them.

Finally, we have presented a technique to compute parametric upper bounds of
the amount of dynamic memory required by a method. The technique is better suited
for a region-based memory manager such us the one we have implemented, but it can
be safely used to predict memory requirements for any other memory management
mechanism that collects unused memory on demand.

We have developed a prototype tool that covers the complete chain of techniques
and allows us to evaluate experimentally the e�ciency and accuracy of the method
on several Java benchmarks. The results are very encouraging. We are aware that
the precision of our technique depends of several factor such as the ability of �nding
strong linear invariants, discover small sets of inductive variables, precise escape
analysis information, etc. Therefore, we are working in providing new facilities for
obtaining these data from other sources.

121

122 Synthesis of parametric speci�cations of dynamic memory utilization

8.2. Future Work

There are several aspects of our techniques that we would like to improve. Some
of them were discussed in the respective chapters. However, here we want to point out
the most important issues we would like to deal with in the near future. Speci�cally,
we aim at improving the precision of the techniques, and at making it applicable to
a wider spectrum of applications (usability and scalability).

8.2.1. Improving Precision

Some sources of imprecision depend on external factors (e.g. invariants) but some
others are intrinsic to our techniques.

In 2.6.3 we have shown that the precision of the technique to compute memory
allocations can be improved for the case of some conditional branches (e.g. if state-
ments and virtual calls). For instance, notice that then and else branches of an
if statement cannot happen in a same loop iteration. Thus, the idea is instead on
relying only on strong invariants consider also the control structure of the program.
This will avoid counting visits to set of statements that are impossible to happen at
the same time.

Another source of imprecision is introduced when modeling memRq. In chapter
7 we have shown how the model may introduce over approximations since it allows
some potential region stack con�gurations that may not be possible in runtime. We
are thinking about how to re�ne this notion by introducing new constrains in the
computation of rSize.

Our analysis leverages on the use of a region-based memory manager in order
to model objects deallocation. That decision comes with the price of having a less
�exible memory model which may consume more memory. Other techniques like
[CNQR05, HJ03] allow individual object deallocation and, therefore, more precise
bounds, but are limited only to linear upper bounds. To extend our techniques to
add support for individual object deallocation, we must be able to infer precise lower
bounds of the number of times a given set of statement is executed. Therefore, this
is another challenge we would like to address in the near future.

There are also improvements that can be made when inferring memory regions.
In particular, most escape analysis techniques (including ours) abstract away sets
of objects using only one representative (e.g, allocation site, creation site, etc.).
However, sometimes this approach can be overly conservative. Consider the following
example:

A m1()

{

1: for(int i=0; i<100000; i++) {

2: Object a = new A();

3: if(i==100)

4: return a;

}

5: return new A();

}

In this case, all objects created at m1.2 but only one is actually captured by
m1. However, since the escape analysis techniques uses m.2 as a representative of
all objects created at that program location, the analysis has to consider that all
object escapes. One possible approach to solve this problem is trying to split the set

Chapter 8. Conclusions 123

of objects leveraging on program invariants and then use the counting mechanism to
determine how many objects actually escape.

We also plan also to keep working in the generation on program invariants. In
particular, we would like to specialize our static invariant generation tool JInvariant
[PG06] to try focus only in discover relationships between inductive set of variables.
We also like to try other approaches mixing static and dynamic approaches in order
to try to get stronger invariants.

8.2.2. Usability and Scalability

Although it is fed with local information, the use of creation sites and call chains
make the analysis non modular. The advantages of modularity are manifold: reuse
of speci�cations, better scalability, analysis of applications that calls non-analyzable
methods, integration with other techniques, etc. However, a straightforward ap-
proach to modularity in this setting would mean that we will have to compute the
polynomial consumption speci�cations of a method m out of the polynomial speci�-
cations of its callees. This is challenging because these calls may be performed into
complicated iteration patterns that would required more complicated mathematical
machinery.

Nevertheless, we would like to support some degree modularity. We can easily
incorporate linear speci�cations since they can be encoded in the invariants as we
have done in for array creation in chapter 2. In that direction we plan to inte-
grate approaches like [CKQ+05, CNQR05] suitable for the veri�cation of Presburger
expressions accounting for memory consumption annotations for class methods.

Another approaches allow veri�cation (not inference) of non-linear consumption
expression [�07, AM05]. In those cases, we can try to model those expressions
using some tricks. For instance, we conjecture that polynomial speci�cations can be
modeled as the number of solutions of a parametric polyhedron and thus, reuse our
technique. To deal with non-polynomial dynamic memory consumption we suggest
the use of a fresh parameter that represents the non-polynomial expression. They
would be treated as non-interpreted symbols (program parameters).

We also want to extend the approach to support recursive method calls. Our
�rst approach is to treat those cases as non-analyzable calls and manually provide
speci�cations. Nevertheless, we plan to evaluate and try to incorporate some ideas
like the one presented in [AAG+07] which infers recurrence equations modeling the
cost of executing recursive functions.

Bibliography

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Dami-
ano Zanardini. Cost analysis of java bytecode. In Rocco De Nicola, ed-
itor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages
157�172. Springer, 2007.

[ABH+04] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang
Loidl, and Alberto Momigliano. A program logic for resource veri�-
cation. In Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan,
editors, TPHOLs, volume 3223 of Lecture Notes in Computer Science,
pages 34�49. Springer, 2004.

[aG] MIT. Program analysis and Compilation Group. The �ex compiler in-
fraestructure. http://www.�ex-compiler.csail.mit.edu/.

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
annotations for program understanding. In OOPSLA '02: Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 311�330, New York, NY,
USA, 2002. ACM Press.

[AM05] David Aspinall and Kenneth MacKenzie. Mobile resource guarantees
and policies. In Gilles Barthe, Benjamin Grégoire, Marieke Huisman,
and Jean-Louis Lanet, editors, CASSIS, volume 3956 of Lecture Notes
in Computer Science, pages 16�36. Springer, 2005.

[Bak92] Henry G. Baker. The Treadmill: Real-Time Garbage Collection without
Motion Sickness. ACM Sigplan Notices, 27(3):66�70, March 1992.

[BB00] Jakob Berchtold and Adrian Bowyer. Robust arithmetic for multivariate
bernstein-form polynomials. Computer-aided Design, 32:681�689, 2000.

[BCG04] D. Bacon, P. Cheng, and D. Grove. Garbage collection for embedded
systems. In EMSOFT'04, 2004.

[BCGV05] David F. Bacon, Perry Cheng, David Grove, and Martin T. Vechev. Syn-
copation: generational real-time garbage collection in the metronome.
In LCTES '05: Proceedings of the 2005 ACM SIGPLAN/SIGBED con-
ference on Languages, compilers, and tools for embedded systems, pages
183�192, New York, NY, USA, 2005. ACM Press.

125

126 Synthesis of parametric speci�cations of dynamic memory utilization

[BCR03] David F. Bacon, Perry Cheng, and V. T. Rajan. Controlling fragmen-
tation and space consumption in the metronome, a real-time garbage
collector for java. In LCTES '03: Proceedings of the 2003 ACM SIG-
PLAN conference on Language, compiler, and tool for embedded systems,
pages 81�92, New York, NY, USA, 2003. ACM Press.

[BDF+04] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Veri�cation of object-oriented programs with
invariants. Journal of Object Technology, 3(6):27�56, 2004.

[BDJ+06] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and
K. Rustan M. Leino. Boogie: A modular reusable veri�er for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue, Su-
sanne Graf, and Willem-Paul de Roever, editors, FMCO 2005, volume
4111 of Lectures Notes in Computer Science, pages 364�387. Springer,
September 2006.

[Ber52] S. Bernstein. Collected Works, volume 1. USSR Academy of Sciences,
1952.

[Ber54] S. Bernstein. Collected Works, volume 2. USSR Academy of Sciences,
1954.

[BFGL07a] Mike Barnett, Manuel Fändrich, Diego Garbervetsky, and Francesco
Logozzo. Annotations for (more) precise points-to analysis. In IWACO
2007: ECOOP International Workshop on Aliasing, Con�nement and
Ownership in object-oriented programming, Berlin, Germany, jul 2007.

[BFGL07b] Mike Barnett, Manuel Fandrich, Diego Garbervetsky, and Francesco
Logozzo. A read and write e�ects analysis for C#. Technical Report
MSR-TR-2007-xx, Microsoft Research, April 2007. Forthcoming.

[BFGY07] Victor Braberman, Federico Fernadez, Diego Garbervetsky, and Sergio
Yovine. Dynamic memory requirement inference using berstein basis.
Research Report 07-01, Departamento de Computación. FCEyN. Uni-
versidad de Buenos Aires, Argentina, 2007.

[BFK02] Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction
to the GiNaC framework for symbolic computation within the C++
programming language. J. Symb. Comput., 33(1):1�12, 2002.

[BGY04] V. Braberman, D. Garbervetsky, and S. Yovine. On synthesizing para-
metric speci�cations of dynamic memory utilization. Internal Report
TR-2004-03. Verimag, France, 2004.

[BGY05] Víctor Braberman, Diego Garbervetsky, and Sergio Yovine. Synthesiz-
ing parametric speci�cations of dynamic memory utilization in object-
oriented programs. In FTfJP'2005: 7th Workshop on Formal Techniques
for Java-like Programs, Glasgow, Scotland, July 26, 2005.

[BGY06] Víctor A. Braberman, Diego Garbervetsky, and Sergio Yovine. A static
analysis for synthesizing parametric speci�cations of dynamic memory
consumption. Journal of Object Technology, 5(5):31�58, 2006.

[BHMS04] Lennart Beringer, Martin Hofmann, Alberto Momigliano, and Olha
Shkaravska. Automatic certi�cation of heap consumption. In LPAR,
pages 347�362, 2004.

BIBLIOGRAPHY 127

[Bla99] B. Blanchet. Escape analysis for object-oriented languages: application
to Java. In OOPSLA 99, volume 34, pages 20�34, 1999.

[Bla03] Bruno Blanchet. Escape analysis for javatm: Theory and practice. ACM
Trans. Program. Lang. Syst., 25(6):713�775, November 2003.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Gilles Barthe, Lilian Burdy,
Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
CASSIS 2004, volume 3362 of Lectures Notes in Computer Science,
pages 49�69. Springer, 2005.

[BN04] Mike Barnett and David A. Naumann. Friends need a bit more: Main-
taining invariants over shared state. In MPC 2004, Lectures Notes in
Computer Science, pages 54�84. Springer, July 2004.

[BPS05] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider. Precise analysis
of memory consumption using program logics. In Bernhard K. Aichernig
and Bernhard Beckert, editors, SEFM, pages 86�95. IEEE Computer
Society, 2005.

[BR00] P. Boulet and X. Redon. Sppoc: fonctionnemen et applications. Re-
search Report 00-04, LIFL, 2000.

[BR01] W. S. Beebee, Jr. and Martin Rinard. An implementation of scoped
memory for real-time Java. LNCS, 2211:289�??, 2001.

[Bro84] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In Symposium on LISP
and functional programming, pages 256�262. ACM Press, 1984.

[Bro85] D. R. Brownbridge. Cyclic reference counting for combinator machines.
In Conference on Functional programming languages and computer ar-
chitecture, LNCS 201, pages 273�288, 1985.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. E�cient �ow-sensitive
interprocedural computation of pointer-induced aliases and side e�ects.
In POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 232�245, New
York, NY, USA, 1993. ACM Press.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice
model for static analysis of programs by construction of approximation
of �xed points. In POPL 77, pages 238�252, 1977.

[CC02] P. Cousot and R. Cousot. Modular static program analysis, invited
paper. In CC 02, pages 159�178, Grenoble, France, April 6�14 2002.
LNCS 2304.

[CD02] Dave G. Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and e�ect. SIGPLAN Notices, 37(11):292�
310, November 2002.

[CEI+07] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C.
Necula. Enforcing resource bounds via static veri�cation of dynamic
checks. ACM Trans. Program. Lang. Syst., 29(5):28, 2007.

128 Synthesis of parametric speci�cations of dynamic memory utilization

[CFGV06] Philippe Clauss, Federico Fernández, Diego Garbervetsky, and Sven Ver-
doolaege. Symbolic polynomial maximization over convex sets and its
application to memory requirement estimation. Technical Report 06-04,
Université Louis Pasteur, oct 2006.

[CFR+91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. Kenneth
Zadeck. E�ciently computing static single assignment form and the
control dependence graph. TOPLAS, 13(4):451�490, October 1991.

[CGS+99] J-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midki�.
Escape analysis for Java. In OOPSLA, pages 1�19, 1999.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL 78, pages 84�97, Tucson, Ari-
zona, 1978.

[CJPS05] David Cachera, Thomas P. Jensen, David Pichardie, and Gerardo
Schneider. Certi�ed memory usage analysis. In John Fitzgerald, Ian J.
Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes
in Computer Science, pages 91�106. Springer, 2005.

[CKQ+05] W. Chin, S. Khoo, S. Qin, C. Popeea, and H. Nguyen. Verifying safety
policies with size properties and alias controls. In ICSE 2005, 2005.

[CL98] Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration
spaces. Journal of VLSI Signal Processing, 19(2):Kluwer Academic,
1998.

[CL05] B. Chang and K. Rustan M. Leino. Infering object invariants. In
AIOOL'05. ENTCS, 2005.

[Cla96] P. Clauss. Counting solutions to linear and nonlinear constraints
through ehrhart polynomials: Applications to analyze and transform
scienti�c programs. In ICS'96, pages 278�285, 1996.

[Cla97] P. Clauss. Handling memory cache policy with integer points counting.
In Euro-Par'97, pages 285�293, 1997.

[CM01] B. Cahoon and K. S. McKinley. Data �ow analysis for software prefetch-
ing linked data structures in java controller. In PACT 2001, pages 280�
291, 2001.

[CNQR05] W. Chin, H. H. Nguyen, S. Qin, and M. Rinard. Memory usage veri�-
cation for oo programs. In SAS 05, 2005.

[CR04] S. Cherem and R. Rugina. Region analysis and transformation for Java
programs. ISMM'04, 2004.

[CR07] Sigmund Cherem and Radu Rugina. A practical escape and e�ect anal-
ysis for building lightweight method summaries. In CC 2007: 16th
International Conference on Compiler Construction, Braga, Portugal,
March 2007.

[CT04] Ph. Clauss and I. Tchoupaeva. A symbolic approach to bernstein ex-
pansion for program analysis and optimization. In Evelyn Duesterwald,
editor, 13th International Conference on Compiler Construction, CC
2004, volume 2985 of LNCS, pages 120�133. Springer, April 2004.

BIBLIOGRAPHY 129

[DC02] M. Deters and R. K. Cytron. Automated discovery of scoped memory
regions for real-time java. In ISMM 02, pages 25�35, 2002.

[DHPW01] C. Daly, J. Horgan, J. Power, and J. Waldron. Platform independent dy-
namic java virtual machine analysis: the java grande forum benchmark
suite. In Java Grande, pages 106�115, 2001.

[DM06] Ádám Darvas and Peter Müller. Reasoning about method calls in in-
terface speci�cations. Journal of Object Technology, 5(5):59�85, June
2006.

[ECGN99] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
ICSE99, pages 213�224, 1999.

[ECM06] ECMA. Standard ECMA-335, Common Language Infrastructure
(CLI). http://www.ecma-international.org/publications/standards/-
ecma-335.htm, Ecma International, 2006.

[Ehr77] E. Ehrhart. Polynômes arithmetiques et m�ethode des polyedres en
combinatorie. Series of Numerical Mathematics, 35:25�49, 1977.

[EPG+07] Michael D. Ernst, Je� H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon
system for dynamic detection of likely invariants. Science of Computer
Programming, 2007.

[Fah98] T. Fahringer. E�cient symbolic analysis for parallelizing compilers and
performance estimators. TJS, 12(3), 1998.

[Far93] G. Farin. Curves and Surfaces in Computer Aided Geometric Design.
Academic Press, San Diego, 1993.

[Fer06] Federico Fernández. Obtención de cotas del consumo de memoria re-
querido para ejecutar un método bajo el modelo de memoria por alcance
a través de bases de bernstein. Master's thesis, Departamento de Com-
putación. FCEyN. UBA, sep 2006.

[FGB+05] Andrés Ferrari, Diego Garbervetsky, Victor Braberman, Pablo Listin-
gart, and Sergio Yovine. Jscoper: Eclipse support for research on scop-
ing and instrumentation for real time java applications. In eclipse '05:
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eX-
change, pages 50�54, New York, NY, USA, 2005. ACM Press.

[FL01] C. Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant
for ESC/Java. LNCS, 2021, 2001.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java.
In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 234�245, New
York, NY, USA, 2002. ACM Press.

[FR87] R.T. Farouki and V.T. Rajan. On the numerical condition of polynomi-
als in bernstein form. Computer Aided Geometric Design, 4(3):191�216,
1987.

130 Synthesis of parametric speci�cations of dynamic memory utilization

[GA01] D. Gay and A. Aiken. Language support for regions. In PLDI 01, pages
70�80, 2001.

[Gar05] D. Garbervetsky. Using daikon to automatically estimate the number
of excecuted instructions. Internal Report. UBA, Argentina, 2005.

[GB99] Aaron Greenhouse and John Boyland. An object-oriented e�ects system.
Lecture Notes in Computer Science, 1628:205�??, 1999.

[GB00] James Gosling and Greg Bollella. The Real-Time Speci�cation for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[GBD98] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for multimedia
applications. In CODES/CASHE '98, pages 145�149. IEEE, 1998.

[Ghe02] O. Gheorghioiu. Statically determining memory consumption of real-
time java threads. MEng thesis, Massachusetts Institute of Technology,
June 2002., 2002.

[GNYZ04] Diego Garbervetsky, Chaker Nakhli, Sergio Yovine, and Hichem Zorgati.
Program instrumentation and run-time analysis of scoped memory in
Java. RV 04, ETAPS 2004, ENTCS, Barcelona, Spain, April 2004.

[GS00] David Gay and Bjarne Steensgaard. Fast escape analysis and stack
allocation for object-based programs. In CC '00: Proceedings of the
9th International Conference on Compiler Construction, pages 82�93,
London, UK, 2000. Springer-Verlag.

[Hei71] Lee E. Heindel. Integer arithmetic algorithms for polynomial real zero
determination. J. ACM, 18(4):533�548, 1971.

[Hen98] R. Henriksson. Scheduling garbage collection in embedded systems.
PhD. Thesis, Lund Institute of Technology, 1998.

[HIB+02] T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J-Ph. Lesot, and
F. Parain. Memory management for real-time Java: an e�cient solution
using hardware support. Real-Time Systems Journal, 2002.

[HJ03] M. Hofman and S. Jost. Static prediction of heap usage for �rst-order
functional programs. In POPL 03, SIGPLAN, New Orleans, LA, Jan-
uary 2003.

[HP99] J. Hughes and L. Pareto. Recursion and dynamic data-structures in
bounded space: towards embedded ml programming. In ICFP '99, pages
70�81. ACM, 1999.

[HPS96] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In POPL '96, pages 410�423. ACM, 1996.

[Ins] Silicomp Research Institute. Turbo j. Java to native compiler.
http://www.ri.silicomp.fr/adv-dvt/java/turbo/index.htm.

[IS97] A. Ireland and J. Stark. The automatic discovery of loop invariants.
Fourth NASA Langley Formal Methods Workshop. Conference Publica-
tion 3356., 1997.

[JL96] R. Jones and R. Lins. Garbage collection. Algorithms for automatic
dynamic memory management. John Wiley and Sons, 1996.

BIBLIOGRAPHY 131

[KNY03] Ch. Kloukinas, Ch. Nakhli, and S. Yovine. A methodology and tool sup-
port for generating scheduled native code for real-time java applications.
In EMSOFT'03, Philadelphia, USA, October 2003.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for
detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Speci�cations of Businesses and Systems, pages 175�
188. Kluwer Academic Publishers, 1999.

[LG88] J. M. Lucassen and D. K. Gi�ord. Polymorphic e�ect systems. In POPL
'88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 47�57, New York, NY, USA,
1988. ACM Press.

[Lis03] B. Lisper. Fully automatic, parametric worst-case execution time anal-
ysis. In WCET 03, 2003.

[LLP+00] G.T. Leavens, K. Rustan M. Leino, E. Poll, C. Ruby, and B. Jacobs.
JML: notations and tools supporting detailed design in Java. In OOP-
SLA'00, pages 105�106, 2000.

[LMC02] V. Loechner, B. Meister, and P. Clauss. Precise data locality optimiza-
tion of nested loops. TJS, 21(1):37�76, 2002.

[Loe99] Vincent Loechner. Polylib: A library for manipulating parameterized
polyhedra. Technical report, ICPS, Université Louis Pasteur de Stras-
bourg, France, March 1999.

[LPHZ02] K. Rustan M. Leino, Arnd Poetzsch-He�ter, and Yunhong Zhou. Us-
ing data groups to specify and check side e�ects. SIGPLAN Notices,
37(5):246�257, May 2002.

[M�88] Daniel Le Métayer. Ace: an automatic complexity evaluator. ACM
Trans. Program. Lang. Syst., 10(2):248�266, 1988.

[Mei04] Benoit Meister. Stating and Manipulating Periodicity in the Polytope
Model. Applications to Program Analysis and Optimization. PhD thesis,
December 2004.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Series in Com-
puter Science. Prentice-Hall International, New York, 1988.

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans. Softw.
Eng. Methodol., 14(1):1�41, 2005.

[NE01] J. W. Nimmer and M. D. Ernst. Static veri�cation of dynamically de-
tected program invariants:integrating Daikon and ESC/Java. In RV
2001,ENTCS, volume 55, 2001.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

[NX05] Phung Hua Nguyen and Jingling Xue. Interprocedural side-e�ect analy-
sis and optimisation in the presence of dynamic class loading. In ACSC

132 Synthesis of parametric speci�cations of dynamic memory utilization

'05: Proceedings of the Twenty-eighth Australasian conference on Com-
puter Science, pages 9�18, Darlinghurst, Australia, Australia, 2005. Aus-
tralian Computer Society, Inc.

[Ped91] Paul Pedersen. Multivariate sturm theory. In AAECC91, pages 318�332,
London, UK, 1991. Springer-Verlag.

[PFHV04] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java
scoped memory: design patterns and semantics. In Proceedings of
the IEEE International Symposium on Object-oriented Real-Time Dis-
tributed Computing (ISORC), Vienna, Austria, May 2004.

[PG06] Diego Piemonte and Diego Garbervetsky. Descubrimiento automático
de restricciones lineales entre variables de programas mediante análi-
sis estático. Master's thesis, Departamento de Computación. FCEyN.
UBA., mar 2006.

[Pol] The PolyLib polyhedral library. http://icps.u-strasbg.fr/PolyLib/.

[Pug94] W. Pugh. Counting solutions to presburger formulas: How and why. In
PLDI 94, pages 121�134, 1994.

[Rab06] Tilmann Rabl. Volume calculation and estimation of parameterized
integer polytopes. Master's thesis, Universität Passau, January 2006.

[RF02] T. Ritzau and P. Fritzon. Decreasing memory over-head in hard real-
time garbage collection. In EMSOFT'02, LNCS 2491, 2002.

[Ros89] Mads Rosendahl. Automatic complexity analysis. In FPCA '89: Pro-
ceedings of the fourth international conference on Functional program-
ming languages and computer architecture, pages 144�156, New York,
NY, USA, 1989. ACM Press.

[RR84] H. Ratschek and J. Rokne. Computer Methods for the Range of Func-
tions. Ellis Horwood, 1984.

[RR01] Atanas Rountev and Barbara G. Ryder. Points-to and side-e�ect analy-
ses for programs built with precompiled libraries. In CC '01: Proceedings
of the 10th International Conference on Compiler Construction, pages
20�36, London, UK, 2001. Springer-Verlag.

[Sal] Alexandru Salcianu. Pointer analysis and its applications for java pro-
grams. SM Thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, September 2001.

[SHM+06] Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. Safe manual memory management in cyclone. Sci. Comput.
Program., 62(2):122�144, 2006.

[Sie99] Fridtjof Siebert. Hard real-time garbage-collection in the jamaica virtual
machine. rtcsa, 00:96, 1999.

[Sie00] F. Siebert. Eliminating external fragmentation in a non-moving garbage
collector for Java. CASES'00, 2000.

[Spe] http://research.microsoft.com/specsharp/.

BIBLIOGRAPHY 133

[SR01] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for
multithreaded programs. In PPoPP 01, volume 36, pages 12�23, 2001.

[SR05] Alexandru Salcianu and Martin Rinard. Purity and side e�ect analysis
for Java programs. In Proceedings of the 6th International Conference
on Veri�cation, Model Checking and Abstract Interpretation, January
2005.

[SYG05] Guillaume Salagnac, Sergio Yovine, and Diego Garbervetsky. Fast es-
cape analysis for region-based memory management. Electronic Notes
Theoretical Comput. Sci., 131:99�110, 2005.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference
immutability to Java. In OOPSLA '05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications, pages 211�230, New York, NY, USA, 2005.
ACM Press.

[TT97] M. Tofte and J.P. Talpin. Region-based memory management. Infor-
mation and Computation, 1997.

[USL] L. Unnikrishnan, S.D. Stoller, and Y.A. Liu. Automatic accurate stack
space and heap space analysis for high-level languages. Technical report,
Computer Science Department, Indiana University. To appear.

[USL03] L. Unnikrishnan, S.D. Stoller, and Y.A. Liu. Optimized live heap bound
analysis. In VMCAI 03, volume 2575 of LNCS, pages 70�85, January
2003.

[Ver07] Sven Verdoolaege. barvinok, a library for counting the number of integer
points in parametrized and non-parametrized polytopes.
Available at http://freshmeat.net/projects/barvinok, April 2007.

[VRHS+99] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - A java optimization framework. In CASCON'99, pages
125�135, 1999.

[�07] Jaroslav �ev£ík. Proving resource consumption of low-level programs
using automated theorem provers. Electron. Notes Theor. Comput. Sci.,
190(1):133�147, 2007.

[VSB+04] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.
Analytical computation of ehrhart polynomials: enabling more compiler
analyses and optimizations. In CASES '04, pages 248�258. ACM, 2004.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Proc. Int.
Workshop on Memory Management, Kinross Scotland (UK), 1995.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape
analysis for java programs. ACM SIGPLAN Notices, 34(10):187�206,
1999.

[ZG98] M. Zettler and J. Garlo�. Robustness analysis of polynomials with
polynomial parameter dependency using bernstein expansion. IEEE
Transactions on Automatic Control, 43(3):425�431, 1998.

134 Synthesis of parametric speci�cations of dynamic memory utilization

[ZM99] Y. Zhao and S. Malik. Exact memory size estimation for array compu-
tations without loop unrolling. In DAC '99, pages 811�816. ACM Press,
1999.

APPENDIX A

Tool Support

Now, we will discuss some technical aspects of a tool that we have developed to
evaluate our approach. As we mentioned in the introduction, the tool has three main
components:

Dynamic utilization analyzer

Region inferencer

Dynamic memory requirements analyzer.

A.1. Dynamic utilization analyzer

The Dynamic utilization analyzer is the part of the tool that has required more
work. It is responsible for the computation of the set of creation sites, the gener-
ation and manipulation of invariants, estimation of inductive set of variables and
interfacing with other tools that deal with polyhedra and polynomials manipulation.

An schematic diagram of the components that composed this tool showed in
Fig. A.1.

The main components are:

Application Instrumentator: Instruments the application's source code or byte-
code to produce a new functionally equivalent code that provides explicit in-
formation we would like to make it appear in local invariants.

Daikon [EPG+07]: Third party dynamic analysis tool that produces likely
invariant.

Invariant Globalizer: Generates control state invariants out from local ones.

Symbolic polyhedral calculator: Simpli�es invariants and generates the para-
metric expressions that counts the number of solutions of given invariants.

Polynomial Evaluator:It is a tool that manipulates and evaluates polynomials.

Most of the components were implemented in Java using soot [VRHS+99] which
is a framework designed to facilitate program analysis. We use the framework to
generate call graphs, to implement several data�ow analyses and for code genera-
tion. The Symbolic Polyhedral calculator integrates di�erent tools such as SPPoC

135

136 Synthesis of parametric speci�cations of dynamic memory utilization

Figure A.1: Components of the Dynamic Utilization Analyzer

[BR00] and Barvinok [VSB+04] and the Polylib library [Pol] that are useful for the
manipulation of polyhedra and generation of Ehrart quasi-polynomials [Ehr77].

A.1.1. Application Instrumentator

The goal of this component is to automatically produce code that is enriched
with information that can help Daikon in the generation of local invariants that we
need.

The component performs the following tasks:

Identi�cation of allocation sites and call sites

Identi�cation of �sizeable� variables and parameters

Identi�cation of inductive set of variables

Instrumentation of the code

An important role of the tool is the identi�cation of the variables and expressions
that have to appear in the invariant. Basically, it creates a new variable for any
�sizeable� expression. By sizeable we mean variables or expressions of integer type
that can be relevant in a linear invariant. Examples of expressions that we want
to capture are: length of arrays and strings, size of collections, instance and static
�elds, etc. For each one of those expressions we create a new variable and introduce
code that binds the variable with that expression.

We also include new variables in order to try to �linearize� common iterations
patterns. For instance, for each variable of type iterator we create a new associated
counter. We introduce code to update the counter when the iterator is updated. For
instance, it.next increments the counter it.

Since Java programs use a passing by value convention, method parameters are
local variables which have a copy of the arguments passed by the caller. As a conse-
quence, parameters can be updated as any other variable. Since we need to discover

Chapter A. Tool Support 137

�parametric� we introduce new �meta�-variables and additional code to make these
variables conserve the initial value of the parameters (see Table B.1). Since these
new variables are fresh and are only updated at the beginning of the method, they
can be interpreted, at any moment, as the original value of the parameter before the
execution of the method (precondition).

Daikon is able to generate a pre and postconditions of every method that ana-
lyzes. Since we need invariants for other program points such as allocation sites (i.e.
codenew statements) and call sites since both are necessary to generate creation-site
invariants, at those control points, we introduce calls to dummy (and empty) meth-
ods whose arguments are the variables we need Daikon to consider when trying to
infer the invariants.

Summarizing we perform the following tasks:

1. Create a new variable for each sizeable variable or expression.

2. At method's entry: Add code to take a snapshot of the initial value of the
parameters

3. Before every point of interest:

a) Add code to store the current value of variables and expressions of interest.

b) Add code to call a dummy method passing as arguments all the variables
that Daikon should analyze.

In Table A.1 we show the pseudo-code of the algorithm we have implemented to
instrument each method. The function codeForInitParams yields the code necessary
to record the initial value of method's parameters. gen is a function that, given a
program location, yields (if it is a location that requires instrumentation) a fresh
dummy method whose formal parameters are associated with the set of relevant
(inductive) variables and expressions for that method location. It may also yields a
potentially augmented set of variables (e.g. a new arti�cial variable introduced for
an iterator) which needs to be considered when computing invariants. Finally, the
function instrument returns the code necessary to record the values of the relevant
variables and expressions (the ones that we want to appear in an invariant for that
program location) and to call the generated dummy method.

In appendix B we present a full example where most of the interesting aspects of
the instrumentation technique are applied. Applying this instrumentation procedure,
we ensure that we the variables and expressions of interest will appear in the runtime
traces that Daikon is going to analyze.

Computing set of inductive variables

Since we relate invariants with number of visits to control states, we need invari-
ants to bound in some way all variables for a given control state. However, some
of the variables may not have any real impact in the number of visits of the ana-
lyzed control state. If we apply the counting technique without considering that fact,
we may count valuations of variables that are not connected with number of visits
which will lead to a very pessimistic over-approximation (see 2.6.3). To cope with
this problem, we must identify the set of inductive variables of the location under
analysis.

Our tool automatically (and conservatively) discovers inductive variables for all
instrumentation and call sites. Up to the moment we implemented a data�ow analysis
that combines a live variables analysis (but augmented with �eld sensitivity) with a
classic loop inductive analysis [NNH99].

138 Synthesis of parametric speci�cations of dynamic memory utilization

instrumentMethod(m)
// instruments method m
// returns the set of created dummy method
ε = ∅;
IMs = ∅;
initCode:=codeInitParams(m);
insert(m,initCode);
for each l ∈ Bodym do

(iml, ε
′)= gen(l, ε);

code = instrument(l, iml, ε
′);

insertBefore(m,l,code);
IMs = IMs ∪ im
ε = ε′;

end for;
return IMs;

Table A.1: Pseudo-code showing how we instrument the code

Since our analysis is conservative the tool allows manual edition of the inferred
set of inductive variables for each program location. This allows programmer to ��ne-
tune� the sets in order to produce tighter bounds at the risk of losing soundness.

Notice that the minimal set of variables that must be considered when instru-
menting the code to guide Daikon should include at least the set of inductive variables
and method's parameters.

Local Invariant Generation

As we mentioned, we use Daikon to infer local invariants. The output is basically
a set of speci�cations containing pre and postconditions of the analyzed dummy
methods. In our case, we only ask Daikon to analyze the class that contains the
arti�cially created dummy methods which are conveniently codi�ed to refer to the
original program location in such a way that the precondition of the dummy method
is the obtained invariant for that program location.

A.1.2. Invariant Globalizer

Once we obtain invariants using the procedure mentioned previously or by an-
other means (e.g. manually or by static analysis [PG06]) we need to generate what
we informally call �control state invariants� which refers to invariants predicating
about variables which belongs to several methods along a call stack. Instances of
control state invariants are creation sites invariants which are necessary for the com-
putation of memalloc (see 1.4) and binding invariant required for the computation
of rSize (see 1.6).

To compute the binding invariants, we generate all possible call chains by travers-
ing the application call graph starting by the MUA. Then, for every call chain we
iteratively compose the caller's local invariant with each callee's by conjoining them
and adding a set of equalities that re�ect the actual binding of caller's arguments
with callee's parameters. Since a creation site is simply a call chain �nalizing in a
program location that performs a new statement, creation site invariants are basically
an extension of a binding invariant conjoined with the local invariant associated with
that program location.

Chapter A. Tool Support 139

The output of this tool is a set of global invariants that is passed to the Symbolic
Polyhedra Calculator to produce the polynomials.

A.1.3. Symbolic Polyhedra Calculator

This component takes a set of global invariants and produce a set of polynomials
representing the number of integer solution for those invariants.

We rely on a tool called Symbolic Parameterized Polyhedral Calculator [BR00]
(SPPoC) which is library written in OCaml and allows symbolic manipulation of
parametric polyhedra. To use this tool we �rst produce an OCaml program which
incorporates the global invariant and perform calls to SPPoC in order to convert
the global invariants in parametric polyhedra. In the conversion phase we simplify,
linearize and project only relevant (inductive) variables and parameters of the invari-
ants. SPPoC provides and API to interface with Polylib that provides an algorithm
for counting the number of solution of parametric polyhedra. But, instead of using
that algorithm we use another one implemented in a tool called Barvinok [VSB+04]
because it is more e�ective in practice.

A.2. Region inference

This goal is this component is the generation of memory regions and automatic
generation of code that use our region-based memory mechanism.

In Fig. A.2 we show an schematic diagram of the components of this part of the
tool.

Figure A.2: Components of the memory region inferencer and region-based code
generator

As mentioned, we have implemented two algorithms for escape analysis (see 4 and
5). The former was implemented in Java using the soot framework and is integrated
in the tool. The latter was implemented in C# and it is currently integrated in the
Spec# compiler [BLS05].

140 Synthesis of parametric speci�cations of dynamic memory utilization

A component to edit memory regions was implemented as a Java Eclipse plug-in
called JScoper [FGB+05] (see chapter 6). We used this component as a front-end
to produce region-based Java code starting from a conventional Java application.
The component automatically calls our escape analysis component, process it, and
produce a �le with the inferred memory regions. Then, using the original source
code and the regions produces the region-based code by instrumenting the source
application as explained in chapter 3.

In chapter 3 we presented an API to support a region-based memory management
in Java and a tool to automatically generate code that uses the API. We implemented
two versions of this API. The �rst one is simply a simulator we use for checking the
feasibility of our approach, for accounting and debugging purposes. In fact, we
use this simulator to contrast the memory consumption prediction against actual
executions. The simulator is also useful when debugging applications because it is
completely implemented in Java without using any native method. Thus, we can
easily access to the internal representation of the API and display and manipulate
the regions.

We also implemented a �real� memory manager based on the region-based mem-
ory manager RC developed by David Gay [GA01]. In this case, instead of generating
Java bytecode, we generate native code which includes the instrumented code, the
API and the RC memory manager.

A.3. Memory requirements calculation

The goal of this component is to implement the memory requirements technique
presented in chapter 7.

Figure A.3: The main subcomponents of the components for predicting memory
requirements

The most important subcomponent is the one that implements an algorithm to
solve the non-linear symbolic maximization problem. As we mentioned in chapter
7 we decided to follow the approach presented by Clauss in [CT04]. Since, at that
moment there were no implementations of the Bernstein transformation over multiple
variable's polyhedra, we started the development of the �rst implementation. This
work was mainly due to Federico Fernández as part of his work for obtaining with

Chapter A. Tool Support 141

M.Sc. thesis [Fer06] that I co-advised. This tool was capable of obtaining the set of
bound candidates as explained in chapter 7. It was implemented in C++ relaying
on libraries like GiNaC [BFK02] for manipulating polynomials and Polylib [Pol] for
dealing with polyhedra.

Lately, our implementation of Bernstein transformation has been incorporated
in the Barvinok library [Ver07] which features better support for determining the
maximums between the candidates and important performance and interfacing im-
provements.

The other subcomponents are implemented in Java using soot and reuse part of
the functionality implemented for A.1. For instance, call chains and the binding in-
variants are generated using the components described for the invariant globalization
(see A.1.2).

APPENDIX B

Instrumentation for Daikon: An example

Here we present an example that shows several aspects about the instrumentation
technique. We instrument programs in order to generate code that is useful to guide
Daikon in obtaining local linear invariants that are useful for counting the number
of visits of selected set of statements.

B.1. Example

public class ArrayDim {

Vector list; int len;

final static int BSIZE = 5;

public ArrayDim() {

1: list= new Vector();

2: len = 0; }

public void add(Object o) {

1: Object[] block;

2: if (len % BSIZE == 0)

3: block = newBlock(BSIZE);

else

4: block=(Object [])

list.lastElement();

5: block[len % BSIZE] = o;

6: len++;

}

Object[] newBlock(int how) {

7: Object[] block=new Object[how];

8: list.add(block);

9: return block;

}

void addAll(Collection c) {

10: for(Iterator it=c.iterator();

it.hasNext();) {

11: add(it.next());

}

}

}

Figure B.1: Motivating example

In Fig. B.1 we present an example program for which we want to obtain creation
sites invariants. It is a (very simple) implementation of a dynamic array using a
list of �xed sized nodes. We are interested in the allocation statement located at
newBlock.7. The number of times this statement is executed when execution start
by method addAll depends on the size of the collection c passed as a parameter. The
execution of this statement takes place in the method where a new block of memory
is request because the previous block is full.

The Call Graph and Call Tree starting from method addAll are depicted in
Fig. B.2.

We instrumented the code using the algorithm presented in Table A.1. Table B.1
shows part of the instrumented code for the example. The code that has been added
to the original example can be distinguish since it is in italic font.

143

144 Synthesis of parametric speci�cations of dynamic memory utilization

Figure B.2: Call Graph for method ArrayDim.addAll of the proposed example

public class ArrayDim {

Vector list; int len;

final static int BSIZE = 5;

public void add(Object o) {

Object[] block;
ArrayDim this_init=this;

int this_init_list_size, this_init_len;

int this_list_size, this_len;

int ArrayDim_BSIZE;

if(this_init!=null) {

if(this_init_list!=null)

this_init_list_size=this_init_list.size();

else this_init_list_size = 0;

this_init_len = this_init.len; }

else { this_init_list_size = 0;

this_init_len = 0; }

if (len % BSIZE == 0) {

ArrayDim_BSIZE = BSIZE;

if(this!=null) {

if(this_list!=null)

this_list_size = this_list.size();

else this_list_size = 0;

this_len = this.len; }

else { this_list_size = 0;

this_len = 0; }

IM.ArrayDim_3(this_list_size,this_list_len,

this_init_list_size, this_init_len,

ArrayDim_BSIZE);

block = newBlock(BSIZE);

}

else {

block=(Object [])list.lastElement(); }

block[len % BSIZE] = o;

len++; }

}

Object[] newBlock(int how) {

int how_init = how;

ArrayDim this_init=this;

int this_init_list_size,this_init_len;

int this_list_size,this_len;

int ArrayDim_BSIZE;

this_init = this;

if(this_init!=null) {

if(this_init_list!=null)

this_init_list_size=this_init_list.size();

else this_init_list_size = 0;

this_init_len = this_init.len; }

else { this_init_list_size = 0;

this_init_len = 0; }

ArrayDim_BSIZE = BSIZE;

if(this!=null) {

if(this_list!=null)

this_list_size = this_list.size();

else this_list_size = 0;

this_len = this.len; }

else { this_list_size = 0;

this_len = 0; }

IM.ArrayDim_7(how, how_init,

this_list_size,this_list_len,

this_init_list_size, this_init_len,

ArrayDim_BSIZE);

Object[] block=new Object[how];

list.add(block);

return block;

}

void addAll(Collection c) {

Collection c_init = c;

int c_size, c_init_size;

if(c_init!=null) c_init_size = c_init.size();

else c_init_size = 0;

ArrayDim this_init;

int this_init_list_size, this_init_len;

int this_list_size, this_len;

int ArrayDim_BSIZE;

this_init = this;

int it_count;

if(this_init!=null) {

if(this_init_list!=null)

this_init_list_size=this_init_list.size();

else this_init_list_size = 0;

this_init_len = this_init.len; }

else { this_init_list_size = 0;

this_init_len = 0; }

it_count = 0;

for(Iterator it=c.iterator();

it.hasNext();) {

if(c!=null) c_size = c.size();

else c_size = 0;

it_count++;

ArrayDim_BSIZE = BSIZE;

if(this!=null) {

if(this_list!=null)

this_list_size = this_list.size();

else this_list_size = 0;

this_len = this.len; }

else { this_list_size = 0;

this_len = 0; }

IM.ArrayDim_11(it_count, c_size, c_init_size,

this_list_size,this_list_len,

this_init_list_size, this_init_len,

ArrayDim_BSIZE);

add(it.next());

}

}

}

Table B.1: Instrumented code for the example

Chapter B. Instrumentation for Daikon: An example 145

At the beginning of every method we automatically generate code used to keep
the initial value of the method parameters (recorded in special variables named with
the _init su�x). Since this is a complex parameter (an instance of ArrayDim class)
we generate several variables to record the value of each of its component. We also
apply an special treatment to the �eld list which is a �sizeable� object because it
is an instance of the Collection type. In particular, we generate a fresh variable to
represent the expression list.size().

At every instrumentation site (i.e. call sites, allocation sites), we introduce code
to store, in local variables, the value of relevant variables and expressions at that
program location and to make a call to a generated dummy method using that local
variables. We apply an special treatment for some iteration patterns. Notice, for
instance, that in method AddAll we introduce a new variable it_count which is
associated with the iterator it. The idea is that, every time it.next is executed,
it_count is incremented.

In order to generate local invariants we run Daikon over a test harness to try to
ensure a good coverage. Table B.2 shows some obtained invariants for our example.
They correspond to the instrumentation site newblock.7 and the call sites addAll.7
and add.3 that belong to its call chain.

label invariant
addAll.11 BSIZE = 5, sizef_this_init_list = 0, f_this_init_len = 0, sizec_init =

sizec, sizef_this_list >= 0, sizef_this_list < sizec, f_this_len >= 0, f_this_len <
sizec, sizef_this_list <= f_this_len, count_it = f_this_len + 1, count_it >=
1, count_it <= sizec

add.3 BSIZE = 5, sizef_this_list = sizef_this_init_list, f_this_len =
f_this_init_len, f_this_len%5 = 0, sizef_this_list <=
f_this_len, sizef_this_list < 5, f_this_len = (sizef_this_list ∗ 5)

newBlock.7 BSIZE = 5, sizef_this_list = sizef_this_init_list, f_this_len =
f_this_init_len, how = how_init, f_this_len%5 = 0, how = 5, sizef_this_list <=
f_this_len, sizef_this_list < how, f_this_len = (sizef_this_list ∗ how)

Table B.2: Local invariants found by Daikon for two call sites and one instrumenta-
tion site

Invariant:

l11@sizef_this_init_list = sizef_this_list, l11@f_this_init_len = f_this_len,
l11@sizec_init = sizec

BSIZE = 5, l11@sizef_this_init_list = 0, l11@f_this_init_len = 0, l11@sizec_init =
l11@sizec, l11@sizef_this_list >= 0, l11@sizef_this_list < l11@sizec, l11@f_this_len >=
0, l11@f_this_len < sizec, l11@sizef_this_list <= l11@f_this_len, l11@count_it =
l11@f_this_len+ 1, l11@count_it >= 1, l11@count_it <= l11@sizec
l3@sizef_this_init_list = l11@sizef_this_list, l3@f_this_init_len = l11@f_this_len,
BSIZE = 5, l3@sizef_this_list = l3@sizef_this_init_list, l3@f_this_len =
l3@f_this_init_len, l3@f_this_len%BSIZE = 0, l3@sizef_this_list <=
l3@f_this_len, l3@sizef_this_list < BSIZE, l3@f_this_len = (l3@sizef_this_list ∗BSIZE),
l7@sizef_this_init_list = l3@sizef_this_list, l7@f_this_init_len = l3@f_this_len,
l7@how_init = 5,
BSIZE = 5, l7@sizef_this_list = l7@sizef_this_init_list, l7@f_this_len =
l7@f_this_init_len, l7@how = l7@how_init, l7@f_this_len%BSIZE = 0, l7@how =
BSIZE, l7@sizef_this_list <= l7@f_this_len, l7@sizef_this_list < l7@how, l7@f_this_len =
(l7@sizef_this_list ∗ l7@how)

Simpli�ed invariant:

BSIZE = 5, count_it >= 1, count_it <= sizec count_it = f_this_len+1, f_this_len%BSIZE = 0
Number of solutions:

C(IaddAllnewBlock.7) = 1
5
sizec + (per(sizec, [0,

4
5
, 3
5
, 2
5
, 1
5
])

Table B.3: Original and simpli�ed global invariant for the call chain and the counting
expression for addAll.11.add.3.newBlock.7

Finally, combining the generated local invariants and binding information ob-

146 Synthesis of parametric speci�cations of dynamic memory utilization

tained from method calls we produce control state invariants. In Table B.3 we show
a control state invariant for addAll.11.add.3.newBlock.7 after the binding.

APPENDIX C

Symbolic Bernstein Expansion over a Convex Polytope

This section explains the theory behind Bernstein expansion. We �rst recall the
classical Bernstein expansion of a univariate polynomial over an interval and then
show how it can be extended to multivariate parametric polynomials over parametric
convex polytopes.

C.1. Bernstein Expansion over an Interval

There are many ways to represent a (rational) univariate degree-d polynomial
p(x) ∈ Q[x]. The canonical representation of p(x) is as a Q-linear combination of
the power base, i.e., the powers of x,

p(x) =
d∑
i=0

aix
i, (C.1.1)

with ai ∈ Q. The polynomial p(x) can also be represented as a Q-linear combination
of the degree-d Bernstein base polynomials [Ber52, Ber54, FR87, BB00]:

p(x) =
d∑

k=0

bdkB
d
k(x), (C.1.2)

where the Bernstein polynomials Bd
i (x) are de�ned by:

Bd
k(x) =

(
d

k

)
xk(1− x)d−k k = 0, 1, ..., d

(
d

k

)
=

d!
k!(d− k)!

, (C.1.3)

and bdi ∈ Q are the Bernstein coe�cients corresponding to the degree-d basis.

Example C.1. Here is an example of a univariate polynomial in its power form and
in its Bernstein form:

p(x) = x3 − 5x2 + 2x+ 4 = 4B3
0(x) +

14
3
B3

1(x) +
11
3
B3

2(x) + 2B3
3(x)

where B3
0(x) = (1 − x)3, B3

1(x) = 3x(1 − x)2, B3
2(x) = 3x2(1 − x) and B3

3(x) = x3.
We will explain below how to compute the Bernstein coe�cients in this expression.

147

148 Synthesis of parametric speci�cations of dynamic memory utilization

Figure C.1: Decomposition of the polynomial p(x) = x3−5x2+2x+4 in the Bernstein
basis

The Bernstein expansion of a polynomial has many interesting properties. The
properties that will interest us most here is that the sum of the Bernstein base
polynomials (C.1.3) is 1 and that, on the interval [0, 1], 0 ≤ Bd

k(x) ≤ 1. The �rst
property follows from the identity:

1 = (x+ (1− x))d =
d∑

k=0

Bd
k(x).

On the interval [0, 1], Equation (C.1.2) expresses the polynomial p(x) as a convex
combination (with coe�cients Bd

i (x)) of the Bernstein coe�cients bdi . On this inter-
val, the polynomial p(x) is therefore bounded by its Bernstein coe�cients, i.e.,

min
0≤i≤d

bdi ≤ p(x) ≤ max
0≤i≤d

bdi .

Moreover, if the minimum or maximum of the bdi is b
d
0 or b

d
d then this bound is exact,

since they correspond to values taken by p(x) at the vertices as is clear from (C.1.3).
These coe�cients where the bound is exact are sometimes referred to as sharp coef-
�cients.

[RR84] proved that the estimation error can be made smaller as the degree d is
elevated. Hence, tighter bounds can be obtained by expressing the polynomial p(x)
in terms of higher degree (> d) Bernstein base polynomials.

Example C.2. Figure C.1 shows the polynomial p(x) = x3− 5x2 + 2x+ 4 from the
previous example, the terms b3iB

3
i (x) of its Bernstein form and the constants b3i . On

the interval [0, 1], the polynomial is bounded by the minimal and maximal Bernstein
coe�cients, b33 = 2 and b31 = 14/3. The �rst of these coe�cients is sharp; the second
is not.

To compute the Bernstein coe�cients bdi from the power form coe�cients ai, we
write the point x on the interval [0, 1] in terms of its barycentric coordinates,

x = α0 v0 + α1 v1,

with
αi ≥ 0 for i ∈ {0, 1} and α0 + α1 = 1

and where v0 = 0 and v1 = 1 are the vertices of the interval [0, 1]. We see that α1 = x
and α0 = 1 − x and that the Bernstein base polynomials (C.1.3) are homogeneous
polynomials of degree d in α0 and α1. To write p(x) (C.1.1) as a homogeneous

Chapter C. Symbolic Bernstein Expansion over a Convex Polytope 149

polynomial in α0 and α1, we simply substitute x = α0 0 + α1 1 = α1 and multiply
each degree-i homogeneous component of p(α0, α1) (i ≤ d) by 1 = (α0 +α1)d−i, i.e.:

p(α0, α1) =
d∑
i=0

aiα
i
1(α0 + α1)d−i

=
d∑
i=0

aiα
i
1

d−i∑
j=0

(
d− i
j

)
αd−i−j0 αj1

 =
d∑

k=0

(
k∑
i=0

ai

(
d− i
k − i

))
αk1α

d−k
0 .

Comparing with (C.1.2) and noting that

Bd
k(x) = Bd

k(α0, α1) =
(
d

k

)
αk1(α0)d−k, (C.1.4)

we obtain:

bdk =
k∑
i=0

(
d−i
k−i
)(

d
k

) ai =
k∑
i=0

(
k
i

)(
d
i

)ai,
where the last equality follows from the identity:(

d− i
k − i

)(
d

i

)
=
(
d

k

)(
k

i

)
.

Bounds on the values attained by a polynomial over an arbitrary interval [a, b]
can be obtained using essentially the same technique. We write:

x = α0 a+ α1 b,

with
αi ≥ 0 for i ∈ {0, 1} and α0 + α1 = 1,

substitute this expression in p(x) to obtain a polynomial p(α0, α1) ∈ Q[α0, α1], multi-
ply each term with the appropriate power of 1 = α0+α1 and compute the coe�cients
bdk with respect to the basis formed by the terms in the expansion

1 = (α0 + α1)d =
d∑

k=0

Bd
k(α0, α1).

The terms Bd
k(α0, α1) are de�ned as in (C.1.4). They are then again the coe�cients

in the expression of p(α0, α1) as a convex combinations of the bdk and so

min
0≤i≤d

bdi ≤ p(x) ≤ max
0≤i≤d

bdi

on the interval [a, b].

C.2. Bernstein Expansion over a Convex Polytope

In this section, we generalize the so-called Bernstein-Bezier form of a polyno-
mial de�ned over a triangle [Far93], and apply the same principles to multivariate
parametric polynomials de�ned over parametric polytopes of any dimension.

A (rational) convex polytope P ⊂ Qn is the convex hull of a set of points ~vi,

P =

{
~x | ∃αi ∈ Q : ~x =

∑
i

αi~vi, αi ≥ 0,
∑
i

αi = 1

}
.

150 Synthesis of parametric speci�cations of dynamic memory utilization

If no ~vi is a convex combination of the other ~vi and then these ~vi are called the
vertices of the polytope.

To compute lower and upper bounds on a (rational) multivariate polynomial
p(~x) ∈ Q[~x] = Q[x1, . . . , xn],

p(x1, x2, . . . xn) =
d1∑
i1=0

d2∑
i2=0

· · ·
dn∑
in=0

ai1,i2,...,in x
i1
1 x

i2
2 · · ·x

in
n (C.2.1)

over a polytope P ⊂ Qn, we essentially follow the procedure from the previous
section. We �rst write ~x as a convex combinations of the vertices

~x =
∑
i

αi~vi

and substitute this expression in the polynomial p(~x). We then multiply each term
in the result with the appropriate power of 1 =

∑
i αi to obtain a homogeneous

polynomial in the αi of degree d, where d is the maximum of the di. Finally, we
compute the coe�cients bd~k, for

~k = (k1, . . . , kn), 0 ≤ ki,
∑
ki = d, in terms of

the generalized Bernstein base polynomials Bd
~k
. These generalized Bernstein base

polynomials are the terms in the expansion of

1 = (α1 + α2 + · · ·+ αn)d

=
∑

k1,k2,...,kn≥0
k1+k2+···+kn=d

(
d

k1, k2, . . . , kn

)
αk11 α

k2
2 · · ·α

kn
n =

∑
k1,k2,...,kn≥0

k1+k2+···+kn=d

Bd
~k
(~α),

where (
d

k1, k2, . . . , kn

)
=

d!
k1!k2! . . . kn!

(C.2.2)

are the multinomial coe�cients. Note that, again, the Bd
~k
(~α) are nonnegative and

sum to 1 and so can be considered to be the coe�cients in the expression of p(~x) as
a convex combination of the bd~k. We therefore have

min
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd~k ≤ p(~x) ≤ max
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd~k (C.2.3)

on the polytope P ⊂ Qn. The generalized Bernstein base polynomials we use here
are di�erent from the multivariate Bernstein polynomials [ZG98, CT04], which are
products of standard Bernstein polynomials.

Note that the algorithm outlined above does not require the points ~vi to be
the vertices of the polytope P . They may instead be any set of generators for the
polytope P .

We may also consider parametric polytopes P : D → Qn : ~q 7→ P (~q),

P (~q) =

{
~x | ∃αi ∈ Q : ~x =

∑
i

αi~vi(~q), αi ≥ 0,
∑
i

αi = 1

}
, (C.2.4)

where D ⊂ Qr is the parameter domain and ~vi(~q) ∈ Q[~q] are arbitrary polynomials
in the parameters ~q. Note that some of these generators may be vertices for only a
subset of the values of the parameters. The coe�cients a~i of the polynomial p(~x)
(C.2.1) may also themselves be polynomials in the parameters ~q, i.e., p(~x) ∈ (Q[~q])[~x]
and

a~i =
m1∑
j1=0

m2∑
j2=0

· · ·
mr∑
jr=0

bj1,j2,...,jr q
j1
1 q

j2
2 · · · q

jr
r .

Chapter C. Symbolic Bernstein Expansion over a Convex Polytope 151

Applying the algorithm outlined above, we obtain parametric generalized Bernstein
coe�cients bd~k(~q) and parametric bounds

min
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd~k(~q) ≤ p(~q)(~x) ≤ max
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd~k(~q). (C.2.5)

The removal of redundant bounds in this expression is discussed in Section C.3.

Example C.3. Consider the polynomial p(x1, x2) = 1
2x

2
1 + 1

2x1 + x2 over the para-

metric polytope generated by the points
(

0
0

)
,
(
N
0

)
and

(
N
N

)
. Hence any point(

x1

x2

)
in the polytope is a convex combination of these points:

(
x1

x2

)
= α1

(
0
0

)
+ α2

(
N
0

)
+ α3

(
N
N

)
0 ≤ αi ≤ 1

3∑
i=1

αi = 1

By replacing
(
x1

x2

)
with this convex combination, a new polynomial is obtained

whose variables are α1, α2, α3:
1
2
N2α2

2 +N2α2α3 +
1
2
N2α2

3 +
1
2
Nα2 +

3
2
Nα3

Monomials of degree less than 2 are transformed into sums of monomials of
degree 2:

1
2
Nα2 =

1
2
Nα2(α1 + α2 + α3)

3
2
Nα3 =

3
2
Nα3(α1 + α2 + α3).

The �nal polynomial is:

p(α1, α2, α3) =
(

1
2
N2 +

1
2
N

)
α2

2 +
(

1
2
N2 +

3
2
N

)
α2

3

+
1
2
Nα1α2 +

3
2
Nα1α3 + (N2 + 2N)α2α3.

The basis is built from the expansion of (α1 + α2 + α3)2 providing the following
monomials:

B2,0,0 = α2
1

B0,2,0 = α2
2

B0,0,2 = α2
3

B1,1,0 = 2α1α2

B1,0,1 = 2α1α3

B0,1,1 = 2α2α3.

Rewriting p(α1, α2, α3) in terms of this basis, we obtain

0B2,0,0 +
(

1
2
N2 +

1
2
N

)
B0,2,0 +

(
1
2
N2 +

3
2
N

)
B0,0,2

+
1
4
NB1,1,0 +

3
4
NB1,0,1 +

(
1
2
N2 +N

)
B0,1,1.

It can then be concluded that the polynomial varies between 0 and 1
2N

2 + 3
2N . Since

both of these coe�cients are sharp coe�cients, the bounds are exact bounds. The
graph of the polynomial and the corresponding Bernstein coe�cients are shown in
Figure C.2 for N = 10.

152 Synthesis of parametric speci�cations of dynamic memory utilization

Figure C.2: The polynomial p(x1, x2) = 1
2x

2
1 + 1

2x1 + x2 and the corresponding
Bernstein coe�cients

C.3. Bounding a Polynomial over a Parametric Domain

We already explained in Section C.2 that given a polynomial and a set of para-
metric points, we can compute the Bernstein coe�cients of the polynomial over the
parametric convex polytope generated by the parametric points and that for any
value of the parameters the minimum and maximum values over all Bernstein coef-
�cients evaluated for this particular value of the parameters, provide a lower and an
upper bound for the value of the polynomial over the convex polytope associated to
these parameter values. However, in many situations where we wish to �nd a bound
for a polynomial, the domain over which we wish to compute this bound is not given
by a set of generators, but rather by a set of constraints. Also, when evaluating the
lower or upper bound, we want to evaluate as few of the Bernstein coe�cients as
possible. We discuss these two issues in this section.

For example, suppose we want to compute an upper bound for the polynomial

− 1
2
i2 − 3

2
i− j − n2 + 4n+ 2in (C.3.1)

over the domain

D(n) = { (i, j) | 0 ≤ i ≤ 3n− 1∧ 0 ≤ j ≤ n− 1∧ 3n− 1 ≤ i+ j ≤ 4n− 2 }, (C.3.2)

where n is a parameter. The �rst step is to compute the (parametric) vertices
of D(n). If the domain is bounded by linear constraints in the variables and the
parameters, i.e.,

P : D → Qn : ~q 7→ P (~q) = { ~x ∈ Qd | A~x ≥ B~q + ~d }, (C.3.3)

with D ⊂ Qr, A ∈ Zm×n, B ∈ Zm×r and ~d ∈ Zm, then we can use PolyLib [Loe99]
to compute these vertices. The result is a subdivision of the parameter space in
polyhedral cells, called chambers, each with an associated set of parametric vertices
[CL98]. Note that we mentioned in Section C.2 that the generators of a parametric
polytope do not need to be vertices for all values of the parameters. However, they
do obviously have to be inside the parametric polytope. Vertices associated with one
subdomain that are not also associated with another subdomain will lie outside of
this other subdomain. We therefore need to treat each subdomain separately. In the

Chapter C. Symbolic Bernstein Expansion over a Convex Polytope 153

example, there is only one parameter domain and we �nd the vertices{(
2n
n− 1

)
,

(
3n− 1

0

)
,

(
3n− 1
n− 1

)}
if n ≥ 1.

If the constraints describing the domain are only linear in the variables (and not
in the parameters), then we may still compute the vertices of the domain, but the
subdomains of the parameter space that have a �xed set of parametric vertices will
no longer be polyhedral [Rab06].

The next step is to compute the Bernstein coe�cients as explained in Section C.2.
For our example we obtain the coe�cients

n2 − n

4
+

5
4
,
n2

2
+
n

2
+ 1,

n2

2
+

3
2
, n2 + 1,

n2

2
− n

2
+ 2, n2 − 3n

4
+

7
4
.

An upper bound u(n) for the value of the polynomial over D(n) is therefore

u(n) = max
{
n2−n

4
+

5
4
,
n2

2
+
n

2
+ 1,

n2

2
+

3
2
, n2 + 1,

n2

2
−n

2
+2, n2− 3n

4
+

7
4

}
if n ≥ 1.

(C.3.4)
To compute the upper bound for any particular value of n, we therefore need to
evaluate these 6 polynomials at this value and take the maximum. However, it is
clear that some of these polynomials are redundant in the sense that for any value of
the parameters in the domain the polynomial always evaluates to a smaller number
than some other polynomial.

The simplest way to eliminate redundant Bernstein coe�cients, is to examine
the sign of the di�erence between two polynomials. If the sign is constant over the
domain (where a zero sign may be treated as either positive or negative), then one
of the two is redundant. Some easy ways of determining the sign of a (di�erence)
polynomial are as follows.

1. If the di�erence is a constant, the check is trivial.

2. If the di�erence is linear in the parameters, we add the constraint that the
di�erence be strictly larger than zero to the domain and check whether it
becomes empty. For example, the polynomial n

2

2 + 3
2 is redundant since(

n2

2
+

3
2

)
−
(
n2

2
+
n

2
+ 1
)

=
1
2
− n

2

and this di�erence polynomial is never greater than zero for n ≥ 1. The
polynomial n

2

2 −
n
2 + 2 is eliminated for the same reason, while n2− n

4 + 5
4 and

n2− 3n
4 + 7

4 are eliminated because they are redundant with respect to n2 + 1.
If it turns out that the sign of the di�erence varies over the domain, we could
in principle further subdivide the domain along the above constraint.

3. If the domain over which we want to determine the sign is bounded, we can ap-
ply Bernstein expansion again on the di�erence over this domain, which is now
considered to be a �xed domain without parameters. The resulting Bernstein
coe�cients are therefore constants. If all the non-zero Bernstein coe�cients
have the same sign, then so will the di�erence over the whole domain. For
example, if we assume that there is an upper bound on n, say 1000, then we
can perform Bernstein expansion on(

n2

2
+
n

2
+ 1
)
−
(
n2 + 1

)
= −n

2

2
+
n

2
(C.3.5)

154 Synthesis of parametric speci�cations of dynamic memory utilization

over 1 ≤ n ≤ 1000. The resulting Bernstein coe�cients are{
0,−499500,

−999
4

}
and so we can conclude that n

2

2 + n
2 +1 is redundant with respect to n2+1. Note

that if the polynomial is univariate of degree d with coe�cients ci then we know
that all real roots lie in the interval [−M,M] withM = 1+max0≤i≤d−1 |ci|/|cd|
(Cauchy's bound). It is therefore su�cient to consider the intersection of a
strict superset of this interval with the possibly unbounded domain of interest.
In the example, it would be su�cient to consider the domain 1 ≤ n ≤ 3.

4. If the domain over which we want to determine the sign is not bounded, but
there is a lower bound on one of the parameters, we can write the Taylor
expansion of the di�erence about this lower bound and determine the signs
of the coe�cients in the Taylor expansion. Note that we can easily compute
these coe�cients using synthetic division. If all signs are constant and equal,
then also the di�erence will have this constant sign. For example, we can write
(C.3.5) as

−1
2

(n− 1)− 1
2

(n− 1)2

and the coe�cients are clearly negative, so we can again conclude that n2

2 + n
2

is redundant, over the whole domain n ≥ 1.

In our example we have now been able to simplify (C.3.4) to

u(n) = n2 + 1 if n ≥ 1. (C.3.6)

In general, we will however not be able to identify all but one polynomial as re-
dundant. Still, it may be desirable in some cases to have only a single polynomial
associated to every subdomain, such that for a given subdomain only this single poly-
nomial needs to be evaluated. If the di�erence between two polynomials is linear then
this can easily be accomplished by splitting the domain along the hyperplane where
the di�erence is zero. For example, suppose we have two polynomials n2 + 3n− 500
and n2 + n in the maximum expression associated to the domain n ≥ 4. The di�er-
ence between these two polynomials 2n− 500 is zero along n = 250 and so we would
split the domain into, say, 4 ≤ n < 250 and 250 ≤ n. If the di�erences between
pairs of polynomials is not linear, but they are univariate, then we may not be able
to easily split the domain into subdomains where only a single polynomial remains,
but based on Cauchy's bounds, we can identify and split o� a region of �big� values
where the upper bound is given by a single polynomial.

List of Figures

1.1. Main components of our solution . 4
1.2. Invariant of the motivating example 6
1.3. Components of the Dynamic Memory Inference engine 7
1.4. An example program with its detailed call graph 8
1.5. Organizing object in regions . 14
1.6. Call graph and Region Manager views 18
1.7. Standard Java and Region-base Java views 19
1.8. Instrumented version of the example of Fig. 1.4 20
1.9. Potential regions stack con�gurations 22
1.10. Evaluation tree for memRqm0

m0 . 23
1.11. Predicted vs real memory requirements 25
1.12. Components of the Memory Requirements predictor 26

2.1. Motivating example . 40
2.2. Call Graph and Creation Sites . 45
2.3. Proof-of-concept tool-suite . 48
2.4. Collection Example . 52
2.5. Evolution of size functions for the "test" example 53

3.1. Motivating example . 58
3.2. Call Graph and Call Tree for method m0 of the proposed example . 58
3.3. Poinst-to and Escape analysis for the example 60
3.4. Tool suite . 65
3.5. Intra-region fragmentation for a given block size 66
3.6. Max/Min/Avg intra-region fragmentation for di�erent block sizes . . 66

4.1. The Escape lattice and the Test01 program 71
4.2. Escape analysis rules . 73
4.3. Escape analysis rules (cont) . 74
4.4. Computation of side(v) . 74
4.5. The Test25 program . 75
4.6. The Test30 program . 76

5.1. A simple use of an iterator in C#. 81
5.2. �Desugared" version of the iterator example. 81
5.3. Modeling objects and structs. 83
5.4. Points-to graphs showing evolution of A.m 84

155

156 Synthesis of parametric speci�cations of dynamic memory utilization

5.5. E�ect of omega nodes in the inter-procedural mapping 84
5.6. Evolution of Copy's points-to graph 88
5.7. Annotated methods need for for analyzing Copy 88

6.1. A side by side view of the two code editors 96
6.2. The callgraph browser window . 98
6.3. The Region Manager. 99
6.4. Modules of JScoper . 99

7.1. A sample program with his detailed call graph 102
7.2. Two traces: m0(3) (above) and m0(7) (below). 103
7.3. Potential region stacks for the sample 106
7.4. Evolution of regions sizes . 107
7.5. Consumption for m0(3) and memRqm0(3) 110
7.6. Evaluation tree for memRqm0

m0 . 113
7.7. Function for evaluating an evaluation tree 113
7.8. Simplifying an evaluation tree . 115
7.9. Code generated from an evaluation tree 115
7.10. An example that shows the over-approximation caused by memRq. . . 117
7.11. Actual region stack and the approximation 117
7.12. Over-approximation of region stack con�gurations 118

A.1. Dynamic Utilization Analyzer . 136
A.2. Region Inferencer . 139
A.3. Memory Requirements Analyzer . 140

B.1. Motivating example . 143
B.2. Call Graph for method ArrayDim.addAll of the proposed example 144

C.1. Decomposition of a polynomial in the Bernstein basis 148
C.2. Bernstein coe�cients . 152

List of Tables

1.1. Experimental results . 13
1.2. Scoped-memory reference rules. 13
1.3. Scoped-memory API. 16
1.4. Output of our escape analysis for the example given in Fig. 1.1 . . . 17
1.5. Analysis results . 17
1.6. Capturing estimation for MST and Em3d examples. 21
1.7. Experimental evaluation of memory requirements prediction 27
1.8. Dynamic memory consumption's chronology 31

2.1. Some invariants and Ehrhart polynomials for m0 42
2.2. Polynomials of memory allocation. 44
2.3. Memory allocated by methods m0, m1, and m2 45
2.4. Amount of memory escaping from m1. 47
2.5. Memory captured by methods m0, m1 and m2 47
2.6. Experimental results . 50
2.7. Capturing estimation for MST and Em3d examples. 51

3.1. Scoped-memory API. 61
3.2. Instrumented code for the example 62

4.1. Analysis results . 76

5.1. Annotation Language . 87
5.2. Analysis time for Boogie. 89
5.3. Components of Boogie . 89
5.4. Analysis results for Boogie . 89

6.1. Scoped-memory reference rules. 94
6.2. Scoped-memory API. 95

7.1. Expression for function rSize for the example 109
7.2. Computing the function rSize using Bernstein basis 112
7.3. Experimental results . 116

A.1. Pseudo-code showing how we instrument the code 138

B.1. Instrumented code for the example 144
B.2. Local invariants found by Daikon . 145

157

158 Synthesis of parametric speci�cations of dynamic memory utilization

B.3. Control state invariant and resulting counting expression 145

	Abstract
	Contents
	Introduction
	Motivation
	About this work
	Overview
	Dynamic memory utilization analysis
	Identifying allocation sites
	Computing invariants
	Counting the number of visits
	Computing memory consumption expressions
	Computing set of inductive variables
	Some Experiments

	Scoped Memory Inference and Management
	Inferring method regions
	An API for a Region-Based memory manager
	Escape Analysis
	Tool support for region editing and program transformation
	Computing region sizes

	Predicting dynamic-memory requirements
	Maximizing region memory sizes
	Some Experiments

	Summary of Contributions
	Some limitations and weaknesses of our approach
	Limitations
	Weaknesses

	Related Work
	Type Based Checking
	Cheking using program logics
	Memory consumption inference

	Thesis Structure

	Synthesizing of Dynamic Memory Utilization
	Introduction
	Related Work

	Preliminaries
	Counting the number of solutions of a constraint
	Notation for Programs
	Representing a program state
	Counting the number of visits of a control state

	Synthesizing memory consumption
	Memory allocated by a creation site
	Memory allocated by a method

	Applications to scoped-memory
	Memory that escapes a method
	Memory captured by a method

	Method Validation
	Tool
	Experiments

	Discussion and Future Work
	Dealing with recursion
	Beyond classical iteration spaces
	Improving method precision
	Hybrid technique

	Conclusions

	A region-based memory manager
	Introduction
	Preliminaries
	Scoped memory management
	Inferring scopes
	Synthesizing memory regions
	API and program transformation
	Properties of the code instrumentation

	Run-time analysis
	Intra-region fragmentation
	Inter-region fragmentation

	Prototype tool
	Conclusions and Future Work

	A simple static analysis from region inference
	Introduction
	The algorithm
	Properties
	The rules

	Empirical results

	Annotations for more precise points to analysis
	Introduction
	The Problem
	Structure

	Salcianu's Analysis
	Extensions for the .NET Memory Model
	Extensions for Non-analyzable Methods

	Annotations
	Experimental Results
	Related work
	Conclusions and Future Work

	JScoper: A tool for region edition and code generation
	Introduction
	Scoped Memory Management
	Eclipse Plug-in: JScoper
	Usage and Features
	Design and Implementation

	Conclusions and Future Work

	Computing memory requirements certificates
	Introduction
	Problem statement
	A Peak Overapproximation for Scoped-memory
	Memory required to run a method
	Defining the function rSize

	Computing rSize and memRq
	Computing rSize
	Evaluating memRq

	Experiments
	Discussion
	Sources of imprecision
	About the parameterization of memRq
	Dealing with recursion and complex data structures

	Related Work
	Conclusions and Future work

	Conclusions
	Concluding remarks
	Future Work
	Improving Precision
	Usability and Scalability

	Bibliography
	Tool Support
	Dynamic utilization analyzer
	Application Instrumentator
	Invariant Globalizer
	Symbolic Polyhedra Calculator

	Region inference
	Memory requirements calculation

	Instrumentation for Daikon: An example
	Example

	Symbolic Bernstein Expansion over a Convex Polytope
	Bernstein Expansion over an Interval
	Bernstein Expansion over a Convex Polytope
	Bounding a Polynomial over a Parametric Domain

	List of Figures
	List of Tables

